applsci-logo

Journal Browser

Journal Browser

Brain-Computer Interfaces: Development, Applications, and Challenges

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Neuroscience and Neural Engineering".

Deadline for manuscript submissions: 30 December 2025 | Viewed by 2548

Special Issue Editor

Special Issue Information

Dear Colleagues,

Brain–Computer Interface (BCI) technology is a rapidly evolving multidisciplinary research area with a wide range of applications in medicine, neurorehabilitation, robotics, gaming, assistive technologies, and human–machine interaction. This Special Issue aims to bring together recent developments in BCI systems and explore their integration into practical, real-world solutions. We invite high-quality original research articles, reviews, and case studies addressing the design, development, and application of BCIs. Particular attention will be given to innovative methods for signal acquisition, processing, classification, and the interpretation of brain activity, as well as their use in real-time control systems.

Submissions are especially encouraged in the following application domains:

  • Brain control of robotic limbs, avatars, exoskeletons, and assistive devices;
  • Detection, prediction, and prevention of neurological and psychiatric disorders;
  • Assessment and modulation of psychophysiological states (e.g., fatigue, stress, and attention);
  • Monitoring of cognitive functions in both healthy and clinical populations.

This Special Issue will serve as a platform to highlight the current challenges and future directions in BCI research and its transformative potential across disciplines.

We look forward to hearing from you.

Prof. Dr. Alexander N. Pisarchik
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Brain–Computer Interface (BCI)
  • neurotechnology
  • EEG signal processing
  • cognitive and affective state monitoring
  • neural control of robotics
  • biomedical applications of BCIs
  • real-time brain signal analysis
  • human–machine interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

46 pages, 1676 KB  
Review
Neural–Computer Interfaces: Theory, Practice, Perspectives
by Ignat Dubynin, Maxim Zemlyanskov, Irina Shalayeva, Oleg Gorskii, Vladimir Grinevich and Pavel Musienko
Appl. Sci. 2025, 15(16), 8900; https://doi.org/10.3390/app15168900 - 12 Aug 2025
Viewed by 2324
Abstract
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, [...] Read more.
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, CBI (computer–brain interface) for translating artificial signals into stimuli for the CNS, and BBI (brain–brain interface) for direct brain-to-brain interaction systems that account for agency; and (3) the mode of user interaction with technology (active, reactive, passive). For each NCI type, we detail the fundamental data processing principles, covering signal registration, digitization, preprocessing, classification, encoding, command execution, and stimulation, alongside engineering implementations ranging from EEG/MEG to intracortical implants and from transcranial magnetic stimulation (TMS) to intracortical microstimulation (ICMS). We also review mathematical modeling methods for NCIs, focusing on optimizing the extraction of informative features from neural signals—decoding for BCI and encoding for CBI—followed by a discussion of quasi-real-time operation and the use of DSP and neuromorphic chips. Quantitative metrics and rehabilitation measures for evaluating NCI system effectiveness are considered. Finally, we highlight promising future research directions, such as the development of electrochemical interfaces, biomimetic hierarchical systems, and energy-efficient technologies capable of expanding brain functionality. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Development, Applications, and Challenges)
Show Figures

Figure 1

Back to TopTop