Next Issue
Volume 15, June-2
Previous Issue
Volume 15, May-2
 
 

Nanomaterials, Volume 15, Issue 11 (June-1 2025) – 97 articles

Cover Story (view full-size image): Black phosphorus is a promising 2D material for the development of surface plasmon resonance (SPR)-based sensors. In the following study, we present an innovative approach based on the wavelength optimization for a high-performance SPR sensor utilizing a comprehensive reflectance analysis in the angular domain. The analysis of a plasmonic sensor comprising a silver layer and black phosphorus in both zigzag and armchair directions allowed precise control over the sensor parameters, including refractive index (RI) sensitivity and figure of merit. The RI sensitivity increase of the sensor for the optimized wavelength was proved due to the optical field enhancement. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4979 KiB  
Article
Dispersion Stability and Tribological Properties of Cold Plasma-Modified h-BN Nanofluid
by Zhenjing Duan, Ziheng Wang, Yishuai Jia, Shuaishuai Wang, Peng Bian, Ji Tan, Jinlong Song and Xin Liu
Nanomaterials 2025, 15(11), 874; https://doi.org/10.3390/nano15110874 - 5 Jun 2025
Viewed by 208
Abstract
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck [...] Read more.
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck that restricts their application. Currently, to prepare h-BN nanofluids with good dispersion stability, a cold plasma (CP) modification of h-BN nanoparticles is proposed in this study. In this research, h-BN nanofluid with added surfactant (SNL), CP-modified h-BN nanofluid with N2 as the working gas (CP(N2)NL), and CP-modified h-BN nanofluid with O2 as the working gas (CP(O2)NL) were prepared, separately. The mechanism of the dispersion stability of CP-modified h-BN nanofluid was analyzed using X-ray photoelectron spectroscopy (XPS), and the performance of CP-modified nanofluid was analyzed based on static observation of nanofluid, kinematic viscosity, and heat transfer properties. Finally, friction and wear experiments were conducted to further analyze the tribological performance of h-BN nanofluids based on the coefficient of friction, 3D surface morphology, surface roughness (Sa), scratches, and micro-morphology. The results show that CP-modified h-BN nanofluid has excellent dispersed suspension stability and can be statically placed for more than 336 h. The CP-modified h-BN nanofluid showed stable friction-reducing, anti-wear, and heat transfer performance, in which the coefficient of friction of h-BN nanofluid was about 0.66 before and after 24 h of settling. The Sa value of the sample was reduced by 31.6–49.2% in comparison with pure cottonseed oil (CO). Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

30 pages, 5617 KiB  
Review
Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
by Fateh Ullah, Zina Fredj and Mohamad Sawan
Nanomaterials 2025, 15(11), 873; https://doi.org/10.3390/nano15110873 - 5 Jun 2025
Viewed by 133
Abstract
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK [...] Read more.
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK QDs and their role in resistive switching memory architectures. We provide an overview of halide PVK QDs synthesis techniques, switching mechanisms, and recent advancements in memristive applications. Special emphasis is placed on the ionic migration and charge trapping phenomena governing resistive switching, along with the prospects of photonic memory devices that leverage the intrinsic photosensitivity of PVK QDs. Despite their advantages, challenges such as stability, scalability, and environmental concerns remain critical hurdles. We conclude this review with insights into potential strategies for enhancing the reliability and commercial viability of PVK QD-based memory technologies. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

28 pages, 6876 KiB  
Article
Research on the Power Generation Performance of Solid–Liquid Triboelectric Nanogenerator Based on Surface Microstructure Modification
by Wei Wang, Ge Chen, Jin Yan, Gaoyong Zhang, Zihao Weng, Xianzhang Wang, Hongchen Pang, Lijun Wang and Dapeng Zhang
Nanomaterials 2025, 15(11), 872; https://doi.org/10.3390/nano15110872 - 5 Jun 2025
Viewed by 241
Abstract
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature [...] Read more.
Since 2015, research on liquid–solid triboelectric nanogenerators (L-S TENGs) has shown steady growth, with the primary focus on application domains such as engineering, physics, materials science, and chemistry. These applications have underscored the significant attention L-S TENGs have garnered in areas like human–nature interaction, energy harvesting, data sensing, and enhancing living conditions. Presently, doping composite dielectric materials and surface modification techniques are the predominant methods for improving the power generation capacity of TENGs, particularly L-S TENGs. However, studies exploring the combined effects of these two approaches to enhance the power generation capacity of TENGs remain relatively scarce. Following a review of existing literature on the use of composite material doping and surface modification to improve the power generation performance of L-S TENGs, this paper proposes an experimental framework termed “self-assembled surface TENG@carbonyl iron particle doping (SAS-TENG@CIP)” to investigate the integrated power generation effects of L-S TENGs when combining these two methods. Research cases and data results indicate that, for TENGs exhibiting capacitor-like properties, the enhancement of power generation performance through composite material doping and superhydrophobic surface modification is not limitless. Each process possesses its own inherent threshold. When these thresholds are surpassed, the percolation of current induced by material doping and electrostatic breakdown (EB) triggered by surface modification can lead to a notable decline in the power output capacity of L-S TENGs. Consequently, in practical applications moving forward, fully realizing the synergistic potential of these methods necessitates a profound understanding of the underlying scientific mechanisms. The conclusions and insights presented in this paper may facilitate their complex integration and contribute to enhancing power generation efficiency in future research. Full article
(This article belongs to the Special Issue Advanced Technology in Nanogenerators and Self-Powered Sensors)
Show Figures

Figure 1

24 pages, 16360 KiB  
Article
Excellent Room-Temperature NO2 Gas-Sensing Properties of TiO2-SnO2 Composite Thin Films Under Light Activation
by Victor V. Petrov, Aleksandra P. Starnikova, Maria G. Volkova, Soslan A. Khubezhov, Ilya V. Pankov and Ekaterina M. Bayan
Nanomaterials 2025, 15(11), 871; https://doi.org/10.3390/nano15110871 - 5 Jun 2025
Viewed by 215
Abstract
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron [...] Read more.
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy, which causes the presence of n-n heterojunctions and provides improved gas-sensitive properties. The sensor based on the 3TiO2–97SnO2 film has the maximum responses, which is explained by the existence of a strong surface electric field formed by large surface potentials in the region of TiO2–SnO2 heterojunctions detected by the Kelvin probe force microscopy method. Exposure to low-intensity radiation (no higher than 0.2 mW/cm2, radiation wavelength—400 nm) leads to a 30% increase in the sensor response relative to 7.7 ppm NO2 at an operating temperature of 200 °C and a humidity of 60% RH. At room temperature (20 °C), under humidity conditions, the response is 1.8 when exposed to 0.2 ppm NO2 and 85 when exposed to 7.7 ppm. The lower sensitivity limit is 0.2 ppm NO2. The temporal stability of the proposed sensors has been experimentally confirmed. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 315 KiB  
Article
A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test
by Fathi Moussa
Nanomaterials 2025, 15(11), 870; https://doi.org/10.3390/nano15110870 - 5 Jun 2025
Viewed by 212
Abstract
Although they show great promise in the medical field, the safety of fullerenes—discovered forty years ago—is still uncertain, according to regulatory experts at the European Scientific Committee on Consumer Safety. This is a major obstacle to progress in the field. Meanwhile, oily solutions [...] Read more.
Although they show great promise in the medical field, the safety of fullerenes—discovered forty years ago—is still uncertain, according to regulatory experts at the European Scientific Committee on Consumer Safety. This is a major obstacle to progress in the field. Meanwhile, oily solutions of fullerenes intended for human and pet consumption can be purchased online, without any marketing authorization. Therefore, to avoid any potential public health issues, regulatory-compliant preclinical studies on fullerene oily solutions are urgently needed. We present the first in vivo genotoxicity study of a C60/C70 fullerene mixture (4.1/1, w/w) dissolved in extra virgin olive oil (0.8 mg/mL). The study was conducted using the Mammalian Micronucleus Test (MMT) in an independent GLP-laboratory, in compliance with the OECD and EPA guidelines. The MMT was performed on NMRI mice following the oral administration of fullerenes at doses of up to 3.6 mg/kg. This dose is almost the maximum dose that can be administered to rodents. The data obtained clearly show that fullerene oily solutions have no genotoxic activity under these conditions. This should pave the way for further regulatory investigations of fullerene oily solutions. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Biomedicine Applications)
Show Figures

Figure 1

16 pages, 3441 KiB  
Article
Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring
by Doina Bejan, Cristina Stan and Alina Petrescu-Niță
Nanomaterials 2025, 15(11), 869; https://doi.org/10.3390/nano15110869 - 5 Jun 2025
Viewed by 226
Abstract
We investigate 3D quantum dot–double quantum ring structures of GaAs/Al0.3Ga0.7As submitted to the combined action of a non-resonant intense laser and an axial magnetic field. We study three representative geometries with the dot height larger, comparable or lower than [...] Read more.
We investigate 3D quantum dot–double quantum ring structures of GaAs/Al0.3Ga0.7As submitted to the combined action of a non-resonant intense laser and an axial magnetic field. We study three representative geometries with the dot height larger, comparable or lower than the ring height. The intense laser field can change the confinement potential of the dot–double ring into dot–triple-ring or –multiple-ring potentials. Also, depending on the dot height, it increases/decreases the absorption of the structure. Under magnetic field, the energy spectra display Aharonov–Bohm oscillations characteristic of a single effective ring covering almost both rings, with a period controlled by the dot height. For large and medium dot height, the magnetic field lowers the absorption and leads to splitting and/or the apparition of two peaks, one that goes to red and the other to blue. In the presence of both fields, the spectra show different characteristics. The dot height and the external fields are thus proved to be efficient tools in controlling the absorption spectra, a useful feature in designing dot–double ring-based devices. Full article
(This article belongs to the Special Issue Linear and Nonlinear Optical Properties of Nanomaterials)
Show Figures

Figure 1

20 pages, 5993 KiB  
Review
Nanostructured Bubble Thin Films—From Simple Fabrication to Scalable Applications: A Review
by Naif Ahmed Alshehri
Nanomaterials 2025, 15(11), 868; https://doi.org/10.3390/nano15110868 - 4 Jun 2025
Viewed by 278
Abstract
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain [...] Read more.
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain whether these techniques can be used for scaling up nanomaterial thin films onto large solid and flexible substrates. Accordingly, this review paper addresses such an issue by reviewing two recent flexible and scalable methods: blown bubble films (BBFs) and the bubble deposition method (BDM). It specifically offers a comprehensive account of these two bubble thin film methods along with their recent applications. It also discusses how nanomaterial thin films are made to fabricate devices. It finally provides some recommendations for further research and applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

17 pages, 3338 KiB  
Article
Multimode Switching Broadband Terahertz Metamaterial Absorbing Micro-Devices Based on Graphene and Vanadium Oxide
by Xin Ning, Qianju Song, Zao Yi, Jianguo Zhang and Yougen Yi
Nanomaterials 2025, 15(11), 867; https://doi.org/10.3390/nano15110867 - 4 Jun 2025
Viewed by 159
Abstract
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well [...] Read more.
In this paper, we propose a multi-mode switchable ultra-wideband terahertz absorber based on patterned graphene and VO2 by designing a graphene pattern composed of a large rectangle rotated 45° in the center and four identical small rectangles in the periphery, as well as a VO2 layer pattern composed of four identical rectangular boxes and small rectangles embedded in the dielectric layer. VO2 can regulate conductivity via temperature, the Fermi level of graphene depends on the external voltage, and the graphene layer and VO2 layer produce resonance responses at different frequencies, resulting in high absorption. The proposed absorption microdevices have three modes: Mode 1 (2.52–4.52 THz), Mode 2 (3.91–9.66 THz), and Mode 3 (2.14–10 THz), which are low-band absorption, high-band absorption, and ultra-wideband absorption. At 2.96 THz in Mode 1, the absorption rate reaches 99.98%; at 8.04 THz in Mode 2, the absorption rate reaches 99.76%; at 5.04 THz in Mode 3, the absorption rate reaches 99.85%; and at 8.4 THz, the absorption rate reaches 99.76%. We explain the absorption mechanism by analyzing the electric field distribution and local plasma resonance, and reveal the high-performance absorption mechanism by using the relative impedance theory. In addition, absorption microdevices have the advantages of polarization insensitivity, incident angle insensitivity, multi-mode switching, ultra-wideband absorption, large manufacturing tolerance, etc., and have potential research and application value in electromagnetic stealth devices, filters and optical switches. Full article
Show Figures

Figure 1

14 pages, 2150 KiB  
Article
Dual Biocide Behaviour of Quaternary Ammonium Functionalized Mesoporous Silica Nanoparticles Loaded with Thymus Essential Oil for Stone Conservation
by Federico Olivieri, Elena Orlo, Elodia Spinelli, Rachele Castaldo, Gennaro Gentile, Silvia Licoccia, Margherita Lavorgna and Marino Lavorgna
Nanomaterials 2025, 15(11), 866; https://doi.org/10.3390/nano15110866 - 4 Jun 2025
Viewed by 196
Abstract
Mesoporous silica nanoparticles (MSNs) functionalized with silane quaternary ammonium compounds (SiQACs) were synthesized and utilized as carriers for thymus essential oil (TO), a green bio-antifouling agent. The synthesis of MSNs functionalized with SiQACs was carried out in a single step, with clear advantages [...] Read more.
Mesoporous silica nanoparticles (MSNs) functionalized with silane quaternary ammonium compounds (SiQACs) were synthesized and utilized as carriers for thymus essential oil (TO), a green bio-antifouling agent. The synthesis of MSNs functionalized with SiQACs was carried out in a single step, with clear advantages in terms of simplicity of the process, high yield (94%) and saving of reagents and solvents for the MSN purification. After loading with TO, this innovative dual-action antifouling system was able to integrate the intrinsic biocidal properties of SiQACs with the release of TO from MSN pores, resulting in an engineered material with prolonged efficacy. The antifouling compounds incorporated into the nanoparticles accounted for 42% of the total weight. The biocidal performance was evaluated by monitoring the growth inhibition of Chlorella sorokiniana, a microalga commonly associated with stone biodeterioration. Additionally, these nanoparticles were embedded in a commercial silane-based protective coating and applied to tuff stone samples to assess their ability to mitigate biofilm formation over extended periods. Results demonstrated the system’s high potential for durable protection against microbial colonization and biofilm growth on stone surfaces. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 3628 KiB  
Article
Nitrogen-Doped Biochar Aerogel as Efficient Peroxymonosulfate Activator for Organic Pollutant Removal
by Lingshuai Kong, Mingshuo Zhu and Jinhua Zhan
Nanomaterials 2025, 15(11), 865; https://doi.org/10.3390/nano15110865 - 4 Jun 2025
Viewed by 208
Abstract
Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) [...] Read more.
Rapid industrialization has escalated environmental pollution caused by organic compounds, posing critical challenges for wastewater treatment. Advanced oxidation processes based on peroxymonosulfate (PMS) suffer from metal leaching and catalyst recycling challenges. To address these limitations, this study developed a nitrogen-doped biochar aerogel (NBA) derived from poplar wood powder as an eco-friendly and easily recoverable PMS activator. The NBA catalyst, optimized by tuning the calcination temperature to achieve a specific surface area of 297.5 m2 g−1, achieved 97% bisphenol A (BPA) removal within 60 min with a catalyst dosage of 0.3 g/L and 1.0 mM PMS under mild conditions. The material exhibited broad pH adaptability (pH 3.5–9), recyclability (>94% efficiency after thermal treatment), and versatility in degrading seven pollutants (BPA, phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, rhodamine 6G, and levofloxacin) through synergistic radical (•OH, SO4•−, O2•−) and non-radical (1O2) pathways. X-ray photoelectron spectroscopy (XPS) analyses revealed that nitrogen doping enhanced PMS activation by optimizing electronic structures. This study highlights the potential of waste biomass-derived carbon aerogels as eco-friendly, efficient, and reusable catalysts for advanced oxidation processes in wastewater treatment. Full article
Show Figures

Graphical abstract

13 pages, 2963 KiB  
Article
Optimizing the Structure and Performances of Cu-MOF@Ti3C2TX Hybrid Electrodes by Introducing Modulated Ligand
by Sumin Li, Xiaokun Qu, Feng Liu, Pingwei Ye, Bo Yang, Qiang Cheng, Mengkun Yang, Yijing Nie and Maiyong Zhu
Nanomaterials 2025, 15(11), 864; https://doi.org/10.3390/nano15110864 - 4 Jun 2025
Viewed by 240
Abstract
To date, two-dimensional metal–organic frameworks (2D MOFs) have attracted much attention in many fields. Owing to their ultra-high porosity and specific surface area, great structural diversity and functional tunability, as well as feasible precision design at the molecular level, 2D MOFs have won [...] Read more.
To date, two-dimensional metal–organic frameworks (2D MOFs) have attracted much attention in many fields. Owing to their ultra-high porosity and specific surface area, great structural diversity and functional tunability, as well as feasible precision design at the molecular level, 2D MOFs have won rapid development in the field of energy storage. However, as a coordination compound, MOFs possess poor structural stability and are prone to structural collapse in electrochemical reactions, which seriously limits their electrochemical performance. Therefore, there is an urgent need to improve the structural stability of MOF electrode materials. In this study, a 2D MOF@Ti3C2TX hybrid was constructed, in which urea pyrimidinone isocyanate (UPy-NCO) units were introduced via a condensation reaction with the active functional groups on MOFs, thus forming multiple hydrogen bonds among MOF frameworks to strengthen their structural stability. Importantly, 2,6-diaminopyridine was utilized to modulate the structure and properties. Initially, the mono-coordination model of the N atom on a pyridine ring with metal ions could create defects and form further pores. Two −NH2 groups helped to improve the grafting reaction degree of UPy-NCO, leading to an increased ratio of forming quadruple hydrogen bonds (H-bonds), further strengthening the structure of the hybrid. As expected, the Cu-MOF@Ti3C2TX-20%DAP-UPy hybrid exhibited a specific capacitance of 148 F g−1 at 1 A g−1, which is 45% higher than that of Cu-MOF@Ti3C2TX-UPy (102 F g−1). A good capacitance retention of 88% was obtained as the current density increased from 0.2 to 5 A g−1. Moreover, excellent cycling stability (91.1%) was obtained at 1 A g−1 after 5000 cycles. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Graphical abstract

30 pages, 10312 KiB  
Review
Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems
by Yuqing Hu, Yixin Zhu, Xinli Chen and Qing Wan
Nanomaterials 2025, 15(11), 863; https://doi.org/10.3390/nano15110863 - 4 Jun 2025
Viewed by 231
Abstract
More than 70% of the information humans acquire from the external environment is derived through the visual system, where photosensitive function plays a pivotal role in the biological perception system. With the rapid development of artificial intelligence and robotics technology, achieving human-like visual [...] Read more.
More than 70% of the information humans acquire from the external environment is derived through the visual system, where photosensitive function plays a pivotal role in the biological perception system. With the rapid development of artificial intelligence and robotics technology, achieving human-like visual perception has attracted a great amount of attention. The neuromorphic visual perception system provides a novel solution for achieving efficient and low-power visual information processing by simulating the working principle of the biological visual system. In recent years, ferroelectric materials have shown broad application prospects in the field of neuromorphic visual perception due to their unique spontaneous polarization characteristics and non-volatile response behavior under external field regulation. Especially in achieving tunable retinal neural synapses, visual information storage processing, and constructing dynamic visual sensing, ferroelectric materials have shown unique performance advantages. In this review, recent progress in neuromorphic visual perception based on ferroelectric materials is discussed, elaborating in detail on device structure, material systems, and applications, and exploring the potential future development trends and challenges faced in this field. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

19 pages, 2598 KiB  
Article
Phospholipid/HP-β-CD Hybrid Nanosystems Amplify Neohesperidin Bioavailability via Dual Enhancement of Solubility and Stability
by Na Xia, Qian Zhou, Yanquan Liu, Dan Gao, Siming Zhu and Zuoshan Feng
Nanomaterials 2025, 15(11), 862; https://doi.org/10.3390/nano15110862 - 3 Jun 2025
Viewed by 242
Abstract
Neohesperidin (NH), a bioactive flavanone glycoside, exhibits multifaceted pharmacological properties including antioxidant and anti-inflammatory activities. However, its clinical application is severely constrained by inherent physicochemical limitations such as poor aqueous solubility and instability under physiological conditions. To address these challenges, this study developed [...] Read more.
Neohesperidin (NH), a bioactive flavanone glycoside, exhibits multifaceted pharmacological properties including antioxidant and anti-inflammatory activities. However, its clinical application is severely constrained by inherent physicochemical limitations such as poor aqueous solubility and instability under physiological conditions. To address these challenges, this study developed a dual-carrier nano-liposomal system through the synergistic integration of phospholipid complexation and hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion technologies. Two formulations—NH-PC (phospholipid complex) and NH-PC-CD (phospholipid/HP-β-CD hybrid)—were fabricated via ultrasonication-assisted ethanol precipitation. Comprehensive characterization using FTIR and PXRD confirmed the amorphous dispersion of NH within lipid bilayers, with complete elimination of crystalline diffraction peaks, indicative of molecular-level interactions between NH’s hydroxyl groups and phospholipid polar moieties. The engineered nanosystems demonstrated remarkable solubility enhancement, achieving 321.77 μg/mL (NH-PC) and 318.75 μg/mL (NH-PC-CD), representing 2.01- and 1.99-fold increases over free NH. Encapsulation efficiencies exceeded 95% for both formulations, with sustained release profiles revealing 60.81% (NH-PC) and 80.78% (NH-PC-CD) cumulative release over 72 h, governed predominantly by non-Fickian diffusion kinetics. In vitro gastrointestinal simulations highlighted superior bioaccessibility for NH-PC-CD (66.35%) compared to NH-PC (58.52%) and free NH (20.85%), attributed to enhanced stability against enzymatic degradation. Storage stability assessments further validated the robustness of HP-β-CD-modified liposomes, with NH-PC-CD maintaining consistent particle size (<3% variation) and encapsulation efficiency (>92%) over 30 days. Antioxidant evaluations demonstrated concentration-dependent DPPH radical scavenging, wherein nanoencapsulation significantly amplified NH’s activity compared to its free form. This study establishes a paradigm for dual-functional nanocarriers, offering a scalable strategy to optimize the delivery of hydrophobic nutraceuticals while addressing critical challenges in bioavailability and physiological stability. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Graphical abstract

13 pages, 2985 KiB  
Article
Characterization of the Second Harmonic Generation of Boron Nitride Nanotube Macroscopic Assemblies
by Ping Lu, Jingwen Guan, Cyril Hnatovsky, Huimin Ding, Kasthuri De Silva, Liliana Gaburici, Christopher Kingston and Stephen J. Mihailov
Nanomaterials 2025, 15(11), 861; https://doi.org/10.3390/nano15110861 - 3 Jun 2025
Viewed by 218
Abstract
Boron nitride nanotubes (BNNTs) are predicted to be promising one-dimensional nonlinear optical materials, but to date, only one experimental observation has been made using individual nanotubes. In this work, second harmonic generation (SHG) was achieved from free-standing bulk BNNT sheets and BNNT coatings [...] Read more.
Boron nitride nanotubes (BNNTs) are predicted to be promising one-dimensional nonlinear optical materials, but to date, only one experimental observation has been made using individual nanotubes. In this work, second harmonic generation (SHG) was achieved from free-standing bulk BNNT sheets and BNNT coatings on silica substrates. Focusing femtosecond infrared (fs-IR) laser pulses with a wavelength of 800 nm onto the BNNT assemblies resulted in strong SHG at a wavelength of 400 nm. It was observed that due to the thickness variation of the BNNT assemblies and orientational alignment of BNNTs in the assemblies, the intensity of the second-harmonic (SH) radiation changed dramatically when different locations on the samples were investigated. Among all the BNNT assemblies tested, the localized SH response and its dependence on the polarization of the excitation fs-IR pulses were the strongest in BNNT coatings produced by a dip-coating process. By measuring the SH response, the uniformity, reproducibility, and efficiency of BNNT deposition processes could be assessed. For applications requiring a high SH response from BNNT assemblies, the process of dip coating is preferred. Full article
(This article belongs to the Special Issue Linear and Nonlinear Optical Properties of Nanomaterials)
Show Figures

Figure 1

17 pages, 11155 KiB  
Article
Prediction of Thermal and Optical Properties of Oxyfluoride Glasses Based on Interpretable Machine Learning
by Yuhao Xie and Xiangfu Wang
Nanomaterials 2025, 15(11), 860; https://doi.org/10.3390/nano15110860 - 3 Jun 2025
Viewed by 159
Abstract
Based on the components of glasses, four algorithms, namely K-Nearest Neighbor, Random Forest, Support Vector Machine, and eXtreme Gradient Boosting, were used to construct an optimal machine learning model to predict the thermal and optical properties of oxyfluoride glass, namely glass transition temperature, [...] Read more.
Based on the components of glasses, four algorithms, namely K-Nearest Neighbor, Random Forest, Support Vector Machine, and eXtreme Gradient Boosting, were used to construct an optimal machine learning model to predict the thermal and optical properties of oxyfluoride glass, namely glass transition temperature, density, Abbe number, liquidus temperature, thermal expansion coefficient, and refractive index. We perform SHAP analysis on the constructed machine learning model to explain the effects of different components on the properties. Based on the trained machine learning models, we developed several ternary system prediction maps that can effectively predict the properties of glasses composed of different proportions of components. This study provides a method to design new oxyfluoride glasses only knowing the components of glasses, which is instructive for the development of new types of oxyfluoride glasses as well as for computer-aided reverse design. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

46 pages, 3547 KiB  
Review
Powering the Future: Unveiling the Potential of Na, K, and Mg Solid-State Batteries
by Ruoxu Shang, Yi Ma, Kathrine Anduaga-Quiros, Gustavo Briseno, Yuying Ning, Hung-Ju Chang, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(11), 859; https://doi.org/10.3390/nano15110859 - 3 Jun 2025
Viewed by 202
Abstract
In the pursuit of advancing sustainable energy storage solutions, solid-state batteries (SSBs) have emerged as a formidable contender to traditional lithium-ion batteries, distinguished by their superior energy density, augmented safety measures, and improved cyclability. Amid escalating concerns regarding resource scarcity, environmental ramifications, and [...] Read more.
In the pursuit of advancing sustainable energy storage solutions, solid-state batteries (SSBs) have emerged as a formidable contender to traditional lithium-ion batteries, distinguished by their superior energy density, augmented safety measures, and improved cyclability. Amid escalating concerns regarding resource scarcity, environmental ramifications, and the safety hazards posed by lithium-ion technologies, the exploration into non-lithium SSBs has emerged as a crucial frontier for technological breakthroughs. This exhaustive review delves into the latest progressions and persisting challenges within the sphere of sodium (Na), potassium (K), and magnesium (Mg) SSBs, spotlighting seminal materials, cutting-edge technologies, and strategic approaches propelling advancements in this vibrant domain. Despite considerable progress, hurdles such as amplifying ionic conductivity, mitigating the intricacies at the electrode–electrolyte interface, and realizing scalable production methodologies continue to loom. Nevertheless, the trajectory for non-lithium SSBs holds considerable promise, poised to redefine the landscape of electric vehicles, portable electronics, and grid stabilization technologies, thereby marking a significant leap toward realizing a sustainable and energy-secure future. This review article aims to provide a detailed overview of the materials and methodologies underpinning the development of these next-generation energy storage devices, underscoring their potential to catalyze a paradigm shift in our approach to energy storage and utilization. Full article
(This article belongs to the Special Issue Nanomaterials for Battery Applications)
Show Figures

Graphical abstract

23 pages, 4528 KiB  
Article
Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles
by Sabina Shrestha, Laxmi Tiwari, Sujan Dhungana, Jasana Maharjan, Devendra Khadka, Allison A. Kim, Megh Raj Pokhrel, Janaki Baral, Mira Park and Bhoj Raj Poudel
Nanomaterials 2025, 15(11), 858; https://doi.org/10.3390/nano15110858 - 3 Jun 2025
Viewed by 744
Abstract
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and [...] Read more.
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and catalytic properties of Av-ZnO NPs using various analytical methods. The results indicated that the nanoparticles primarily exhibited a spherical shape. X-ray diffraction (XRD) revealed the successful formation of a highly crystalline hexagonal wurtzite structure, with an average size estimated at 12.2 nm. The antimicrobial properties of the Av-ZnO NPs indicated moderate antibacterial effectiveness. Using the DPPH free radical scavenging method, we evaluated the antioxidant properties, where the Av-ZnO NPs exhibited improved the radical scavenging efficiency, reflected by a lower IC50 value compared to the plant extract. Additionally, we assessed the photocatalytic functionality through the degradation of methylene blue (MB) dye, finding that the Av-ZnO NPs achieved approximately 82.43% degradation in 210 min, demonstrating their potential for environmental remediation. These findings suggest that green-synthesized ZnO NPs could play a noteworthy role in various nanotechnology applications and biomedical fields, while also promoting environmental sustainability. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

19 pages, 2530 KiB  
Article
Experimental and Artificial Neuron Network Insights into the Removal of Organic Dyes from Wastewater Using a Clay/Gum Arabic Nanocomposite
by Malak F. Alqahtani, Ismat H. Ali, Saifeldin M. Siddeeg, Fethi Maiz, Sawsan B. Eltahir and Saleh S. Alarfaji
Nanomaterials 2025, 15(11), 857; https://doi.org/10.3390/nano15110857 - 3 Jun 2025
Viewed by 287
Abstract
Organic dyes are pollutants that threaten aquatic life and human health. These dyes are used in various industries; therefore, recent research focuses on the problem of their removal from wastewater. The aim of this study is to examine the clay/gum arabic nanocomposite (CG/NC) [...] Read more.
Organic dyes are pollutants that threaten aquatic life and human health. These dyes are used in various industries; therefore, recent research focuses on the problem of their removal from wastewater. The aim of this study is to examine the clay/gum arabic nanocomposite (CG/NC) as an adsorbent to adsorb methylene blue (MB) and crystal violet (CV) dyes from synthetic wastewater. The CG/NC was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunaure–Emmett–Teller (BET). The effect of parameters that may influence the efficiency of removing MB and CV dyes was studied (dosage of CG/NC, contact time, pH values, initial concentration, and temperature), and the optimal conditions for removal were determined. Furthermore, an artificial neural network (ANN) model was adopted in this study. The results indicated that the adsorption behavior adhered to the Langmuir model and conformed to pseudo-second-order kinetics. The results also indicated that the removal efficiency reached 99%, and qmax reached 66.7 mg/g and 52.9 mg/g for MB and CV, respectively. Results also proved that CG/NC can be reused up to four times with high efficiency. The ANN models proved effective in predicting the process of the removal, with low mean squared errors (MSE = 1.824 and 1.001) and high correlation coefficients (R2 = 0.945 and 0.952) for the MB and CV dyes, respectively. Full article
Show Figures

Figure 1

17 pages, 7662 KiB  
Article
A TMO-ZnO Heterojunction-Based Sensor for Transformer Defect Detection: A DFT Study
by Jingyi Yan, Weiju Dai, Dexu Zou, Haoruo Sun, Chao Tang and Yingang Gui
Nanomaterials 2025, 15(11), 856; https://doi.org/10.3390/nano15110856 - 3 Jun 2025
Viewed by 162
Abstract
The gas adsorption and sensing properties of a transition metal oxide (TMO)-ZnO heterojunction-based sensor for H2, CO, and C2H4 are analyzed. It is found that CuO, Ag2O, and Cu2O stably composite onto the surface [...] Read more.
The gas adsorption and sensing properties of a transition metal oxide (TMO)-ZnO heterojunction-based sensor for H2, CO, and C2H4 are analyzed. It is found that CuO, Ag2O, and Cu2O stably composite onto the surface of ZnO by forming heterojunctions, which helps to improve the gas sensing and selectivity of the sensor. The adsorption results show that CuO-ZnO shows physical adsorption for H2 and good gas sensing performance for CO and C2H4, while Ag2O-ZnO and Cu2O-ZnO have significant responses for H2, CO, and C2H4. In addition, the introduction of the TMO-ZnO heterojunction structure can effectively avoid the sensor poisoning phenomenon, as the gas adsorption process does not destroy the original geometric configuration of the heterojunction. This study lays a theoretical foundation for preparing TMO-ZnO heterojunction-based sensors for transformer defect detection and energy efficiency analysis. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

10 pages, 2971 KiB  
Article
Photoelectrochemical Biosensor Based on 1D In2O3 Tube Decorated with 2D ZnIn2S4 Nanosheets for Sensitive PSA Detection
by Huihui Shi, Jianjian Xu and Yanhu Wang
Nanomaterials 2025, 15(11), 855; https://doi.org/10.3390/nano15110855 - 3 Jun 2025
Viewed by 225
Abstract
In photoelectrochemical (PEC) biosensing, efficient electron-hole separation is crucial to obtain preferred photocurrent response and analytical performance; thus, constructing developed heterointerfaces with high carrier transfer efficiency is an effective method for sensitive evaluation of analytes. Herein, a 1D ZnIn2S4 nanosheet-decorated [...] Read more.
In photoelectrochemical (PEC) biosensing, efficient electron-hole separation is crucial to obtain preferred photocurrent response and analytical performance; thus, constructing developed heterointerfaces with high carrier transfer efficiency is an effective method for sensitive evaluation of analytes. Herein, a 1D ZnIn2S4 nanosheet-decorated 2D In2O3 tube was developed to integrate with a prostate antigen (PSA)-sensitive aptamer for sensitive PSA antigen detection. 1D In2O3 tubes were first prepared by two-step hydrothermal and annealing methods, followed by the in-situ growth of ZnIn2S4 nanosheets. Morphology, optical properties, structure, and PEC performance of prepared In2O3-ZnIn2S4 were characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectrophotometry, X-ray diffraction, X-ray photoelectron spectroscopy, and an electrochemical workstation. Benefiting from the photoelectric effect and specific 1D/2D hierarchical structure, In2O3-ZnIn2S4 displayed enhanced optical absorption and photocarrier separation, thus a superior photoelectrochemical response. Proposed bioassay protocol possessed a linear range from 0.001 to 50 ng/mL and a detection limit at 0.00037 ng/mL. In addition, this biosensor exhibited satisfactory anti-interface ability and stability, which also could be extended to other quantitative platforms for detecting other proteins. Full article
(This article belongs to the Special Issue Trends in Electrochemical Nanosensing)
Show Figures

Graphical abstract

2 pages, 486 KiB  
Correction
Correction: Wang et al. Super-Dispersed Fe–N Sites Embedded into Porous Graphitic Carbon for ORR: Size, Composition and Activity Control. Nanomaterials 2021, 11, 2106
by Xin Yu Wang, Ze Wei Lin, Yan Qing Jiao, Jian Cong Liu and Rui Hong Wang
Nanomaterials 2025, 15(11), 854; https://doi.org/10.3390/nano15110854 - 3 Jun 2025
Viewed by 147
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

14 pages, 5725 KiB  
Article
Synergistic Regulation of Combustion Behavior and Safety Characteristics of Graphene Modified Core–Shell Al@AP Composites
by Jiahui Shi, Jiahao Liang, Xiaole Sun, Yingjun Li, Haijun Zhang, Xueyong Guo, Shi Yan, Junwei Li and Jianxin Nie
Nanomaterials 2025, 15(11), 853; https://doi.org/10.3390/nano15110853 - 2 Jun 2025
Viewed by 261
Abstract
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via [...] Read more.
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core–shell particles doped with graphene were prepared via an in-situ deposition method. The structure, thermal decomposition, combustion, and safety performance of the graphene-doped Al@AP samples were investigated. Results showed that AP effectively coated aluminium to form a typical core-shell structure, with graphene uniformly loaded into the framework. Graphene contents of 1.0 and 4.0 wt.% reduced AP’s thermal decomposition temperature by 0.97 and 16.68 °C, respectively. Closed-bomb and laser ignition tests revealed that pressure rise rates and combustion intensity increased with graphene content up to 1.0 wt.% but declined beyond that. Peak pressure reached 114.65 kPa at 1.0 wt.% graphene, and the maximum pressure increase rate was 13.29 kPa ms−1 at 2.0 wt.%. Additionally, graphene significantly improved safety by reducing sensitivity to impact and friction. The enhanced performance is attributed to graphene’s large surface area and excellent thermal and electrical conductivity that promote AP decomposition and combustion, combined with its lubricating effect that enhances safety, though excessive graphene may hinder these benefits. This study provides balanced design criteria for graphene-doped Al@AP as solid propellants. Full article
Show Figures

Graphical abstract

5 pages, 169 KiB  
Editorial
Advanced Manufacturing on Nano- and Microscale
by Ruifeng Zhang, Qifeng Ruan, Hao Wang and Yujie Ke
Nanomaterials 2025, 15(11), 852; https://doi.org/10.3390/nano15110852 - 2 Jun 2025
Viewed by 166
Abstract
Micro- and nanostructures often display unique characteristics that significantly differ from those of bulk materials [...] Full article
(This article belongs to the Special Issue Advanced Manufacturing on Nano- and Microscale)
2 pages, 137 KiB  
Editorial
Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing
by Filippo Giannazzo, Federica Bondino, Luca Seravalli and Simonpietro Agnello
Nanomaterials 2025, 15(11), 851; https://doi.org/10.3390/nano15110851 - 2 Jun 2025
Viewed by 201
Abstract
Since the first report in 2004 on the electronic properties of graphene exfoliated from graphite [...] Full article
14 pages, 4502 KiB  
Article
Crystal Facet Engineering of 2D SnSe2 Photocatalysts for Efficient Degradation of Malachite Green Organic Dyes
by Liying Wen, Fangfang Cheng, Xinyu Zhao, Lin Han, Dongye Zhao and Shifeng Wang
Nanomaterials 2025, 15(11), 850; https://doi.org/10.3390/nano15110850 - 2 Jun 2025
Viewed by 271
Abstract
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor [...] Read more.
Wastewater containing triphenylmethane dyes such as malachite green (MG), discharged by textile and food industries, poses significant carcinogenic risks and ecological hazards. Conventional physical adsorption methods fail to degrade these pollutants effectively. To address this challenge, we focused on two-dimensional SnSe2 semiconductor materials. While their narrow bandgap and unique structure confer exceptional optoelectronic properties, prior research has predominantly emphasized heterojunction systems. We synthesized SnSe2 with well-defined hexagonal plate-like structures via a one-step hydrothermal method by precisely controlling precursor ratios (Sn:Se = 1:2) and reaction temperatures (120–240 °C). Systematic investigations revealed that hydrothermal temperature modulates the van der Waals forces between crystal planes, enabling selective exposure of (001) and (011) facets, as confirmed by XRD, SEM, and XPS analyses, thereby influencing the exposure of specific crystal facets. Experiments demonstrated that pure SnSe2 synthesized at 150 °C achieved complete degradation of MG (40 mg/L) within 60 min under visible light irradiation, exhibiting a reaction rate constant (k) of 0.099 min⁻¹. By regulating the exposure ratio of the active (001)/(011) facets, we demonstrate that crystal facet engineering directly optimizes carrier separation efficiency, thereby substantially enhancing the catalytic performance of standalone SnSe2. This work proposes a novel strategy for designing noble-metal-free, high-efficiency standalone photocatalysts, providing crystal facet-dependent mechanistic insights for the targeted degradation of industrial dyes. Full article
Show Figures

Graphical abstract

25 pages, 3484 KiB  
Article
Trimetallic Fe-Zn-Mn (Oxy)Hydroxide-Enhanced Coffee Biochar for Simultaneous Phosphate and Ammonium Recovery and Recycling
by Diana Guaya, Jhuliana Campoverde, Camilo Piedra and Alexis Debut
Nanomaterials 2025, 15(11), 849; https://doi.org/10.3390/nano15110849 - 2 Jun 2025
Viewed by 322
Abstract
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide [...] Read more.
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide nanoparticles (CB–M) for simultaneous removal of phosphate and ammonium. Batch adsorption experiments using both synthetic solution and municipal wastewater were conducted to evaluate the material’s adsorption performance and practical applicability. Kinetic, isotherm, thermodynamic, and sequential extraction analyses revealed that CB–M achieved maximum phosphate adsorption capacities ranging from 42.6 to 72.0 mg PO43−·g−1 across temperatures of 20–33 °C, reducing effluent phosphate concentrations to below 0.01 mg·L−1. Ammonium removal was moderate, with capacities ranging between 2.8 and 2.95 mg NH4+·g−1. Thermodynamic analysis indicated that phosphate adsorption was spontaneous and endothermic, dominated by inner–sphere complexation, while ammonium uptake occurred primarily through weaker, reversible ion exchange mechanisms. Sequential extraction showed over 70% of adsorbed phosphate was associated with Fe-Mn-Zn phases, indicating the potential for use as a slow–release fertilizer. The CB–M retained structural integrity and exhibited partial desorption, supporting its reusability for nutrient recovery. Compared to other biochars, CB–M demonstrated superior phosphate selectivity at a neutral–pH, avoided the use of hazardous metals, and transformed coffee waste into a multifunctional material for wastewater treatment and soil amendment. These findings underscore the potential of CB–M as a circular economy solution for nutrient recovery without introducing secondary contamination. Full article
Show Figures

Graphical abstract

28 pages, 3347 KiB  
Article
Treatment of Dairy Industry Wastewater and Crop Irrigation Water Using AgBr-Coupled Photocatalysts
by M. Hernández-Laverde, J. J. Murcia, J. A. Navío, M. C. Hidalgo and F. Puga
Nanomaterials 2025, 15(11), 848; https://doi.org/10.3390/nano15110848 - 2 Jun 2025
Viewed by 229
Abstract
This work describes the application of three different AgBr heterojunctions with TiO2, SnO2 and WO3 in the treatment of two water sources: wastewater from a dairy industry facility (WDI) and water from a polluted river (WPR). All heterojunctions were [...] Read more.
This work describes the application of three different AgBr heterojunctions with TiO2, SnO2 and WO3 in the treatment of two water sources: wastewater from a dairy industry facility (WDI) and water from a polluted river (WPR). All heterojunctions were widely characterised, and it was observed that the physicochemical properties of all the coupled materials were similar; however, the highest elimination of Enterobacteriaceae (>90%) was obtained with the AgBr/WO3(20%) photocatalyst in WDI. Under the same conditions, with this photocatalyst, the complete removal of bacteria (i.e., E. coli, total coliforms and other Enterobacteriaceae) was achieved in WPR. The chlorides, hardness and colour in the two water samples decreased after photocatalytic treatment with all the coupled materials. However, nitrate levels and chemical oxygen demand increased due to the possible formation of intermediary species from the photodegradation of organic pollutants and the release of metabolic intermediates from bacterial degradation during the photocatalytic process. Overall, heterogeneous photocatalysis based on AgBr-coupled materials shows potential as a tertiary treatment for WDI and for the purification of vegetable irrigation water. However, it is still important to consider the need to optimise the integrity of photocatalytic materials in order to maintain their bactericidal effectiveness through continuous reuse. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 2160 KiB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Viewed by 255
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

18 pages, 7043 KiB  
Article
Phase-Dependent Photocatalytic Activity of Nb2O5 Nanomaterials for Rhodamine B Degradation: The Role of Surface Chemistry and Crystal Structure
by Aarón Calvo-Villoslada, Inmaculada Álvarez-Serrano, María Luisa López, Paloma Fernández and Belén Sotillo
Nanomaterials 2025, 15(11), 846; https://doi.org/10.3390/nano15110846 - 1 Jun 2025
Viewed by 294
Abstract
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material [...] Read more.
Niobium oxides are promising materials for catalytic applications due to their unique structural versatility and surface chemistry. Nb2O5 nanomaterials were synthesized via a solvothermal method at 150 °C using niobium oxalate as a precursor. A comprehensive characterization of the material was performed using electron microscopy, X-ray diffraction, and Raman spectroscopy. The as-prepared nanoparticles primarily crystallized in a mixture of the TT-Nb2O5 phase (TT from the German Tief-Tief, meaning “low-low”) and niobic acid, while subsequent thermal treatment at 900 and 1100 °C induced a phase transformation to T-Nb2O5 and H-Nb2O5, respectively (T from the German Tief, meaning “low”, and H from Hoch, meaning “high”). The as-prepared samples consist of micro-coils composed of interconnected nanometer-scale fibers, whereas the morphology changes into rods when they are treated at 1100 °C. The photocatalytic performance of the nanoparticles was evaluated by comparing the as-prepared and thermally treated samples. The as-prepared nanoparticles exhibited the highest photocatalytic activity under visible illumination, achieving 100% degradation after 180 min. More interestingly, the treatment of the as-prepared material with H2O2 modified the surface species formed on the Nb2O5, altering the photocatalytic behavior under various illumination conditions. This sample showed the highest photocatalytic activity under UV illumination, reaching 100% degradation after 75 min. On the other hand, the calcined samples are practically inactive, attributed to the loss of active catalytic sites during thermal treatment and phase transformation. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

22 pages, 878 KiB  
Review
Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications
by Abubakr M. J. Siam, Rund Abu-Zurayk, Nasreldeen Siam, Rehab M. Abdelkheir and Rida Shibli
Nanomaterials 2025, 15(11), 845; https://doi.org/10.3390/nano15110845 - 1 Jun 2025
Viewed by 377
Abstract
Forest ecosystems represent a natural repository of biodiversity, bioenergy, food, timber, water, medicine, wildlife shelter, and pollution control. In many countries, forests offer great potential to provide biogenic resources that could be utilized for large-scale biotechnological synthesis and products. The evolving nanotechnology could [...] Read more.
Forest ecosystems represent a natural repository of biodiversity, bioenergy, food, timber, water, medicine, wildlife shelter, and pollution control. In many countries, forests offer great potential to provide biogenic resources that could be utilized for large-scale biotechnological synthesis and products. The evolving nanotechnology could be an excellent platform for the transformation of forest products into value-added nanoparticles (NPs). It also serves as a tool for commercial production, placing the forest at the heart of conservation and sustainable management strategies. NPs are groups of atoms with a size ranging from 1 to 100 nm. This review analyzes the scholarly articles published over the last 25 years on the forest and woody plant-based green synthesis of NPs, highlighting the plant parts and applications discussed. The biosynthesis of nanomaterials from plant extracts provides inexpensiveness, biocompatibility, biodegradability, and environmental nontoxicity to the resultant NPs. The leaf is the most critical organ in woody plants, and it is widely used in NP biosynthesis, perhaps due to its central functions of bioactive metabolite production and storage. Most biosynthesized NPs from tree species have been used and tested for medical applications. For sustainable advancements in forest-based nanotechnology, broader species coverage, expanded applications, and interdisciplinary collaboration are essential. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop