Advances in Mechanism and Machine Science Within the IFIT 2024 Conference

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Machine Design and Theory".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 1541

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical, Energy and Management Engineering, Università della Calabria, 87036 Rende, Italy
Interests: robotics; robot design; mechatronics; walking hexapod; design procedure; mechanics of machinery; leg–wheel
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Torino, Italy
Interests: applied mechanics; articulated robots; automation and robotics; autonomous robot; mchanism design; mobile manipulator; mobile robots; precision agriculture; robotics rehabilitation devices; service robotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

This Special Issue invites outstanding contributions selected from the excellent presentations delivered at the Fifth International Conference of the IFToMM Italy (IFIT 2024). This Special Issue aims to showcase recent trends, theoretical advances, and innovative applications in the fields of applied mechanics and machine theory. It serves as a platform to highlight cutting-edge research and foster collaboration within the Italian and international scientific community.

Submissions are expected to cover a diverse range of topics reflecting the multifaceted nature of applied mechanics and machine theory. We particularly encourage contributions that address contemporary challenges and emerging trends in these disciplines, including their applications in industry, robotics, automation, sustainability, and advanced manufacturing.

Topics of interest include, but are not limited to:

  • Kinematics, dynamics, and design of mechanisms and machines;
  • Mechanical vibrations and structural dynamics;
  • Multibody system dynamics;
  • Tribology and contact mechanics;
  • Biomechanics and biomedical applications;
  • Compliant mechanisms and smart materials;
  • Energy-efficient machine design;
  • Control and optimization in machine systems;
  • History and evolution of mechanism and machine science;
  • Emerging trends in machine theory for Industry 4.0;
  • Advances in theoretical and computational mechanics.

This Special Issue provides an opportunity to disseminate high-quality research and promote the pivotal contributions of the IFToMM Italy community to the global development of applied mechanics and machine theory.

Dr. Giuseppe Carbone
Dr. Andrea Botta
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • compliant mechanisms
  • machines design and theory
  • multibody system dynamics
  • mechanical vibrations
  • tribology and contact mechanics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2590 KiB  
Article
Use of Artificial Neural Networks and SCADA Data for Early Detection of Wind Turbine Gearbox Failures
by Bryan Puruncajas, Francesco Castellani, Yolanda Vidal and Christian Tutivén
Machines 2025, 13(8), 746; https://doi.org/10.3390/machines13080746 - 20 Aug 2025
Viewed by 120
Abstract
This paper investigates the utilization of artificial neural networks (ANNs) for the proactive identification of gearbox failures in wind turbines, boosting the use of operational SCADA data for predictive analysis. Avoiding gearbox failures, which can strongly impact the functioning of wind turbines, is [...] Read more.
This paper investigates the utilization of artificial neural networks (ANNs) for the proactive identification of gearbox failures in wind turbines, boosting the use of operational SCADA data for predictive analysis. Avoiding gearbox failures, which can strongly impact the functioning of wind turbines, is crucial for ensuring high reliability and efficiency within wind farms. Early detection can be achieved though the development of a normal behavior model based on ANNs, which are trained with data from healthy conditions derived from selected SCADA variables that are closely associated with gearbox operations. The objective of this model is to forecast deviations in the gear bearing temperature, which serve as an early warning alert for potential failures. The research employs extensive SCADA data collected from January 2018 to February 2022 from a wind farm with multiple turbines. The study guarantees the robustness of the model through a thorough data cleaning process, normalization, and splitting into training, validation, and testing sets. The findings reveal that the model is able to effectively identify anomalies in gear bearing temperatures several months prior to failure, outperforming simple data processing methods, thereby offering a significant lead time for maintenance actions. This early detection capability is highlighted by a case study involving a gearbox failure in one of the turbines, where the proposed ANN model detected the issue months ahead of the actual failure. The present paper is an extended version of the work presented at the 5th International Conference of IFToMM ITALY 2024. Full article
Show Figures

Figure 1

21 pages, 3052 KiB  
Article
Sensitivity Analysis of a Statistical Method for the Dynamic Coefficients Computations of a Tilting Pad Journal Bearing
by Michele Barsanti, Alberto Betti, Enrico Ciulli, Paola Forte and Matteo Nuti
Machines 2025, 13(8), 726; https://doi.org/10.3390/machines13080726 - 15 Aug 2025
Viewed by 143
Abstract
In this paper, an innovative method for the determination of the dynamic coefficients of tilting pad journal bearings (TPJBs) is described, and some of its characteristics are analyzed. The calculation is based on a parabolic modeling of the dependence of the dynamic coefficients [...] Read more.
In this paper, an innovative method for the determination of the dynamic coefficients of tilting pad journal bearings (TPJBs) is described, and some of its characteristics are analyzed. The calculation is based on a parabolic modeling of the dependence of the dynamic coefficients on the excitation frequency, on the estimation of the forces acting on the bearing as a function of the estimated displacements using a linear model and, finally, on the search for the best estimate of the parabola coefficients by minimizing the sum of the squares of the normalized residuals of displacements and forces on the bearings. The normalization is performed by dividing the deviations (between the measured values and those calculated by the model) by an estimate of the standard deviation of the force and displacement measurements. The results for a flooded tilting pad journal bearing, TPJB, are presented and compared with those obtained using traditional methods. The synchronous coefficients are also calculated and compared with those determined by linear interpolation. A preliminary statistical analysis of the sensitivity of the results to the variation in the standard deviation of the forces and displacements is presented. An extension of the model is proposed so that the coefficients of the optimal parabolas can be estimated as a function of the shaft rotation frequency. Full article
Show Figures

Figure 1

17 pages, 10583 KiB  
Article
Characterization and Optimization of a Differential System for Underactuated Robotic Grippers
by Sebastiano Angelella, Virginia Burini, Silvia Logozzo and Maria Cristina Valigi
Machines 2025, 13(8), 717; https://doi.org/10.3390/machines13080717 - 12 Aug 2025
Viewed by 283
Abstract
This paper delves into the potential of an optimized differential system within an underactuated tendon-driven soft robotic gripper, a crucial component that enhances the grasping abilities by allowing fingers to secure objects adapting to different shapes and geometries. The original version of the [...] Read more.
This paper delves into the potential of an optimized differential system within an underactuated tendon-driven soft robotic gripper, a crucial component that enhances the grasping abilities by allowing fingers to secure objects adapting to different shapes and geometries. The original version of the differential system exhibited a certain degree of deformability, which introduced some functional advantages. In particular, its flexibility allowed for more delicate grasping operations by acting as a force reducer and enabling a more gradual application of contact forces, an essential feature when handling fragile objects. Nonetheless, while these benefits are noteworthy, a rigid differential remains more effective for achieving firm and secure grasps. The primary goal of this study is to analyze the differential’s performance through FEM simulations and deformation experiments, assessing its structural behavior under various conditions. Additionally, the research explores an innovative differential geometry aimed at striking the ideal balance, ensuring a robust grasp while retaining a controlled degree of deformability. By refining the differential’s design, this study seeks to enhance the efficiency of underactuated soft robotic grippers, ultimately enhancing their capabilities in handling diverse objects ensuring a compliant and secure grasp with optimized efficiency. Full article
Show Figures

Figure 1

15 pages, 5685 KiB  
Article
Six-Wheeled Mobile Manipulator for Brush Cleaning in Difficult Areas: Stability Analysis and Grip Condition Estimation
by Giandomenico Di Massa, Stefano Pagano, Ernesto Rocca and Sergio Savino
Machines 2025, 13(5), 359; https://doi.org/10.3390/machines13050359 - 25 Apr 2025
Cited by 1 | Viewed by 474
Abstract
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic [...] Read more.
This paper aims to analyze a six-wheeled mobile manipulator as a solution for brush clearing difficult areas. To this end, a rover with a rocker–bogie suspension system, like those used for space explorations, is considered; the cutting head is moved by a robotic arm fixed to the rover so that it can reach areas to clean in front of the rover or on its sides. The change of the pose of the robotic arm shifts the centre of mass of the rover and, although the shift is not important, it can be used to improve stability, to overcome an obstacle, or to change the load distribution between the wheels to prevent the wheels from slipping or sinking. Some analyses of the interaction between the rover and robotic arm are reported in this paper. To prevent the rover from entering a low-grip area, the possibility of estimating the grip conditions of the terrain is considered, using the front wheels as tactile sensors. By keeping the rear wheels stationary and gradually increasing the torque on the front wheels, it is possible to evaluate the conditions under which slippage occurs. In case of poor grip, using the other drive wheels, the rover can reverse its direction and look for an alternative path. Full article
Show Figures

Figure 1

Back to TopTop