Mechanical Design and Aerodynamic Optimization of Wind Turbine Components

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Machine Design and Theory".

Deadline for manuscript submissions: 31 August 2026 | Viewed by 5646

Special Issue Editor


E-Mail Website
Guest Editor
Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Glasgow, UK
Interests: CFD for flow analysis of ocean renewable energy; fluid-structure interaction; floating offshore wind turbine; wave energy converters

Special Issue Information

Dear Colleagues,

We would like to invite you to contribute to the Special Issue "Mechanical Design and Aerodynamic Optimization of Wind Turbine Components", which will be published in Machines. As the global demand for clean and renewable energy continues to grow, wind energy remains one of the most promising sources, playing an increasingly important role in achieving carbon neutrality goals. Achieving high efficiency, reliability, and structural integrity in wind turbine systems requires advanced approaches to mechanical design and aerodynamic optimization. This is particularly crucial for next-generation large-scale and offshore wind turbines, where complex flow dynamics, unsteady loads, and fluid–structure interactions present significant challenges.

This Special Issue focuses on cutting-edge research related to the modeling, simulation, design, and optimization of wind turbine components. Topics of interest include aerodynamic shape optimization, load mitigation strategies, lightweight structural design, fatigue analysis, and fluid–structure interaction. Studies utilizing computational fluid dynamics (CFD), structural mechanics, machine learning, or experimental methods are all welcome. We additionally encourage the submission of papers that address challenges in offshore and floating wind turbines.

We look forward to receiving your contributions.

Dr. Yang Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wind turbine
  • aerodynamic optimization
  • structural design
  • fluid–structure interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6280 KB  
Article
Darrieus Vertical Axis Wind Turbine (VAWT) Performance Enhancement by Means of Gurney Flap
by Hanif Ullah, Vincenzo Gulizzi, Antonio Pantano, Zhongsheng Deng and Qing Xiao
Machines 2025, 13(11), 1004; https://doi.org/10.3390/machines13111004 - 31 Oct 2025
Viewed by 1050
Abstract
This study investigates the aerodynamic effect of Gurney flaps (GFs) of different heights on the performance of a Darrieus vertical axis wind turbine (VAWT). Through numerical simulations, the performance of a baseline airfoil is compared against configurations with GFs of 0.5%c, 1%c, and [...] Read more.
This study investigates the aerodynamic effect of Gurney flaps (GFs) of different heights on the performance of a Darrieus vertical axis wind turbine (VAWT). Through numerical simulations, the performance of a baseline airfoil is compared against configurations with GFs of 0.5%c, 1%c, and 1.5%c chord lengths across a range of tip-speed ratios (TSRs). Results identify the 0.5%c GF as the optimal configuration, providing consistent power enhancement across all tested conditions, unlike the taller flaps which showed inconsistent or negative effects. This optimal configuration achieved a peak power coefficient (Cp) of 0.366 at TSR = 2.0, a 3.73% improvement over the baseline, and critically, enhanced the low-speed power by 6.30% at TSR = 0.5, improving the turbine’s self-starting capability. Flow field analysis reveals a dual-benefit mechanism for this superior performance: at low TSRs, the GF delays flow separation during the upwind pass to increase lift, while at higher TSRs, it effectively manages the wake during the downwind pass to reduce drag and mitigate negative torque. The study concludes that the 0.5%c GF strikes an optimal balance between lift augmentation and drag. Full article
Show Figures

Figure 1

29 pages, 7048 KB  
Article
Performance Optimization of Savonius VAWTs Using Wind Accelerator and Guiding Rotor House for Enhanced Rooftop Urban Energy Harvesting
by Farzad Ghafoorian, Seyed Reza Mirmotahari, Shayan Farajyar, Mehdi Mehrpooya and Mahmood Shafiee
Machines 2025, 13(9), 838; https://doi.org/10.3390/machines13090838 - 10 Sep 2025
Cited by 1 | Viewed by 1595
Abstract
Savonius drag-based rotors, a type of vertical-axis wind turbine (VAWT), are well-suited for urban environments—particularly residential rooftops—owing to their compact design and ability to capture wind from all directions. However, their relatively low efficiency and narrow operational range pose significant challenges, such as [...] Read more.
Savonius drag-based rotors, a type of vertical-axis wind turbine (VAWT), are well-suited for urban environments—particularly residential rooftops—owing to their compact design and ability to capture wind from all directions. However, their relatively low efficiency and narrow operational range pose significant challenges, such as limited energy output under variable wind conditions and reduced performance across a broad range of tip speed ratios. To address these issues, this study explores flow augmentation using strategically placed deflectors, referred to as Wind Accelerators and Guiding Rotor Houses (WAG-RHs). Four different configurations, including double, triple, oblique, and straight designs, were evaluated against both omni-directional guide vanes (ODGVs) and a conventional rotor. The findings show that the ODGV configuration successfully extends the operational range from a tip speed ratio of 0.5 to 0.6—termed the extended performance point (EPP)—and increases the power coefficient (Cp) by up to 300% compared to the conventional design. Among all setups, the straight WAG-RH configuration proved most effective, not only achieving the EPP but also delivering a 385% and 264.3% increase in local and AVE Cp values, respectively compared to the conventional rotor. It also outperformed the ODGV-equipped rotor by 25%, thanks to its radial and dual-plane arrangement. Full article
Show Figures

Figure 1

18 pages, 4526 KB  
Article
To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed
by Hanif Ullah, Yang Huang, Vincenzo Gulizzi and Antonio Pantano
Machines 2025, 13(8), 739; https://doi.org/10.3390/machines13080739 - 19 Aug 2025
Cited by 4 | Viewed by 2548
Abstract
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing [...] Read more.
This study investigates the aerodynamic performance of vertical axis wind turbines (VAWTs), focusing on a novel dual-airfoil morphing mechanism for H-type Darrieus turbines. By leveraging the aerodynamic benefits of two distinct airfoil profiles, the proposed design adapts dynamically to varying wind speeds, enhancing overall efficiency. The methodology includes airfoil selection and aerodynamic analysis using the Double Multiple Stream Tube (DMST) model, simulated in QBlade software. The numerical model was validated against established benchmark data, confirming its accuracy. Key findings reveal that among all tested airfoils, the NACA 64(2)-415 airfoil achieves the highest power coefficient at low wind speeds, while the FX 84-W-127 airfoil performs optimally at higher wind speeds. Inspired by biomimetic principles, a morphing strategy and mechanism is proposed to transition seamlessly between these two profiles and enable broader operational adaptability. This innovative approach demonstrates significant potential for improving the energy capture efficiency and viability of VAWTs, contributing to the advancement of renewable wind energy technologies. Full article
Show Figures

Figure 1

Back to TopTop