To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed
Abstract
1. Introduction
- A dual-airfoil profile design is introduced, combining two airfoils with distinct characteristics through a novel morphing transition to enhance power performance under variable wind conditions.
- The new design allows for a low cut-in speed, effectively addressing one of the main issues of Darrieus-type vertical-axis wind turbines, that is, their inability to achieve the starting torque required for high-speed rotation.
- The present study aims to introduce a novel morphing approach to improve the aerodynamic efficiency of VAWTs in fluctuating wind conditions. This research emphasizes idea formulation and numerical analysis, whereas future research will concentrate on implementation and experimental validation.
2. Methodology
2.1. Selection of the Airfoils
2.2. DMST Simulation Model
3. Concept of Morphing in Designing VAWTs
3.1. Morphing Airfoil Strategy for Varying Wind Speeds
3.2. Control System Design for Morphing Mechanism
4. Results and Discussion
4.1. Numerical Simulation and Model Validation
4.2. Airfoil Performance Analysis at Low and High Wind Speeds
4.3. Aerodynamic Performance of Intermediate Airfoils
5. Proposed Morphing Coefficient of Power Curve
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WTs | Wind turbines |
HAWT | Horizontal axis wind turbine |
VAWT | Vertical axis wind turbine |
DMST | Double multiple stream tube |
CL | Lift coefficient |
CD | Drag coefficient |
AOA | Angle of attack |
Cp | Power coefficient |
TSR | Tip-speed ratio |
MST | Multiple stream tube |
Re | Reynolds number |
AR | Aspect ratio |
H | Blade height |
C | Chord length |
D | Diameter |
CAD | Computer-aided design |
CFD | Computational fluid dynamics |
R | Rotor radius |
V | Free stream velocity |
Inter. | Interpolated |
UIUC | University of Illinois Urbana-Champaign |
UDFs | User-defined functions |
References
- Moghimi, M.; Motawej, H. Developed DMST Model for Performance Analysis and Parametric Evaluation of Gorlov Vertical Axis Wind Turbines. Sustain. Energy Technol. Assess. 2020, 37, 100616. [Google Scholar] [CrossRef]
- Eboibi, O.; Danao, L.A.M.; Howell, R.J. Experimental Investigation of the Influence of Solidity on the Performance and Flow Field Aerodynamics of Vertical Axis Wind Turbines at Low Reynolds Numbers. Renew. Energy 2016, 92, 474–483. [Google Scholar] [CrossRef]
- Lee, Y.T.; Lim, H.C. Numerical Study of the Aerodynamic Performance of a 500W Darrieus-Type Vertical-Axis Wind Turbine. Renew. Energy 2015, 83, 407–415. [Google Scholar] [CrossRef]
- Aslam Bhutta, M.M.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques. Renew. Sust. Energ. Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Pope, K.; Dincer, I.; Naterer, G.F. Energy and Exergy Efficiency Comparison of Horizontal and Vertical Axis Wind Turbines. Renew. Energy 2010, 35, 2102–2113. [Google Scholar] [CrossRef]
- Bang, C.S.; Rana, Z.A.; Prince, S.A. CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT). Machines 2024, 12, 800. [Google Scholar] [CrossRef]
- Nguyen, L.; Metzger, M. Optimization of a Vertical Axis Wind Turbine for Application in an Urban/Suburban Area. J. Renew. Sustain. Ener. 2017, 9, 043302. [Google Scholar] [CrossRef]
- Islam, M.; Ting, D.S.K.; Fartaj, A. Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines. Renew. Sust. Energ. Rev. 2008, 12, 1087–1109. [Google Scholar] [CrossRef]
- Acosta-López, J.G.; Blasetti, A.P.; Lopez-Zamora, S.; de Lasa, H. CFD Modeling of an H-Type Darrieus VAWT under High Winds: The Vorticity Index and the Imminent Vortex Separation Condition. Processes 2023, 11, 644. [Google Scholar] [CrossRef]
- Hosseini, A.; Goudarzi, N. Design and CFD Study of a Hybrid Vertical-Axis Wind Turbine by Employing a Combined Bach-Type and H-Darrieus Rotor Systems. Energy Convers. Manag. 2019, 189, 49–59. [Google Scholar] [CrossRef]
- Arpino, F.; Scungio, M.; Cortellessa, G. Numerical Performance Assessment of an Innovative Darrieus-Style Vertical Axis Wind Turbine with Auxiliary Straight Blades. Energy Convers. Manag. 2018, 171, 769–777. [Google Scholar] [CrossRef]
- Darrieus, G. Turbine Having Its Rotating Shaft Transverse to the Flow of the Current. U.S. Patent 1,835,018, 8 December 1931. [Google Scholar]
- Fertahi, S.E.D.; Belhadad, T.; Kanna, A.; Samaouali, A.; Kadiri, I.; Benini, E. A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development. Fluids 2023, 8, 242. [Google Scholar] [CrossRef]
- Amet, E.; Maître, T.; Pellone, C.; Achard, J.L. 2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine. J. Fluids Eng. 2009, 131, 111103. [Google Scholar] [CrossRef]
- Alam, M.M. A Review of Wind Turbine Blade Morphing: Power, Vibration, and Noise. Fluid Dyn. Mater. Process. 2025, 21, 657–695. [Google Scholar] [CrossRef]
- Lee, K.Y.; Cruden, A.; Ng, J.H.; Wong, K.H. Variable designs of vertical axis wind turbines—A review. Front. Energy Res. 2024, 12, 1437800. [Google Scholar] [CrossRef]
- Ismail, M.F.; Vijayaraghavan, K. The Effects of Aerofoil Profile Modification on a Vertical Axis Wind Turbine Performance. Energy 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Xu, J.; Ji, Z.; Zhang, Y.; Yao, G.; Qian, Y.; Wang, Z. Numerical Simulation of Aerodynamic Characteristics of Trailing Edge Flaps for FFA-W3-241 Wind Turbine Airfoil. Machines 2025, 13, 366. [Google Scholar] [CrossRef]
- Leonczuk Minetto, R.A.; Paraschivoiu, M. Simulation Based Analysis of Morphing Blades Applied to a Vertical Axis Wind Turbine. Energy 2020, 202, 117705. [Google Scholar] [CrossRef]
- Loth, E.; Selig, M.; Moriarty, P. Morphing Segmented Wind Turbine Concept. In Proceedings of the 28th AIAA Applied Aerodynamics Conference, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar]
- Milojević, A.P.; Pavlović, N.D. Development of a New Adaptive Shape Morphing Compliant Structure with Embedded Actuators. J. Intell. Mater. Syst. Struct. 2016, 27, 1306–1328. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, W.; Zhang, Z.; Mo, X.; Zhang, Y. Design of Compliant Mechanism-Based Variable Camber Morphing Wing with Nonlinear Large Deformation. Int. J. Adv. Rob. Syst. 2019, 16, 1–19. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.; Wang, T.; Shen, W.; Liu, H.; Chen, M. A Review: Approaches for Aerodynamic Performance Improvement of Lift-Type Vertical Axis Wind Turbine. Sustain. Energy Technol. Assess. 2022, 49, 101789. [Google Scholar] [CrossRef]
- UIUC Airfoil Data Site. Available online: https://m-selig.ae.illinois.edu/ads/coord_database.html (accessed on 1 October 2024).
- Sagharichi, A.; Zamani, M.; Ghasemi, A. Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 2018, 161, 753–775. [Google Scholar] [CrossRef]
- Betz, A. The maximum of the theoretically possible exploitation of wind by means of a wind motor. Wind. Eng. 2013, 37, 441–446. [Google Scholar] [CrossRef]
- Paraschivoiu, I. Aerodynamic loads and performance of the Darrieus rotor. J. Energy 1981, 6, 406–421. [Google Scholar] [CrossRef]
- Dyachuk, E.; Goude, A. Numerical Validation of a Vortex Model against Experimental Data on a Straight-Bladed Vertical Axis Wind Turbine. Energies 2015, 8, 11800–11820. [Google Scholar] [CrossRef]
- Hirsch, I.H.; Mandal, A.C. A Cascade Theory for the Aerodynamic Performance of Darrieus Wind Turbines. Wind Eng. 1987, 11, 164–175. [Google Scholar]
- Dixon, K.; Simao Ferreira, C.J.; Hofemann, C.; Van Bussel, G.; Van Kuik, G. A 3D unsteady panel method for vertical axis wind turbines. In Proceedings of the European Wind Energy Conference and Exhibition (EWEC), Brussels, Belgium, 31 March–3 April 2008. [Google Scholar]
- Ghiasi, P.; Najafi, G.; Ghobadian, B.; Jafari, A.; Mazlan, M. Analytical Study of the Impact of Solidity, Chord Length, Number of Blades, Aspect Ratio and Airfoil Type on H-Rotor Darrieus Wind Turbine Performance at Low Reynolds Number. Sustainability 2022, 14, 2623. [Google Scholar] [CrossRef]
- Du, L.; Ingram, G.; Dominy, R.G. A review of H-Darrieus wind turbine aerodynamic research. Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci. 2019, 233, 7590–7616. [Google Scholar] [CrossRef]
- Marten, D.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Integration of a WT Blade Design tool in XFOIL/XFLR5. In Proceedings of the 10th German Wind Energy Conference (DEWEK), Bremen, Germany, 17–18 November 2010. [Google Scholar]
- Marten, D.; Juliane, W. QBlade Guidelines v0. 6; TU Berlin: Berlin, Germany, 2013. [Google Scholar]
- Bianchini, A.; Cangioli, F.; Papini, S.; Rindi, A.; Carnevale, E.A.; Ferrari, L. Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam Models: Development and Assessment. ASME J. Turbomach. 2015, 137, 011003. [Google Scholar] [CrossRef]
- Pramac Wind Turbine. Available online: https://www.starck.com/00DATA/cms/design/attachments/c7501281eae869f7c5e6939ad587a073.pdf (accessed on 15 September 2024).
- Abbott, I.H.; Von Doenhoff, A.E. Theory of Wing Sections: Including a Summary of Airfoil Data; Dover Publications; Courier Corporation: Dover, UK, 2012; pp. 462–463. [Google Scholar]
- Seifi Davari, H.; Botez, R.M.; Seify Davari, M.; Chowdhury, H. Enhancing the efficiency of horizontal axis wind turbines through optimization of blade parameters. J. Eng. 2024, 2024, 8574868. [Google Scholar] [CrossRef]
- Castelli, M.R.; Englaro, A.; Benini, E. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 2011, 36, 4919–4934. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Convers. Manag. 2018, 169, 45–77. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Convers. Manag. 2018, 156, 301–316. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Kalkman, I.; Blocken, B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 2017, 197, 132–150. [Google Scholar] [CrossRef]
Parameters | Notation | Value | Measure |
---|---|---|---|
Geometric and Design parameters | |||
Chord length | C | 0.25 | m |
Rotor radius | Rrotor | 0.725 | m |
Swept Area | As | 2.1 | m2 |
Rotor diameter | Drotor | 1.45 | m |
Height | H | 1.45 (1 2D) | m |
Number of blades | N | 3 | - |
Aspect ratio | AR | 1 | - |
Operational parameters | |||
Low wind speed | V | 6 | m/s |
High wind speed | V | 12 | m/s |
Tip-speed ratio | λ | 0.5–3.5 | - |
Max Epsilon for convergence | ε | 1 × 10−5 | - |
Relax factor | - | 0.3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, H.; Huang, Y.; Gulizzi, V.; Pantano, A. To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed. Machines 2025, 13, 739. https://doi.org/10.3390/machines13080739
Ullah H, Huang Y, Gulizzi V, Pantano A. To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed. Machines. 2025; 13(8):739. https://doi.org/10.3390/machines13080739
Chicago/Turabian StyleUllah, Hanif, Yang Huang, Vincenzo Gulizzi, and Antonio Pantano. 2025. "To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed" Machines 13, no. 8: 739. https://doi.org/10.3390/machines13080739
APA StyleUllah, H., Huang, Y., Gulizzi, V., & Pantano, A. (2025). To Enhance the Aerodynamic Power Efficiency of Vertical Axis Wind Turbines: Proposing Morphing Strategies for Variable Wind Speed. Machines, 13(8), 739. https://doi.org/10.3390/machines13080739