Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface
Abstract
1. Introduction
2. Antenna Design
2.1. Antenna Geometry
2.2. Antenna Working Mechanism
2.2.1. Slot Radiator
2.2.2. Metasurface Design
2.3. Deformation Study
2.4. Parametric Study
2.5. SAR Evaluation
3. Performance and Discussion
3.1. Impedance Bandwidth and ARBW Analysis
3.2. Antenna Gain and Radiation Efficiency Analysis
3.3. Radiation Pattern
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klemm, M.; Troester, G. Textile UWB antennas for wireless body area networks. IEEE Trans. Antennas Propag. 2006, 54, 3192–3197. [Google Scholar] [CrossRef]
- Gao, G.-P.; Yang, C.; Hu, B.; Zhang, R.-F.; Wang, S.-F. A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 288–292. [Google Scholar] [CrossRef]
- Yan, S.; Vandenbosch, G.A.E. Design of wideband button antenna based on characteristic mode theory. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, S.J.; Fumeaux, C. Wearable dual-band dual-polarization button antenna for WBAN applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2240–2244. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Wang, Y.; Yan, S.; Xu, K.-D.; Luyen, H. A compact dual-band wearable button antenna design for WBAN applications. IEEE Trans. Antennas Propag. 2023, 71, 8284–8289. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Fan, Y.; Yang, H. Wearable wideband circularly polarized array antenna for off-body applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1051–1055. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Fan, Y. Design of broadband circularly polarized all-textile antenna and its conformal array for wearable devices. IEEE Trans. Antennas Propag. 2022, 70, 209–220. [Google Scholar] [CrossRef]
- Shariff, B.G.P.; Ali, T.; Mane, P.R.; Alsath, M.G.N.; Kumar, P.; Pathan, S.; Kishk, A.A.; Khan, T. Design and measurement of a compact millimeter wave highly flexible MIMO antenna loaded with metamaterial reflective surface for wearable applications. IEEE Access 2024, 12, 30066–30084. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Alazemi, A.J.; Waly, M.I.; Mallat, N.K.; Kim, S. Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access 2020, 8, 17935–17944. [Google Scholar] [CrossRef]
- Ullah, U.; Mabrouk, I.B.; Koziel, S. A compact circularly polarized antenna with directional pattern for wearable off-body communications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2523–2527. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Abidin, Z.Z.; Dahlan, S.H.; Majid, H.A.; Kamarudin, M.R.; Alomainy, A.; Abd-Alhameed, R.A.; Kosha, J.S.; Noras, J.M. Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications. IEEE Access 2018, 6, 77529–77541. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, D.; Yang, Y.; Wang, C.; Fu, Y.; Ding, F. A high-gain low-SAR wearable antenna based on AMC in wireless body area network. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 1362–1366. [Google Scholar] [CrossRef]
- Alemaryeen, A.; Noghanian, S. On-body low-profile textile antenna with artificial magnetic conductor. IEEE Trans. Antennas Propag. 2019, 67, 3649–3656. [Google Scholar] [CrossRef]
- El Atrash, M.; Abdalla, M.A.; Elhennawy, H.M. A wearable dual-band low-profile high-gain low SAR antenna AMC-backed for WBAN applications. IEEE Trans. Antennas Propag. 2019, 67, 6378–6388. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Le, T.T.; Yun, T.-Y. An enhanced circularly polarized textile antenna using a metasurface and slot-patterned ground for off-body communications. Micromachines 2025, 16, 799. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Dong, J.; Wang, M.; Tong, J.; Xiao, C.; Zheng, J.; Wu, R. Wearable broadband circularly polarized antenna with characteristic mode analysis for wireless body area network applications. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 1312–1316. [Google Scholar] [CrossRef]
- Le, T.T.; Kim, Y.-D.; Yun, T.-Y. All-textile enhanced bandwidth polarization-conversion antenna using a nonuniform metasurface. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2432–2436. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Ding, J.; Zhang, H.; Chen, W.; Chen, C. Characteristic mode inspired broadband circularly polarized folded transmit array antenna. IEEE Trans. Antennas Propag. 2023, 71, 7632–7637. [Google Scholar] [CrossRef]
- Wong, K. Compact and Broadband Microstrip Antennas, 1st ed.; Wiley: Hoboken, NJ, USA, 2002; pp. 1–300. [Google Scholar]
- Le, T.T.; Kim, Y.-D.; Yun, T.-Y. Bandwidth-enhanced circularly polarized all-textile wearable antenna using an LP-to-CP metasurface. IEEE Access 2024, 12, 173749–173757. [Google Scholar] [CrossRef]
- Remski, R. Analysis of PBG surface using Ansoft HFSS. Microw. J. 2000, 43, 190–198. [Google Scholar]
- Ghosh, B.; Haque, S.M.; Mitra, D. Miniaturization of slot antennas using slit and strip loading. IEEE Trans. Antennas Propag. 2011, 59, 3922–3927. [Google Scholar] [CrossRef]
- Italian National Research Council, Institute of Applied Physics. Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. Available online: http://niremf.ifac.cnr.it/docs/DIELECTRIC/Report.html (accessed on 7 November 2025).




















| Ref. | Antenna Size (λ03) | IBW (%) | ARBW (%) | SAR (W/kg) | Gain (dBic) |
|---|---|---|---|---|---|
| [7] | 0.81 × 0.81 × 0.06 | 45.6 | 21.1 | 0.09 | 2.6 |
| [8] | 2.25 × 2.25 × 0.35 | 26.8 | LP | 0.86 | 8.9 |
| [15] | 0.56 × 0.56 × 0.09 | 36.3 | 18 | 0.44 | 6.39 |
| [16] | 0.91 × 0.86 × 0.11 | 60.2 | 30.9 | 0.38 * | 7.6 |
| [17] | 0.90 × 0.90 × 0.07 | 58.0 | 41.0 | 0.04 | 4.37 |
| This work | 0.57 × 0.57 × 0.06 | 84.5 | 43.5 | 0.81 | 4.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, S.-H.; Kim, Y.-D.; Le, T.T.; Yun, T.-Y. Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface. Appl. Sci. 2026, 16, 634. https://doi.org/10.3390/app16020634
Kim S-H, Kim Y-D, Le TT, Yun T-Y. Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface. Applied Sciences. 2026; 16(2):634. https://doi.org/10.3390/app16020634
Chicago/Turabian StyleKim, Seung-Heon, Yong-Deok Kim, Tu Tuan Le, and Tae-Yeoul Yun. 2026. "Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface" Applied Sciences 16, no. 2: 634. https://doi.org/10.3390/app16020634
APA StyleKim, S.-H., Kim, Y.-D., Le, T. T., & Yun, T.-Y. (2026). Wideband Circularly Polarized Slot Antenna Using a Square-Ring Notch and a Nonuniform Metasurface. Applied Sciences, 16(2), 634. https://doi.org/10.3390/app16020634

