Mechanical Design and Aerodynamic Optimization of Wind Turbine Components

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Machine Design and Theory".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 657

Special Issue Editor


E-Mail Website
Guest Editor
Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow, UK
Interests: CFD for flow analysis of ocean renewable energy; fluid-structure interaction; floating offshore wind turbine; wave energy converters

Special Issue Information

Dear Colleagues,

We would like to invite you to contribute to the Special Issue "Mechanical Design and Aerodynamic Optimization of Wind Turbine Components", which will be published in Machines. As the global demand for clean and renewable energy continues to grow, wind energy remains one of the most promising sources, playing an increasingly important role in achieving carbon neutrality goals. Achieving high efficiency, reliability, and structural integrity in wind turbine systems requires advanced approaches to mechanical design and aerodynamic optimization. This is particularly crucial for next-generation large-scale and offshore wind turbines, where complex flow dynamics, unsteady loads, and fluid–structure interactions present significant challenges.

This Special Issue focuses on cutting-edge research related to the modeling, simulation, design, and optimization of wind turbine components. Topics of interest include aerodynamic shape optimization, load mitigation strategies, lightweight structural design, fatigue analysis, and fluid–structure interaction. Studies utilizing computational fluid dynamics (CFD), structural mechanics, machine learning, or experimental methods are all welcome. We additionally encourage the submission of papers that address challenges in offshore and floating wind turbines.

We look forward to receiving your contributions.

Dr. Yang Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wind turbine
  • aerodynamic optimization
  • structural design
  • fluid–structure interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4526 KB  
Article
To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed
by Hanif Ullah, Yang Huang, Vincenzo Gulizzi and Antonio Pantano
Machines 2025, 13(8), 739; https://doi.org/10.3390/machines13080739 - 19 Aug 2025
Viewed by 463
Abstract
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing [...] Read more.
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing overall efficiency. The methodology includes airfoil selection and aerodynamic analysis using the Double Multiple Stream Tube (DMST) model, simulated in QBlade software. The numerical model was validated against established benchmark data, confirming its accuracy. Key findings reveal that among all tested airfoils, the NACA 64(2)-415 airfoil achieves the highest power coefficient at low wind speeds, while the FX 84-W-127 airfoil performs optimally at higher wind speeds. Inspired by biomimetic principles, a morphing strategy and mechanism is proposed to transition seamlessly between these two profiles and enable broader operational adaptability. This innovative approach demonstrates significant potential for improving the energy capture efficiency and viability of VAWTs, contributing to the advancement of renewable wind energy technologies. Full article
Show Figures

Figure 1

Back to TopTop