Open AccessArticle
Towards Patient Anatomy-Based Simulation of Net Cerebrospinal Fluid Flow in the Intracranial Compartment
by
Edgaras Misiulis, Algis Džiugys, Alina Barkauskienė, Aidanas Preikšaitis, Vytenis Ratkūnas, Gediminas Skarbalius, Robertas Navakas, Tomas Iešmantas, Robertas Alzbutas, Saulius Lukoševičius, Mindaugas Šerpytis, Indrė Lapinskienė, Jewel Sengupta and Vytautas Petkus
Abstract
Biophysics-based, patient-specific modeling remains challenging for clinical translation, particularly for cerebrospinal fluid (CSF) flow where anatomical detail and computational cost are tightly coupled. We present a computational framework for steady net CSF redistribution in an MRI-derived cranial CSF domain reconstructed from T
2
[...] Read more.
Biophysics-based, patient-specific modeling remains challenging for clinical translation, particularly for cerebrospinal fluid (CSF) flow where anatomical detail and computational cost are tightly coupled. We present a computational framework for steady net CSF redistribution in an MRI-derived cranial CSF domain reconstructed from T
2-weighted imaging, including the ventricular system, cranial subarachnoid space, and periarterial pathways, to the extent resolvable by clinical MRI. Cranial CSF spaces were segmented in 3D Slicer and a steady Darcy formulation with prescribed CSF production/absorption was solved in COMSOL Multiphysics
®. Geometrical and flow descriptors were quantified using region-based projection operations. We assessed discretization cost–accuracy trade-offs by comparing first- and second-order finite elements. First-order elements produced a 1.4% difference in transmantle pressure and a <10% difference in element-wise mass-weighted velocity metric for 90% of elements, while reducing computation time by 75% (20 to 5 min) and peak memory usage five-fold (150 to 30 GB). This proof-of-concept framework provides a computationally tractable baseline for studying steady net CSF pathway redistribution and sensitivity to boundary assumptions, and may support future patient-specific investigations in pathological conditions such as subarachnoid hemorrhage, hydrocephalus and brain tumors.
Full article