Testing a Farm Animal Model for Experimental Kidney Graft Transplantation: Gut Microbiota, Mycobiome and Metabolic Profiles as Indicators of Model Stability and Suitability
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feed
2.2. Analysis of Fecal Microbiota and Mycobiota Composition Using Next-Generation Sequencing (NGS)
2.3. Metabolomic Profiling of Fecal Samples
2.4. Bioinformatic and Statistical Analysis
3. Results and Discussion
3.1. Gut Microbiota Composition, Balance, and Risk Profile of Kidney Graft Donors
3.2. Gut Mycobiome Composition, Balance, and Risk Profile of Kidney Graft Donors
3.3. Metabolomic Profiling in Relation to the Metabolic Balance and Risk Profile of Kidney Graft Donors
3.4. Critical Evaluation of the Methodological Approach and Selection of Model Animals in a Pilot Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos, G.P.; Papadakis, K.A. Mechanisms of disease: Inflammatory bowel diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kleinová, P.; Beliančinová, M.; Vnučák, M.; Graňák, K.; Dedinská, I. Črevný mikrobióm a transplantácia obličky. Vnitřní Lékařství 2023, 69, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.C. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: Exploring a common ground hypothesis. J. Biomed. Sci. 2018, 25, 79. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef]
- Ding, U.; Ooi, L.; Wu, H.H.L.; Chinnadurai, R. Clostridioides difficile infection in kidney transplant recipients. Pathogens 2024, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, M.; Tsalouchos, A. Microbiota, renal disease and renal transplantation. World J. Transplant. 2021, 11, 16–36. [Google Scholar] [CrossRef]
- García-Martínez, Y.; Borriello, M.; Capolongo, G.; Ingrosso, D.; Perna, A.F. The gut microbiota in kidney transplantation: A target for personalized therapy? Biology 2023, 12, 163. [Google Scholar] [CrossRef]
- Visconti, V.; Wirtz, S.; Schiffer, M.; Müller-Deile, J. Distinct changes in gut microbiota of patients with kidney graft rejection. Transplant. Direct. 2024, 10, 1582. [Google Scholar] [CrossRef]
- Salvadori, M.; Rosso, G. Update on the reciprocal interference between immunosuppressive therapy and gut microbiota after kidney transplantation. World J. Transplant. 2024, 14, 90194. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef]
- Satoh, M.; Hayashi, H.; Watanabe, M.; Ueda, K.; Yamato, H.; Yoshioka, T.; Motojima, M. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp. Nephrol. 2003, 95, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Malý, Š.; Janoušek, L.; Šimůnková, Z.; Mrázová, I.; Novotný, R.; Froněk, J. Renal transplantation in a unique porcine model: Step-by-step. Int. J. Organ. Transplant. Med. 2022, 13, 11. Available online: https://www.ijotm.com/ojs/index.php/IJOTM/article/view/1017 (accessed on 1 October 2025).
- Forster, R.; Ancian, P.; Fredholm, M.; Simianer, H.; Whitelaw, B.; Steering Group of the RETHINK Project. The minipig as a platform for new technologies in toxicology. J. Pharmacol. Toxicol. Methods 2010, 62, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Soltys, K.A.; Setoyama, K.; Tafaleng, E.N.; Soto Gutiérrez, A.; Fong, J.; Fukumitsu, K.; Nishikawa, T.; Nagaya, M.; Sada, R.; Haberman, K.; et al. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J. Hepatol. 2017, 66, 987–1000. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Conroy, M.J.; Andrews, R.M.; Andrews, S.; Cockayne, L.; Dennis, E.A.; Fahy, E.; Gaud, C.; Griffiths, W.J.; Jukes, G.; Kolchin, M.; et al. LIPID MAPS: Update to databases and tools for the lipidomics community. Nucleic Acids Res. 2024, 52, 1677–1682. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug. Monit. 2005, 6, 747–751. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open-source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 7581–7583. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; May, T.W.; Frøslev, T.G.; Pawlowska, J.; Lindahl, B.; Põldmaa, K.; Truong, C.; et al. The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: Sequences, taxa and classifications reconsidered. Nucleic Acids Res. 2024, 52, D791–D797. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 31 October 2025).
- Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.13. 2025. Available online: https://github.com/raivokolde/pheatmap (accessed on 5 June 2025).
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical snalyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. Available online: https://www.jstatsoft.org/v61/i06/ (accessed on 1 October 2025). [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.8-0. 2025. Available online: https://vegandevs.github.io/vegan/ (accessed on 1 October 2025).
- Lahti, L.; Shetty, S. Microbiome R Package; Bioconductor: Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 1 October 2025).
- Gabarre, P.; Loens, C.; Tamzali, Y.; Barrou, B.; Jaisser, F.; Tourret, J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am. J. Transplant. 2022, 22, 1014–1030. [Google Scholar] [CrossRef]
- Manes, A.; Di Renzo, T.; Dodani, L.; Reale, A.; Gautiero, C.; Di Lauro, M.; Nasti, G.; Manco, F.; Muscariello, E.; Guida, B.; et al. Pharmacomicrobiomics of classical immunosuppressant drugs: A systematic review. Biomedicines 2023, 11, 2562. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.C.; Blikslager, A.T.; Ziegler, A.L. Porcine models of the intestinal microbiota: The translational key to understanding how gut commensals contribute to gastrointestinal disease. Front. Vet. Sci. 2022, 9, 834598. [Google Scholar] [CrossRef]
- Van de Vliet, M.; Joossens, M. The resemblance between bacterial gut colonization in pigs and humans. Microorganisms 2022, 10, 1831. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Yin, X.; Wen, G.; Luo, Z.; Zhang, L.; Tan, S. Unraveling the composition and function of pig gut microbiome from metagenomics. Anim. Microbiome 2025, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Arfken, A.M.; Frey, J.F.; Summers, K.L. Temporal dynamics of the gut bacteriome and mycobiome in the weanling pig. Microorganisms 2020, 8, 868. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Prenafeta-Boldú, F.; Zingaretti, L.M.; Gonzalez-Rodriguez, O.; Dalmau, A.; Quintanilla, R.; Ballester, M. Gut eukaryotic communities in pigs: Diversity, composition and host genetics contribution. Anim. Microbiome 2020, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Prisnee, T.L.; Rahman, R.; Fouhse, J.M.; Van Kessel, A.G.; Brook, R.K.; Willing, B.P. Tracking the fecal mycobiome through the lifespan of production pigs and a comparison to the feral pig. Appl. Environ. Microbiol. 2023, 89, e00977-23. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Chen, X.; Fang, C.; Zhao, L.; Chen, F. The maturing development of gut microbiota in commercial piglets during the weaning transition. Front. Microbiol. 2017, 8, 1688. [Google Scholar] [CrossRef]
- Saladrigas-García, M.; Durán, M.; D’Angelo, M.; Coma, J.; Pérez, J.F.; Martín-Orúe, S.M. An insight into the commercial piglet’s microbial gut colonization: From birth towards weaning. Anim. Microbiome 2022, 4, 68. [Google Scholar] [CrossRef]
- Cremonesi, P.; Biscarini, F.; Castiglioni, B.; Sgoifo, C.A.; Compiani, R.; Moroni, P. Correction: Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PLoS ONE 2024, 17, e0316120. [Google Scholar] [CrossRef]
- Holman, D.B.; Brunelle, B.W.; Trachsel, J.; Allen, H.K. Meta-analysis to define a core microbiota in the swine gut. mSystems 2017, 2, e00004-17. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Gzyl, K.E.; Mou, K.T.; Allen, H.K. Weaning age and its effect on the development of the swine gut microbiome and resistome. mSystems 2021, 6, e0068221. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, R.B.; Lee, J.H.; Lee, S.H.; Seok, M.J.; Kim, D.W.; Kang, B.N.; Johnson, T.J.; Isaacson, R.E.; Kim, H.B. Piglet gut microbial shifts early in life: Causes and effects. J. Anim. Sci. Biotechnol. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, M.; Lillie, B.; Nadeem, K.; Khafipour, E.; Farzan, A. Progression of swine fecal microbiota during early stages of life and its association with performance: A longitudinal study. BMC Microbiol. 2024, 24, 182. [Google Scholar] [CrossRef]
- Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef]
- Peng, K.; Xia, S.; Xiao, S.; Yu, Q. Short-chain fatty acids affect the development of inflammatory bowel disease through intestinal barrier, immunology, and microbiota: A promising therapy? J. Gastroenterol. Hepatol. 2022, 37, 1710–1718. [Google Scholar] [CrossRef]
- Notting, F.; Pirovano, W.; Sybesma, W.; Kort, R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome 2023, 4, e16. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Shah, T.; Baloch, Z.; Shah, Z.; Cui, X.; Xia, X. The intestinal microbiota: Impacts of antibiotics therapy, colonization resistance, and diseases. Int. J. Mol. Sci. 2021, 22, 6597. [Google Scholar] [CrossRef]
- Hares, M.F.; Griffiths, B.E.; Barningham, L.; Vamos, E.E.; Gregory, R.; Duncan, J.S.; Oikonomou, G.; Stewart, C.J.; Coombes, J.L. Progression of the faecal microbiome in preweaning dairy calves that develop cryptosporidiosis. Anim. Microbiome 2025, 7, 3. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Wagner, D.; Iqbal, N.; Pappas, P.G.; Andes, D.R.; Kauffman, C.A.; Brumble, L.M.; Hadley, S.; Walker, R.; Ito, J.I.; et al. Comparison of in vitro susceptibility characteristics of Candida species from cases of invasive candidiasis in solid organ and stem cell transplant recipients: Transplant-associated infections surveillance network (TRANSNET), 2001 to 2006. J. Clin. Microbiol. 2011, 49, 2404–2410. [Google Scholar] [CrossRef]
- Tirlangi, P.K.; Pothumarthy Venkata Swathi, K.; Prabhu, R.A.; Singh, G.; Barac, A.; Grobusch, M.P.; Gupta, N. Graft arteritis due to Candida spp. after kidney transplant: A systematic review of individual cases. Open Forum Infect. Dis. 2025, 12, 554. [Google Scholar] [CrossRef]
- Pennington, K.M.; Martin, M.J.; Murad, M.H.; Sanborn, D.; Saddoughi, S.A.; Gerberi, D.; Peters, S.G.; Razonable, R.R.; Kennedy, C.C. Risk factors for early fungal disease in solid organ transplant recipients: A systematic review and meta-analysis. Transplantation 2024, 108, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Shafiekhani, M.; Yazdanpanah, S.; Zomorodian, K.; Nikoupour, H. P.057: Epidemiology of Candida infection and colonization in solid organ transplant recipients: An observational study. Transplantation 2024, 108, 9. [Google Scholar] [CrossRef]
- Meyer, L.; Frossard, J.; Schreiber, P.W.; Manuel, O.; Lamoth, F.; Khanna, N.; Boggian, K.; Walti, L.; Garzoni, C.; van Delden, C.; et al. Swiss transplant cohort study. Invasive Candida infections in solid organ transplant recipients between 2008 and 2020. Am. J. Transplant. 2025, 25, 2634–2645. [Google Scholar] [CrossRef] [PubMed]
- Albano, L.; Bretagne, S.; Mamzer-Bruneel, M.F.; Kacso, I.; Desnos-Ollivier, M.; Guerrini, P.; Le Luong, T.; Cassuto, E.; Dromer, F.; Lortholary, O.; et al. Evidence that graft-site candidiasis after kidney transplantation is acquired during organ recovery: A multicenter study in France. Clin. Infect. Dis. 2009, 48, 194–202. [Google Scholar] [CrossRef]
- Breitkopf, R.; Treml, B.; Simmet, K.; Bukumirić, Z.; Fodor, M.; Senoner, T.; Rajsic, S. Incidence of invasive fungal infections in liver transplant recipients under targeted echinocandin prophylaxis. J. Clin. Med. 2023, 12, 1520. [Google Scholar] [CrossRef]
- Summers, K.L.; Frey, J.F.; Ramsay, T.G.; Arfken, A.M. The piglet mycobiome during the weaning transition: A pilot study1. J. Anim. Sci. 2019, 97, 2889–2900. [Google Scholar] [CrossRef]
- Wei, G. Insights into gut fungi in pigs: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2025, 109, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Sigera, L.S.M.; Denning, D.W. Invasive aspergillosis after renal transplantation. J. Fungi 2023, 9, 255. [Google Scholar] [CrossRef]
- Huang, L.; Chen, W.; Guo, L.; Zhao, L.; Cao, B.; Liu, Y.; Lu, B.; Li, B.; Chen, J.; Wang, C. Scopulariopsis/Microascus isolation in lung transplant recipients: A report of three cases and a review of the literature. Mycoses 2019, 62, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Almeida Júnior, J.N.; Song, A.T.; Campos, S.V.; Strabelli, T.M.; Del Negro, G.M.; Figueiredo, D.S.; Motta, A.L.; Rossi, F.; Guitard, J.; Benard, G.; et al. Invasive Trichosporon infection in solid organ transplant patients: A report of two cases identified using IGS1 ribosomal DNA sequencing and a review of the literature. Transpl. Infect. Dis. 2014, 16, 135–140. [Google Scholar] [CrossRef]
- Pérez-Sáez, M.J.; Mir, M.; Montero, M.M.; Crespo, M.; Montero, N.; Gómez, J.; Horcajada, J.P.; Pascual, J. Invasive aspergillosis in kidney transplant recipients: A cohort study. Exp. Clin. Transplant. 2014, 12, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Neofytos, D.; Garcia-Vidal, C.; Lamoth, F.; Lichtenstern, C.; Perrella, A.; Vehreschild, J.J. Invasive aspergillosis in solid organ transplant patients: Diagnosis, prophylaxis, treatment, and assessment of response. BMC Infect. Dis. 2021, 21, 296. [Google Scholar] [CrossRef]
- López-Medrano, F.; Silva, J.T.; Fernández-Ruiz, M.; Carver, P.L.; van Delden, C.; Merino, E.; Pérez-Saez, M.J.; Montero, M.; Coussement, J.; de Abreu Mazzolin, M.; et al. Spanish network for research in infectious diseases (REIPI); the group for the study of infection in transplant recipients (GESITRA) of the Spanish society of clinical microbiology and infectious diseases (SEIMC); the study group for infections in compromised hosts (ESGICH) of the European society of clinical microbiology and infectious diseases (ESCMID); and the Swiss transplant cohort study (STCS). Risk factors associated with early invasive pulmonary aspergillosis in kidney transplant recipients: Results from a multinational matched case-control study. Am. J. Transplant. 2016, 16, 2148–2157. [Google Scholar] [CrossRef]
- Hold, G.L. Gastrointestinal microbiota and colon cancer. Dig. Dis. 2016, 34, 244–250. [Google Scholar] [CrossRef]
- Turroni, S.; Brigidi, P.; Cavalli, A.; Candela, M. Microbiota-host transgenomic metabolism, bioactive molecules from the inside. J. Med. Chem. 2018, 61, 47–61. [Google Scholar] [CrossRef]
- Spivak, I.; Fluhr, L.; Elinav, E. Local and systemic effects of microbiome-derived metabolites. EMBO Rep. 2022, 23, e55664. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, N.; Su, X.; Gao, Y.; Yang, R. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells 2023, 12, 793. [Google Scholar] [CrossRef]
- Olalekan, S.O.; Bakare, O.O.; Osonuga, I.O.; Faponle, A.S.; Adegbesan, B.O.; Ezima, E.N. Gut microbiota-derived metabolites: Implications for metabolic syndrome and therapeutic interventions. Egypt J. Intern. Med. 2024, 36, 72. [Google Scholar] [CrossRef]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Mrakic-Sposta, S.; Vezzoli, A.; Cova, E.; Ticcozzelli, E.; Montorsi, M.; Greco, F.; Sepe, V.; Benzoni, I.; Meloni, F.; Arbustini, E.; et al. Evaluation of oxidative stress and metabolic profile in a preclinical kidney transplantation model according to different preservation modalities. Int. J. Mol. Sci. 2023, 24, 1029. [Google Scholar] [CrossRef] [PubMed]
- Gemma, V.A.; Caro, P.J.; Rodríguez-San Pedro, M.d.M.; Yuste, C.; Ortiz-Diaz, M.G.; Ramírez, R.; Alique, M.; Guerra-Pérez, N.; Carracedo, J.; Morales, E. Oxidative stress score as an indicator of pathophysiological mechanisms underlying cardiovascular disease in kidney transplant recipients. Oxygen 2025, 5, 20. [Google Scholar] [CrossRef]
- Băluţă, C.V.; Voroneanu, L.; Nistor, I.; Siriteanu, L.; Covic, A.S.; Irimie-Băluţă, R.E.; Kanbay, M.; Miron, A.V.; Covic, A.C. Exploring the role of metabolomics in kidney transplantation: A systematic review of the literature. Front. Immunol. 2025, 16, 1534875. [Google Scholar] [CrossRef] [PubMed]
- Viejo-Boyano, I.; Roca-Marugán, M.I.; Peris-Fernández, M.; Amengual, J.L.; Balaguer-Timor, Á.; Moreno-Espinosa, M.; Felipe-Barrera, M.; González-Calero, P.; Espí-Reig, J.; Ventura-Galiano, A.; et al. Early metabolomic profiling as a pedictor of renal function six months after kidney transplantation. Biomedicines 2024, 12, 2424. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gancarcikova, S.; Demeckova, V.; Lauko, S.; Rynikova, M.; Hajduckova, V.; Gomulec, P.; Adandedjan, D.; Petrovova, E.; Kalanin, R.; Hulik, S.; et al. Testing a Farm Animal Model for Experimental Kidney Graft Transplantation: Gut Microbiota, Mycobiome and Metabolic Profiles as Indicators of Model Stability and Suitability. Appl. Sci. 2026, 16, 625. https://doi.org/10.3390/app16020625
Gancarcikova S, Demeckova V, Lauko S, Rynikova M, Hajduckova V, Gomulec P, Adandedjan D, Petrovova E, Kalanin R, Hulik S, et al. Testing a Farm Animal Model for Experimental Kidney Graft Transplantation: Gut Microbiota, Mycobiome and Metabolic Profiles as Indicators of Model Stability and Suitability. Applied Sciences. 2026; 16(2):625. https://doi.org/10.3390/app16020625
Chicago/Turabian StyleGancarcikova, Sona, Vlasta Demeckova, Stanislav Lauko, Maria Rynikova, Vanda Hajduckova, Pavel Gomulec, David Adandedjan, Eva Petrovova, Rastislav Kalanin, Stefan Hulik, and et al. 2026. "Testing a Farm Animal Model for Experimental Kidney Graft Transplantation: Gut Microbiota, Mycobiome and Metabolic Profiles as Indicators of Model Stability and Suitability" Applied Sciences 16, no. 2: 625. https://doi.org/10.3390/app16020625
APA StyleGancarcikova, S., Demeckova, V., Lauko, S., Rynikova, M., Hajduckova, V., Gomulec, P., Adandedjan, D., Petrovova, E., Kalanin, R., Hulik, S., Gala, I., Brezina, J., Novotny, J., Skybova, G. C., & Katuchova, J. (2026). Testing a Farm Animal Model for Experimental Kidney Graft Transplantation: Gut Microbiota, Mycobiome and Metabolic Profiles as Indicators of Model Stability and Suitability. Applied Sciences, 16(2), 625. https://doi.org/10.3390/app16020625

