Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics
Abstract
1. Introduction
2. Historical Evolution of Heavy Machinery
2.1. Early Phase of Heavy Machinery
2.2. Increased Demand for Heavy Machinery
2.3. Challenging Period Followed by Growth
2.4. Progress and Development in Technology
2.5. Continuous Progression of Technology
3. General Role of Multibody Dynamics
3.1. Early Applications Using Analytical Models
3.2. Emergence of Computational Tools
3.3. Expansion into Real-World Scenarios
3.4. Integration with FEA and Control Systems
3.5. Progression into Real-Time Simulation and Automation
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duffy, O.C.; Wright, G.; Heard, S.A. Fundamentals of Mobile Heavy Equipment; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Parker, N.R.; Salcudean, S.E.; Lawrence, P.D. Application of force feedback to heavy duty hydraulic machines. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 375–381. [Google Scholar]
- Odeyar, P.; Apel, D.B.; Hall, R.; Zon, B.; Skrzypkowski, K. A review of reliability and fault analysis methods for heavy equipment and their components used in mining. Energies 2022, 15, 6263. [Google Scholar] [CrossRef]
- Haycraft, W.R. History of construction equipment. J. Constr. Eng. Manag. 2011, 137, 720–723. [Google Scholar] [CrossRef]
- Shin, Y.; Choi, Y.; Won, J.; Hong, T.; Koo, C. A new benchmark model for the automated detection and classification of a wide range of heavy construction equipment. J. Manag. Eng. 2024, 40, 04023069. [Google Scholar] [CrossRef]
- Day, D.A.; Benjamin, N.B. Construction Equipment Guide; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Zaneldin, E.; Sivaloganathan, S. A framework for the selection of heavy construction equipment. In Proceedings of the International Annual Conference of the American Society for Engineering Management, Huntsville, AL, USA, 18–21 October 2017; pp. 1–11. [Google Scholar]
- Shehadeh, A.; Alshboul, O.; Tatari, O.; Alzubaidi, M.A.; Salama, A.H.E.S. Selection of heavy machinery for earthwork activities: A multi-objective optimization approach using a genetic algorithm. Alex. Eng. J. 2022, 61, 7555–7569. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Liu, S.; Zhang, Q.; Han, Y. A comprehensive overview of hybrid construction machinery. Adv. Mech. Eng. 2016, 8, 1–15. [Google Scholar] [CrossRef]
- Key, J.M. Earthmoving and heavy equipment. J. Constr. Eng. Manag. 1987, 113, 611–622. [Google Scholar] [CrossRef]
- Ergur, H.S. The importance of hydraulic systems in the machinery manufacturing industry. In Innovative Technology Applications in Engineering Sciences; Jain, R., Gullu, A., Yalcinkaya, S., Eds.; Güven Publishing: Çayyolu Çankaya Ankara, Türkiye, 2021; pp. 249–269. [Google Scholar]
- Jog, G.M.; Brilakis, I.K.; Angelides, D.C. Testing in harsh conditions: Tracking resources on construction sites with machine vision. Autom. Constr. 2011, 20, 328–337. [Google Scholar] [CrossRef]
- Jiang, Y.; He, X. Overview of applications of the sensor technologies for construction machinery. IEEE Access 2020, 8, 110324–110335. [Google Scholar] [CrossRef]
- Quan, Z.; Ge, L.; Wei, Z.; Li, Y.W.; Quan, L. A survey of powertrain technologies for energy-efficient heavy-duty machinery. Proc. IEEE 2021, 109, 279–308. [Google Scholar] [CrossRef]
- Khan, A.U.; Huang, L.; Onstein, E.; Liu, Y. Overview of emerging technologies for improving the performance of heavy-duty construction machines. IEEE Access 2022, 10, 103315–103336. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Chirumalla, K. Managing product introduction projects in operations: Key challenges in heavy-duty vehicle industry. J. Mod. Proj. Manag. 2018, 5, 108–118. [Google Scholar]
- Masih-Tehrani, M.; Ebrahimi-Nejad, S.; Dahmardeh, M. Combined fuel consumption and emission optimization model for heavy construction equipment. Autom. Constr. 2020, 110, 103007. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, F.; Gong, G.; Yang, H.; Han, D. Intelligent technologies for construction machinery using data-driven methods. Autom. Constr. 2023, 147, 104711. [Google Scholar] [CrossRef]
- Wittenburg, J. Dynamics of Systems of Rigid Bodies; Teubner: Stuttgart, Germany, 1977. [Google Scholar]
- Chen, S.; Keys, L.K. A cost analysis model for heavy equipment. Comput. Ind. Eng. 2009, 56, 1276–1288. [Google Scholar] [CrossRef]
- Nikravesh, P.E. Computer-Aided Analysis of Mechanical Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1988. [Google Scholar]
- Jaiswal, S.; Åman, R.; Sopanen, J.; Mikkola, A. Real-time multibody model-based heads-up display unit of a tractor. IEEE Access 2021, 9, 57645–57657. [Google Scholar] [CrossRef]
- Flores, P.; Lankarani, H.M. Contact Force Models for Multibody Dynamics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Garcia de Jalon, J.; Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Imanishi, E.; Nanjo, T.; Hirooka, E.; Sugano, N. Fast simulation on flexible multibody dynamics using domain decomposition technique. J. Syst. Des. Dyn. 2007, 1, 387–397. [Google Scholar] [CrossRef]
- Cha, J.H.; Roh, M.I.; Lee, K.Y. Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics. Ocean Eng. 2010, 37, 1273–1291. [Google Scholar] [CrossRef]
- Eberhard, P.; Schiehlen, W. Computational dynamics of multibody systems: History, formalisms, and applications. J. Comput. Nonlinear Dyn. 2006, 1, 3–12. [Google Scholar] [CrossRef]
- Gamucci, P.G. The Italian heavy mechanical engineering industry. Proc. Inst. Mech. Eng. 1969, 184, 1146–1155. [Google Scholar] [CrossRef]
- Paz, E.B.; Ceccarelli, M.; Otero, J.E.; Sanz, J.L.M. A Brief Illustrated History of Machines and Mechanisms; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Gross, A.C.; Weiss, D.D. Industry corner: The global demand for heavy construction equipment. Bus. Econ. 1996, 31, 54–58. [Google Scholar]
- Ohno, K. The History of Japanese Economic Development: Origins of Private Dynamism and Policy Competence; Taylor & Francis: Abingdon, UK, 2017. [Google Scholar]
- Hildenbrand, J. Developments in heavy construction equipment. In Proceedings of the 65th Annual Road School; Purdue University: West Lafayette, Indiana, 1979; pp. 124–140. [Google Scholar]
- Chapman, J.E. The use of telemetry in heavy equipment testing at Caterpillar Inc. In Proceedings of the International Telemetering Conference, Las Vegas, NV, USA, 27–30 October 1997; pp. 42–47. [Google Scholar]
- Gross, A.C.; Hester, E.D. Heavy construction equipment: Vitality in an “old economy” sector. Bus. Econ. 2000, 35, 66. [Google Scholar]
- Tan, D.; Tan, J.; Peng, D.; Fu, M.; Zhang, H.; Yin, H.; Ding, Y. Study on real-world power-based emission factors from typical construction machinery. Sci. Total Environ. 2021, 799, 149436. [Google Scholar] [CrossRef]
- Statista. World’s Largest Construction Machinery Manufacturers by Sales 2023. 2024. Available online: https://www.statista.com/statistics/280343/leading-construction-machinery-manufacturers-worldwide-based-on-sales/ (accessed on 22 December 2024).
- Verdugo-Cedeño, M.; Jaiswal, S.; Ojanen, V.; Hannola, L.; Mikkola, A. Simulation-based digital twins enabling smart services for machine operations: An industry 5.0 approach. Int. J. Hum.-Interact. 2024, 40, 6327–6343. [Google Scholar] [CrossRef]
- EMR. Global Heavy Construction Equipment Market Size Analysis: Market Share, Forecast Trends, and Outlook Report (2024–2032). 2024. Available online: https://www.expertmarketresearch.com/reports/heavy-construction-equipment-market (accessed on 22 December 2024).
- Azar, E.R.; Kamat, V.R. Earthmoving equipment automation: A review of technical advances and future outlook. J. Inf. Technol. Constr. 2017, 22, 247–265. [Google Scholar]
- Blaettchen, P.; Taneri, N.; Hasija, S. Business model choice for heavy equipment manufacturers. Oper. Res. 2024, 72, 2263–2278. [Google Scholar] [CrossRef]
- Tseng, F.C.; Ma, Z.D.; Hulbert, G.M. Efficient numerical solution of constrained multibody dynamics systems. Comput. Methods Appl. Mech. Eng. 2003, 192, 439–472. [Google Scholar] [CrossRef]
- Schiehlen, W.; Guse, N.; Seifried, R. Multibody dynamics in computational mechanics and engineering applications. Comput. Methods Appl. Mech. Eng. 2006, 195, 5509–5522. [Google Scholar] [CrossRef]
- McPhee, J.; Redmond, S. Modelling multibody systems with indirect coordinates. Comput. Methods Appl. Mech. Eng. 2006, 195, 6942–6957. [Google Scholar] [CrossRef]
- Bayo, E.; Ledesma, R. Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 1996, 9, 113–130. [Google Scholar] [CrossRef]
- Cuadrado, J.; Dopico, D.; Naya, M.; Gonzalez, M. Real-time multibody dynamics and applications. In Simulation Techniques for Applied Dynamics; Arnold, M., Schiehlen, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 247–311. [Google Scholar]
- Cuadrado, J.; Dopico, D.; Gonzalez, M.; Naya, M. A combined penalty and recursive real-time formulation for multibody dynamics. J. Mech. Des. 2004, 126, 602–608. [Google Scholar] [CrossRef]
- Pan, Y.; Dai, W.; Xiong, Y.; Xiang, S.; Mikkola, A. Tree-topology-oriented modeling for the real-time simulation of sedan vehicle dynamics using independent coordinates and the rod-removal technique. Mech. Mach. Theory 2020, 143, 103626. [Google Scholar] [CrossRef]
- Pan, Y.; Xiang, S.; He, Y.; Zhao, J.; Mikkola, A. The validation of a semi-recursive vehicle dynamics model for a real-time simulation. Mech. Mach. Theory 2020, 151, 103907. [Google Scholar] [CrossRef]
- Garcia de Jalon, J.; Alvarez, E.; de Ribera, F.A.; Rodriguez, I.; Funes, F.J. A fast and simple semi-recursive formulation for multi-rigid-body systems. In Advances in Computational Multibody Systems; Ambrosio, J.A.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–23. [Google Scholar]
- Dopico, D.; Lopez Varela, A.; Luaces Fernandez, A. Augmented Lagrangian index-3 semi-recursive formulations with projections: Kinematics and dynamics. Multibody Syst. Dyn. 2021, 52, 377–405. [Google Scholar] [CrossRef]
- Bayo, E.; Garcia de Jalon, J.; Avello, A.; Cuadrado, J. An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates. Comput. Methods Appl. Mech. Eng. 1991, 92, 377–395. [Google Scholar] [CrossRef]
- Rahikainen, J.; Mikkola, A.; Sopanen, J.; Gerstmayr, J. Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody Syst. Dyn. 2018, 44, 293–311. [Google Scholar] [CrossRef]
- Avello, A.; Jimenez, J.M.; Bayo, E.; Garcia de Jalon, J. A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 1993, 107, 313–339. [Google Scholar] [CrossRef]
- Varela, A.L.; Dopico, D.; Fernandez, A.L. An analytical approach to the sensitivity analysis of semi-recursive ODE formulations for multibody dynamics. Comput. Struct. 2025, 308, 107642. [Google Scholar] [CrossRef]
- Bae, D.S.; Lee, J.K.; Cho, H.J.; Yae, H. An explicit integration method for real-time simulation of multibody vehicle models. Comput. Methods Appl. Mech. Eng. 2000, 187, 337–350. [Google Scholar] [CrossRef]
- Pan, Y.; Dai, W.; Huang, L.; Li, Z.; Mikkola, A. Iterative refinement algorithm for efficient velocities and accelerations solutions in closed-loop multibody dynamics. Mech. Syst. Signal Process. 2021, 152, 107463. [Google Scholar] [CrossRef]
- Haug, E.J. Computer-Aided Kinematics and Dynamics of Mechanical Systems; Allyn and Bacon: Boston, MA, USA, 1989. [Google Scholar]
- Ramon, H.; De Baerdemaeker, J. A modelling procedure for linearized motions of tree structured multibodies—2: Design of an active spray boom suspension on a spraying-machine. Comput. Struct. 1996, 59, 361–375. [Google Scholar] [CrossRef]
- Sheth, P.N.; Craig, K.C.; Mattice, M.; Banks, S. Design and development of a computer-aided engineering environment for controlled multibody systems. J. Eng. Des. 1991, 2, 175–195. [Google Scholar] [CrossRef]
- Moon, F.C. Applied Dynamics: With Applications to Multibody and Mechatronic Systems; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Korkealaakso, P.; Rouvinen, A.; Moisio, S.; Peusaari, J. Development of a real-time simulation environment. Multibody Syst. Dyn. 2007, 17, 177–194. [Google Scholar] [CrossRef]
- Yoo, W.S.; Kim, O.J.; Kim, K.S.; Kang, D.K.; Yoon, K.H. Estimation of maximum lifting load capacities of a hydraulic excavator via multibody computer modeling and simulation. KSME Int. J. 1998, 12, 1090–1096. [Google Scholar] [CrossRef]
- Nanjo, T.; Sugano, N.; Imanishi, E. Fast simulation of flexible multibody dynamics using improved domain decomposition technique. In Proceedings of the Asian Conference on Multibody Dynamics, Kyoto, Japan, 23–27 August 2010; p. 56492. [Google Scholar]
- Sun, G.; Kleeberger, M. Dynamic responses of hydraulic mobile crane with consideration of the drive system. Mech. Mach. Theory 2003, 38, 1489–1508. [Google Scholar] [CrossRef]
- Baharudin, M.E.; Rouvinen, A.; Korkealaakso, P.; Mikkola, A. Real-time multibody application for tree harvester truck simulator. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 2014, 228, 182–198. [Google Scholar] [CrossRef]
- Kurinov, I.; Orzechowski, G.; Hämäläinen, P.; Mikkola, A. Automated excavator based on reinforcement learning and multibody system dynamics. IEEE Access 2020, 8, 213998–214006. [Google Scholar] [CrossRef]
- Palomba, I.; Richiedei, D.; Trevisani, A.; Sanjurjo, E.; Luaces, A.; Cuadrado, J. Estimation of the digging and payload forces in excavators by means of state observers. Mech. Syst. Signal Process. 2019, 134, 106356. [Google Scholar] [CrossRef]
- Jaiswal, S.; Sanjurjo, E.; Cuadrado, J.; Sopanen, J.; Mikkola, A. State estimator based on an indirect Kalman filter for a hydraulically actuated multibody system. Multibody Syst. Dyn. 2022, 54, 373–398. [Google Scholar] [CrossRef]
- Goswami, G.; Tupitsina, A.; Jaiswal, S.; Nutakor, C.; Lindh, T.; Sopanen, J. Comparison of various hybrid electric powertrains for non-road mobile machinery using real-time multibody simulation. IEEE Access 2022, 10, 107631–107648. [Google Scholar] [CrossRef]
- Goswami, G.; Jaiswal, S.; Nutakor, C.; Sopanen, J. Co-simulation platform for simulating heavy mobile machinery with hydraulic actuators and various hybrid electric powertrains. IEEE Access 2022, 10, 105770–105785. [Google Scholar] [CrossRef]
# | Company | Country | Sales (USD) | Market Share |
---|---|---|---|---|
1 | Caterpillar | United States | 41.00 B | 16.8% |
2 | Komatsu | Japan | 25.30 B | 10.4% |
3 | John Deere | United States | 14.80 B | 6.1% |
4 | XCMG | China | 12.96 B | 5.3% |
5 | Liebherr | Switzerland | 10.34 B | 4.2% |
6 | Sany | China | 10.22 B | 4.2% |
7 | Volvo Construction Equipment | Sweden | 9.90 B | 4.1% |
8 | Hitachi Construction Machinery | Japan | 9.11 B | 3.7% |
9 | JCB | United Kingdom | 8.08 B | 3.3% |
10 | Doosan Bobcat | South Korea | 7.48 B | 3.1% |
Timeline | Role of Multibody Dynamics | Key Concepts |
---|---|---|
1970s–1980s | Early applications using analytical models | kinematics; analytical models |
1980s–1990s | Emergence of computational tools | dynamics; numerical models |
1990s–2000s | Expansion into real-world scenarios | environmental interactions; fatigue |
2000s–2010s | Integration with FEA and control systems | flexible bodies; advanced controls |
2010s–2020s | Progression into real-time simulation and automation | data integration; machine learning |
Commercial tools—Proprietary License | |
Name | Description |
Adams | Automated dynamic analysis of mechanical systems |
AGX Dynamics | Real-time physics engine |
Ansys Motion | Multibody dynamics simulation software |
AnyBody Modeling System | Human body simulation software |
Darts | Dynamics algorithms for real-time simulation |
Dymola | Multidomain modeling and simulation |
Comsol Multiphysics-Multibody Dynamics Module | Simulate the dynamics of multibody systems |
Inventor | Computer-aided design-based mechanical simulation |
MapleSim | Multibody and multidomain modeling tool |
Matlab-Simscape Multibody | Model and simulate multibody mechanical systems |
Mevea | Real-time simulation software |
MotionGenesis Kane | Symbolic program based on Kane’s method |
MotionSolve | Multibody system simulation |
RecurDyn | Computer-aided engineering simulation software |
Simcenter Amesim | Mechatronic systems simulation platform |
Simpack | Multibody system simulation |
SimulationX | Multidomain system simulation software |
Sonar-3D-Lab | Multibody dynamics simulation software |
Taero | Multibody dynamics simulation tool |
VehicleSim | Vehicle dynamics simulation |
Vortex Studio | Real-time simulations of mechanical systems |
Academic Tools—Open-Source License | |
Name | Description |
Chrono | Multiphysics simulation engine |
Exudyn | Simulation of flexible multibody dynamics systems |
Fer/Mech | Dynamic analysis of multibody system |
FreeDyn | Advanced multibody simulation |
HotInt | Simulation of mechatronic systems |
MBDyn | Multibody dynamics analysis software |
MBSim Environment | Smooth and non-smooth multibody systems |
MuJoCo | Multi-joint dynamics with contact |
Neweul-M2 | Dynamic analysis of mechanical systems |
OpenSim | Biomechanical modeling, simulation, and analysis |
PyDy | Python dynamics tool kit for multibody dynamics |
RBDL | Rigid body dynamics library |
Scilab-Scicos | Dynamical system modeling and simulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaiswal, S.; Poursina, M. Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics. Machines 2025, 13, 741. https://doi.org/10.3390/machines13080741
Jaiswal S, Poursina M. Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics. Machines. 2025; 13(8):741. https://doi.org/10.3390/machines13080741
Chicago/Turabian StyleJaiswal, Suraj, and Mohammad Poursina. 2025. "Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics" Machines 13, no. 8: 741. https://doi.org/10.3390/machines13080741
APA StyleJaiswal, S., & Poursina, M. (2025). Historical Evolution of Heavy Machinery and a General Role of Multibody Dynamics. Machines, 13(8), 741. https://doi.org/10.3390/machines13080741