Next Issue
Previous Issue

Table of Contents

Minerals, Volume 9, Issue 1 (January 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Using a quasi-harmonic approximation for the description of its lattice dynamics, the [...] Read more.
View options order results:
result details:
Displaying articles 1-66
Export citation of selected articles as:
Open AccessArticle Unique PGE–Cu–Ni Noril’sk Deposits, Siberian Trap Province: Magmatic and Tectonic Factors in Their Origin
Minerals 2019, 9(1), 66; https://doi.org/10.3390/min9010066
Received: 11 December 2018 / Revised: 17 January 2019 / Accepted: 18 January 2019 / Published: 21 January 2019
Viewed by 312 | PDF Full-text (11680 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The unique and very large PGE–Cu–Ni Noril’sk deposits are located within the Siberian trap province, posing a number of questions about the relationship between the ore-forming process and the magmatism that produced the traps. A successful answer to these questions could greatly increase [...] Read more.
The unique and very large PGE–Cu–Ni Noril’sk deposits are located within the Siberian trap province, posing a number of questions about the relationship between the ore-forming process and the magmatism that produced the traps. A successful answer to these questions could greatly increase the possibility of discovering new deposits in flood basalt provinces elsewhere. In this contribution, we present new data on volcanic stratigraphy and geochemistry of the magmatic rocks in the key regions of the Siberian trap province (Noril’sk, Taimyr, Maymecha-Kotuy, Kulyumber, Lower Tunguska and Angara) and analyze the structure of the north part of the province. The magmatic rocks of the Arctic zone are characterized by variable MgO (3.6–37.2 wt %) and TiO2 (0.8–3.9 wt %) contents, Gd/Yb (1.4–6.3) and La/Sm (2.0–10.4) ratios, and a large range of isotopic compositions. The intrusions in the center of the Tunguska syneclise and Angara syncline have much less variable compositions and correspond to a “typical trap” with MgO of 5.6–7.2 wt %, TiO2 of 1.0–1.6 wt %, Gd/Yb ratio of 1.4–1.6 and La/Sm ratio of 2.0–3.5. This compositional diversity of magmas in the Arctic zone is consistent with their emplacement within the paleo-rift zones. Ore-bearing intrusions (the Noril’sk 1, Talnakh, Kharaelakh) are deep-situated in the Igarka-Noril’sk rift zone, which has three branches, namely the Bolsheavamsky, Dyupkunsky, and Lower Tunguska, that are prospected for discovering new deposits. One possible explanation for the specific position of the PGE–Cu–Ni deposits is accumulation of sulfides in these long-lived zones from the Neoproterozoic to the Mesozoic era during magmatic and metamorphic processes. Thus, trap magmatism, itself, does not produce large deposits, but mobilizes earlier formed sulfide segregations in addition carrying metals in the original magmas. These deposits are the results of several successive magmatic events, in which emplacement of the traps was the final event. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Age and Origin of Monazite Symplectite in an Iron Oxide-Apatite Deposit in the Adirondack Mountains, New York, USA: Implications for Tracking Fluid Conditions
Minerals 2019, 9(1), 65; https://doi.org/10.3390/min9010065
Received: 7 December 2018 / Revised: 4 January 2019 / Accepted: 18 January 2019 / Published: 21 January 2019
Viewed by 374 | PDF Full-text (7731 KB) | HTML Full-text | XML Full-text
Abstract
Monazite crystals, intergrown with allanite, fluorapatite, and quartz from the Cheever Mine iron oxide-apatite (IOA-type) deposit in Essex County, New York, USA, display rare symplectite textures. Electron probe wavelength-dispersive spectrometry (WDS) mapping and major and trace element characterization of these features reveal a [...] Read more.
Monazite crystals, intergrown with allanite, fluorapatite, and quartz from the Cheever Mine iron oxide-apatite (IOA-type) deposit in Essex County, New York, USA, display rare symplectite textures. Electron probe wavelength-dispersive spectrometry (WDS) mapping and major and trace element characterization of these features reveal a natural experiment in fluid-mediated monazite recrystallization. Two types of monazite with symplectite intergrowths have been recognized (Type I and II). Both types of symplectite development are associated with a decrease in HREE, Si, Ca, Th, and Y, but an increase in both La and Ce in monazite. Electron microprobe Th-U-total Pb analysis of Type I monazite with suitable ThO2 concentrations yielded a weighted mean age of 980 ± 5.8 Ma (MSWD: 3.3), which is interpreted as the age of monazite formation and the onset of symplectite development. Both types of monazite formed during a series of reactions from fluorapatite, and possibly britholite, to produce the final assemblage of monazite, allanite, and fluorapatite. Monazite formation was likely a response to evolving fluid conditions, which favored monazite stability over fluorapatite at ca. 980 Ma, possibly a NaCl brine. A subsequent transition to a Ca-dominated fluid may have then promoted the consumption of monazite to produce another generation of allanite and fluorapatite. Our results indicate that recrystallized monazite formed during fluid-mediated processes that, over time, trended towards an increasingly pure end-member composition. Regionally, these data are consistent with a magmatic-origin followed by fluid-mediated remobilization of select phases at subsolidus conditions for the Adirondack IOA deposits. Full article
Figures

Figure 1

Open AccessArticle On the Use of Sodium Chloride and Calcined Diatomite Sludge as Additives to Improve the Engineering Properties of Bricks Made with a Clay Earth from Jun (Granada, Spain)
Minerals 2019, 9(1), 64; https://doi.org/10.3390/min9010064
Received: 5 December 2018 / Revised: 15 January 2019 / Accepted: 17 January 2019 / Published: 21 January 2019
Viewed by 272 | PDF Full-text (3342 KB) | HTML Full-text | XML Full-text
Abstract
Solid bricks manufactured out of clayey earth from a quarry near the city of Granada (Spain) were studied and compared with others to which two additives were added during the kneading of the raw material: Calcined diatomite sludge and sodium chloride. Samples with [...] Read more.
Solid bricks manufactured out of clayey earth from a quarry near the city of Granada (Spain) were studied and compared with others to which two additives were added during the kneading of the raw material: Calcined diatomite sludge and sodium chloride. Samples with and without additives were fired at 800 °C, 950 °C, and 1100 °C. New mineral phases were formed in the bricks after firing. These included gehlenite, diopside, and plagioclase, which is gradually enriched in calcium, and microcline, which is transformed into sanidine. Mullite and molysite also appeared in the bricks made with added salt. Porosity increased substantially in the bricks that contained diatomite sludge, while the addition of sodium chloride accelerated the mineralogical transformations and caused sintering at relatively low temperatures of 800 °C. The bricks became more compact and less anisotropic as the firing temperature increased. This behaviour was less evident in the bricks with added diatomite sludge, which alters the orientation of the phyllosilicates. The bricks fired at 1100 °C had the best physical parameters. However, the bricks with added sodium chloride fired at 800 °C reached hygric and compactness values that were at least similar to bricks from the other groups fired at 950 °C. Full article
Figures

Figure 1

Open AccessArticle Geology, Geochemistry, and Geochronology of Gabbro from the Haoyaoerhudong Gold Deposit, Northern Margin of the North China Craton
Minerals 2019, 9(1), 63; https://doi.org/10.3390/min9010063
Received: 5 December 2018 / Revised: 14 January 2019 / Accepted: 17 January 2019 / Published: 21 January 2019
Viewed by 258 | PDF Full-text (7924 KB) | HTML Full-text | XML Full-text
Abstract
The Haoyaoerhudong gabbro is a mafic intrusion located in the Haoyaoerhudong gold deposit, which is a giant gold deposit (148 t Au) hosted in Proterozoic strata on the northern margin of the North China Craton. In this paper, we present integrated SHRIMP U–Pb, [...] Read more.
The Haoyaoerhudong gabbro is a mafic intrusion located in the Haoyaoerhudong gold deposit, which is a giant gold deposit (148 t Au) hosted in Proterozoic strata on the northern margin of the North China Craton. In this paper, we present integrated SHRIMP U–Pb, geochemical and Sr–Nd isotopic data from gabbro of the Haoyaoerhudong gold deposit to reveal the magmatic processes behind its origin. SHRIMP zircon U–Pb dating constrains the timing of crystallization of the Haoyaoerhudong gabbro to 278.8 ± 0.81 Ma. Whole-rock geochemical results indicate that the Haoyaoerhudong gabbro has calc-alkaline features with enrichments of large-ion lithophile elements (LILE) and light rare-earth elements (REE) as well as depletions of high-field strength elements (HFSE). The relatively high (87Sr/86Sr)i (0.7053 to 0.7078) and low εNd(t) (−4.6 to −15.1) values of the gabbro indicate the involvement of crustal materials. Low Ce/Pb ratios (1.35 to 7.38), together with nearly constant La/Sm and Th/Yb ratios and variable Ba/Th and Sr/Nd ratios, suggest that the ancient mantle was modified by slab dehydration fluids. Based on new geochemical data and regional geological investigations, we propose that both the Haoyaoerhudong gold deposit and the Haoyaoerhudong gabbro formed in a post-orogenic extensional setting. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Figures

Figure 1

Open AccessArticle Geological and Geochemical Characteristics of the Archean Basement-Hosted Gold Deposit in Pinglidian, Jiaodong Peninsula, Eastern China: Constraints on Auriferous Quartz-Vein Exploration
Minerals 2019, 9(1), 62; https://doi.org/10.3390/min9010062
Received: 18 December 2018 / Revised: 15 January 2019 / Accepted: 16 January 2019 / Published: 21 January 2019
Viewed by 278 | PDF Full-text (12690 KB) | HTML Full-text | XML Full-text
Abstract
The gold deposits that are hosted in the Archean metamorphic rock, have yet to be explored beyond Pinglidian gold deposit in the northwestern Jiaodong Peninsula, eastern China. This kind of gold deposit differs from those that are hosted in Mesozoic granitoids, showing good [...] Read more.
The gold deposits that are hosted in the Archean metamorphic rock, have yet to be explored beyond Pinglidian gold deposit in the northwestern Jiaodong Peninsula, eastern China. This kind of gold deposit differs from those that are hosted in Mesozoic granitoids, showing good potential for the prospecting of auriferous quartz-vein gold deposits controlled by the structures in greenfield Archean metamorphic rock. Pinglidian gold deposit is located in the hanging wall of the Jiaojia fault and consists of eight separated orebodies that are enveloped by altered rock in Archean biotite plagiogneiss. These orebodies and wall-rock alterations are strongly controlled by local structures that formed during the Mesozoic rotation and kink folding of the foliated and fissile Archean basement host. The major wall-rock alterations comprise sericitization, silicification, pyritization, and carbonation, which is up to 18 m in width and progressively increases in intensity towards the auriferous quartz vein. The visible gold is present as discrete native gold and electrum grains, which have basically filled in all manner of fractures or are adjacent to galena. We recognize two types of gold bearing quartz veins that are associated with mineral paragenetic sequences during hydrothermal alteration in the Pinglidian gold deposit. The petrological features and geochemical compositions in the reaction fronts of the alteration zone suggest variations in the physicochemical conditions during ore formation. These minerals in the wall rock, such as plagioclase, biotite, zircon, titanite, and magnetite, have been broken down to hydrothermal albite, sericite, and quartz in a K–Na–Al–Si–O–H system, and sulfides in a Fe–S–O–H system. The major and trace elements were calculated by the mass-balance method, showing gains during early alteration and losses during late alteration. The contents of K2O, Na2O, CaO, and LOI varied within the K–Na–Al–Si–O–H system during alteration, while Fe2O3 and MgO were relatively stable. Rare-earth elements (REE) changed from gains to losses alongside the breakdown of accessory minerals, such as large ion lithophile elements (LILE). The Sr and Ba contents exhibited high mobility during sericite-quartz alteration. Most of the low-mobility high-field strength elements (HFSE) were moderately depleted, except for Pb, which was extremely high in anomalous samples. The behavior of trans-transition elements (TRTE) was related to complicated sulfides in the Fe–S–O–H system and was constrained by the parameters of the mineral assemblages and geochemical compositions, temperature, pressure, pH, and fO2. These factors during ore formation that were associated with the extents and intensity of sulfide alteration and gold precipitation can be utilized to evaluate the potential size and scale of an ore-forming hydrothermal system, and is an effective exploration tool for widespread auriferous quartz veins in Archean metamorphic basements. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Figures

Figure 1

Open AccessFeature PaperReview Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle
Minerals 2019, 9(1), 61; https://doi.org/10.3390/min9010061
Received: 3 December 2018 / Revised: 16 January 2019 / Accepted: 17 January 2019 / Published: 20 January 2019
Viewed by 345 | PDF Full-text (1679 KB) | HTML Full-text | XML Full-text
Abstract
Serpentinized oceanic mantle lithosphere is considered an important carrier of water and fluid-mobile elements, including halogens, into subduction zones. Seafloor serpentinite compositions indicate Cl, Br and I are sourced from seawater and sedimentary pore fluids, while F may be derived from hydrothermal fluids. [...] Read more.
Serpentinized oceanic mantle lithosphere is considered an important carrier of water and fluid-mobile elements, including halogens, into subduction zones. Seafloor serpentinite compositions indicate Cl, Br and I are sourced from seawater and sedimentary pore fluids, while F may be derived from hydrothermal fluids. Overall, the heavy halogens are expelled from serpentinites during the lizardite–antigorite transition. Fluorine, on the other hand, appears to be retained or may be introduced from dehydrating sediments and/or igneous rocks during early subduction. Mass balance calculations indicate nearly all subducted F is kept in the subducting slab to ultrahigh-pressure conditions. Despite a loss of Cl, Br and I from serpentinites (and other lithologies) during early subduction, up to 15% of these elements are also retained in the deep slab. Based on a conservative estimate for serpentinite thickness of the metamorphosed slab (500 m), antigorite serpentinites comprise 37% of this residual Cl, 56% of Br and 50% of I, therefore making an important contribution to the transport of these elements to the deep mantle. Full article
(This article belongs to the Special Issue Serpentine Group Minerals)
Figures

Figure 1

Open AccessArticle Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method
Minerals 2019, 9(1), 60; https://doi.org/10.3390/min9010060
Received: 20 December 2018 / Revised: 16 January 2019 / Accepted: 17 January 2019 / Published: 20 January 2019
Viewed by 344 | PDF Full-text (17257 KB) | HTML Full-text | XML Full-text
Abstract
This study investigates the use of red muds as adsorbents for As (V) removal. Red mud is a waste that contains a large amount of iron oxides and hydroxides, which are excellent adsorbents of arsenic, especially those possessing magnetic properties and a large [...] Read more.
This study investigates the use of red muds as adsorbents for As (V) removal. Red mud is a waste that contains a large amount of iron oxides and hydroxides, which are excellent adsorbents of arsenic, especially those possessing magnetic properties and a large specific surface area. The purpose of the experiments was to study the possibility of obtaining an effective adsorbent by the direct extraction of alumina from bauxite using the caustic alkali fusion method and to compare the arsenic removal effectiveness and other properties of these red muds with industrial samples. Red muds were described using methods such as X-ray diffraction spectrometry (XRD), X-ray fluorescence spectrometry (XRF), SEM, vibrating sample magnetometry (VSM), and the Brunauer–Emmett–Teller (BET) method. The main iron-containing phase of the red muds obtained by fusing bauxite with caustic alkali is maghemite, which has a large specific surface area. The specific surface area of the obtained samples varied in the range of 6.1–54.9 m2/g. Arsenic adsorption experiments were carried out using five different types of red muds: industrial Bayer, industrial sintering, and red mud obtained through bauxite alkali fusion at 300, 500, and 700 °C. The red muds obtained by fusing bauxite with caustic alkali at 300 and 500 °C had the highest effectiveness removing arsenic; their As(V) uptake capacity was over 30 mg/g. Full article
Figures

Figure 1

Open AccessArticle Long-Lived Mantle Plume and Polyphase Evolution of Palaeoproterozoic PGE Intrusions in the Fennoscandian Shield
Minerals 2019, 9(1), 59; https://doi.org/10.3390/min9010059
Received: 18 October 2018 / Revised: 14 January 2019 / Accepted: 15 January 2019 / Published: 18 January 2019
Viewed by 279 | PDF Full-text (4154 KB) | HTML Full-text | XML Full-text
Abstract
The NE Fennoscandian Shield comprises the Northern Belt in Finland and the Southern Belt in Karelia. They host mafic-ultramafic layered Cu-Ni-Cr and Pt-Pd-bearing intrusions. Precise U-Pb and Sm-Nd analyses indicate the 130-Ma evolution of these intrusions, with major events at 2.53, 2.50, 2.45, [...] Read more.
The NE Fennoscandian Shield comprises the Northern Belt in Finland and the Southern Belt in Karelia. They host mafic-ultramafic layered Cu-Ni-Cr and Pt-Pd-bearing intrusions. Precise U-Pb and Sm-Nd analyses indicate the 130-Ma evolution of these intrusions, with major events at 2.53, 2.50, 2.45, and 2.40 Ga. Barren phases were dated at 2.53 Ga for orthopyroxenites and olivine gabbro in the Fedorovo-Pansky massif. PGE-bearing phases of gabbronorites (Pechenga, Fedorovo-Pansky, Monchetundra massifs) and norites (Monchepluton) are 2.50 Ga old. Anorthosites of Mt. Generalskaya (Pechenga), the Fedorovo-Pansky, and Monchetundra massifs occurred at 2.45 Ga. This event produced layered PGE-bearing intrusions in Finland (Penikat, Kemi, Koitelainen) and mafic intrusions in Karelia. The Imandra lopolith dikes occurred at the final phase (2.40 Ga). Slightly negative εNd and ISr values (0.703–0.704) suggest that intrusions originated from an enriched mantle reservoir. Low 3He/4He ratios in accessory minerals (ilmenite and magnetite) indicate an upper mantle source. Large-scale correlations link the Fennoscandian Shield with the Superior and Wyoming cratons. Full article
(This article belongs to the Special Issue Arctic Mineral Resources: Science and Technology)
Figures

Figure 1

Open AccessArticle MVT-Like Fluorite Deposits and Oligocene Magmatic-Hydrothermal Fluorite–Be–U–Mo–P–V Overprints in Northern Coahuila, Mexico
Minerals 2019, 9(1), 58; https://doi.org/10.3390/min9010058
Received: 5 December 2018 / Revised: 10 January 2019 / Accepted: 11 January 2019 / Published: 18 January 2019
Viewed by 264 | PDF Full-text (9455 KB) | HTML Full-text | XML Full-text
Abstract
The formation of most fluorite deposits in northern Coahuila (NE Mexico) is explained by MVT models, and is a part of the metallogenic province of northeastern Mexico. However, fluorite skarn deposits also occur in the same region, and there is evidence for late [...] Read more.
The formation of most fluorite deposits in northern Coahuila (NE Mexico) is explained by MVT models, and is a part of the metallogenic province of northeastern Mexico. However, fluorite skarn deposits also occur in the same region, and there is evidence for late hydrothermal manifestations with no clear origin and evolution. The latter are the main focus of this study; in particular, F–Be–U–Mo–V–P stringers in the Aguachile-Cuatro Palmas area that overprint preexisting fluorite mantos. The region experienced the emplacement of several intrusives during the Eocene and the Oligocene that are collectively grouped into the East Mexico Alkaline Province (EMAP) and postdate MVT-like deposits. Some of these intrusives have associated skarn deposits; most of them are polymetallic, but the unusual El Pilote deposit contains fluorite mineralisation that was remobilised from MVT-like deposits. The formation of the Aguachile deposit (and, collectively, part of the Cuatro Palmas deposit) has been attributed to a shallow retrograde skarn model. The Cuatro Palmas and Las Alicias fluorite deposits consist of MVT-like deposits overprinted by late hydrothermal fluorite mineralisation rich in Be–U–Mo–V–P, and the Aguachile deposit consists entirely of the latter type. The systematic fluid inclusion study of MVT-like, skarn, and late hydrothermal fluorite deposits reveals a very different distribution of temperature and salinity data that allows the discrimination of mineralising fluids for the type of deposit. MVT-like deposits were formed by fluids with temperatures of homogenisation that range between 50 °C and 152 °C and salinities between 5 and 15.5 wt.% NaCl equivalent. The El Pilote fluorite skarn was formed by fluids with temperatures of homogenisation that range between 78 °C and 394 °C and salinities between 5 and 34 wt.% NaCl equivalent, and include CaCl2-rich brines with salinities that range between 24.5 and 29.1 wt.% CaCl2. Late shallow fluorite–Be–U–Mo–V–P hydrothermal deposits were formed by fluids with temperatures of homogenisation that range between 70 °C and 180 °C and salinities between 0.9 and 3.4 wt.% NaCl equivalent; the sole exception to the above is the La Fácil deposit, with salinities that range between 7.9 and 8.8 wt.% NaCl equivalent. While temperatures of homogenisation are similar between MVT-like and late hydrothermal deposits, and both even have hydrocarbon-rich fluid inclusion associations, the salinity of late deposits is similar to that of retrograde skarn fluids, although further diluted. However, homogenisation temperatures tend to be higher in late hydrothermal than in MVT-like deposits, thus making them more similar to retrograde skarn fluids. Although this characteristic cannot solely establish a genetic link between a retrograde skarn model and late hydrothermal deposits in the study area, the characteristics of fluids associated with the latter separate these deposits from those ascribed to an MVT-like model. Assuming that mineralising fluids for late fluorite–Be–U–Mo–V–P hydrothermal deposits may correspond to a retrograde skarn (or “epithermal”) deposit, the source for fluorine may be either from (A) the dissolution of earlier formed MVT-like deposits, (B) the entrainment of remaining F-rich basinal brines, or (C) hydrothermal fluids exsolved from highly evolved magmas. Possibilities A and B are feasible due to a hypothetical situation similar to the El Pilote skarn, and due to the occurrence of hydrocarbon-rich fluid inclusions at the La Fácil deposit. Possibility C is feasible because intrusive bodies related to highly evolved magmas would have provided other highly lithophile elements like Be, U and Mo upon the exsolution of their hydrothermal fluids. Such intrusive bodies occur in both study areas, and are particularly conspicuous at the Aguachile collapse structure. Full article
(This article belongs to the Special Issue Mineral Deposits of Critical Elements)
Figures

Figure 1

Open AccessArticle Comparing Schwertmannite and Hydrobasaluminite Dissolution in Ammonium Oxalate (pH 3.0): Implications for Metal Speciation Studies by Sequential Extraction
Minerals 2019, 9(1), 57; https://doi.org/10.3390/min9010057
Received: 20 November 2018 / Revised: 4 January 2019 / Accepted: 15 January 2019 / Published: 17 January 2019
Viewed by 261 | PDF Full-text (2001 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The “poorly crystalline iron oxy-hydroxides” are one of the most reactive and environmentally important fractions in soils and sediments due to the association of many toxic elements associated with these minerals. The metal content of this fraction in sequential extraction procedures is usually [...] Read more.
The “poorly crystalline iron oxy-hydroxides” are one of the most reactive and environmentally important fractions in soils and sediments due to the association of many toxic elements associated with these minerals. The metal content of this fraction in sequential extraction procedures is usually evaluated by dissolution in ammonium oxalate ([NH4]2C2O4·H2O) at pH 3.0 and 25 °C. Such chemical treatment, however, may also dissolve other mineral phases of comparable reactivity, which can lead to wrong interpretations of mineral carriers for specific metals. In this study, we compare the dissolution kinetics of schwertmannite and hydrobasaluminite, two minerals of comparable crystallinity and reactivity that play a major role in the mobility of many trace metals in waters and sediments affected by acid mine drainage (AMD). We first synthesized these two minerals in the laboratory by partial neutralization of two different metal-rich mine waters, and then we applied the standard protocol of ammonium oxalate dissolution to different specimens; the solutions were periodically sampled at intervals of 2, 5, 10, 15, 30 and 60 min to compare (i) the kinetics of mineral dissolution, and (ii) the metals released during dissolution of these two minerals. The results indicate a very similar kinetics of mineral dissolution, though hydrobasaluminite exhibited a faster rate. Some toxic elements such as As, Cr or V were clearly bonded to schwertmannite, while many others such as Cu, Zn, Si, Co, Ni and Y were clearly linked to hydrobasaluminite. These results suggest that studies linking the mobility of many elements with the Fe cycle in AMD-affected soils and sediments could be inaccurate, since these elements could actually be associated with Al minerals of poor crystallinity. The step of ammonium oxalate dissolution in sequential extraction studies should be best described with a more general term such as “low-crystallinity oxy-hydroxides”. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Figures

Graphical abstract

Open AccessReview Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems
Minerals 2019, 9(1), 56; https://doi.org/10.3390/min9010056
Received: 29 October 2018 / Revised: 8 January 2019 / Accepted: 15 January 2019 / Published: 17 January 2019
Viewed by 363 | PDF Full-text (12810 KB) | HTML Full-text | XML Full-text
Abstract
The major role played by pre-existing structures in the formation of vein-style mineral deposits is demonstrated with several examples. The control of a pre-existing decollement level on the formation of a crustal extension-related (collapse) gold deposit is first illustrated in the Quadrilátero Ferrífero [...] Read more.
The major role played by pre-existing structures in the formation of vein-style mineral deposits is demonstrated with several examples. The control of a pre-existing decollement level on the formation of a crustal extension-related (collapse) gold deposit is first illustrated in the Quadrilátero Ferrífero from Brazil. Shear zone and decollement structures were also examined and shown to control veins formation by three distinct processes: (i) re-aperture and re-using of wrench shear zones in the case of Shila gold mines (south Peru); (ii) remobilisation of metal in volcanic-hosted massive sulphide (VHMS) deposit by subsequent tectonic events and formation of a secondary stockwork controlled by structures created during this event (Iberian Pyrite Belt, Spain); (iii) formation of economic stockwork by contrasting deformation behaviours between ductile black schist versus brittle more competent dolomite (Cu-Ifri deposit, Morocco). Two examples involve changing of rheological competence within zones affected by deformation and/or alteration in order to receive the mineralisation (case studies of Achmmach, Morocco, and Mina Soriana, Spain). The last case underscores the significance of the magmatic–hydrothermal transition in the formation of mesothermal gold deposits (Bruès mine, Spain). All these examples clearly demonstrate the crucial role played by previously formed structures and/or texture in the development and formation of ore deposits. Full article
(This article belongs to the Special Issue Structural Control of Mineral Deposits: Theory and Reality)
Figures

Figure 1

Open AccessArticle Experimental Investigation of Perceptual Characteristics of Functional Cemented Backfilling Materials in Coal Mines
Minerals 2019, 9(1), 55; https://doi.org/10.3390/min9010055
Received: 27 November 2018 / Revised: 2 January 2019 / Accepted: 3 January 2019 / Published: 17 January 2019
Viewed by 249 | PDF Full-text (13469 KB) | HTML Full-text | XML Full-text
Abstract
For investigating perceptual stress characteristics of Functional Cemented Backfilling Materials (FCBM) in coal mines, we prepared functional specimens based on Cemented Backfilling Materials (CBM) with the perceptual stress ability, and clarified their conductive mechanism, perceptual mechanism, and possible engineering applications. Using mechanical tests [...] Read more.
For investigating perceptual stress characteristics of Functional Cemented Backfilling Materials (FCBM) in coal mines, we prepared functional specimens based on Cemented Backfilling Materials (CBM) with the perceptual stress ability, and clarified their conductive mechanism, perceptual mechanism, and possible engineering applications. Using mechanical tests and the network parallel dynamic method, the mechanical and electrical properties of the prepared materials and the perceptual characteristics under mechanical–electric coupling conditions were analyzed in depth. The test results demonstrate that the deformation of FCBMs obey standard stress–strain rules, while the conductive phase addition can deteriorate their mechanical properties and simultaneously enhance the electrical conductivity of materials. Through fitting, the percolation threshold was determined to be 9.85%. Before the failure, the spatial distribution of the apparent resistivity in the materials was shown to follow the X-shaped radial pattern; after the failure, the material apparent resistivity obeys different distribution rules at various stages. The apparent resistivity of FCBM is negatively correlated with the strain value at the elastic and plastic stages and positively correlated with it at the failure stage. When the graphite content exceeds the percolation threshold, the materials exhibit a favorable perceptual functionality at the elastic stage. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining)
Figures

Figure 1

Open AccessEditorial Acknowledgement to Reviewers of Minerals in 2018
Minerals 2019, 9(1), 54; https://doi.org/10.3390/min9010054
Published: 17 January 2019
Viewed by 299 | PDF Full-text (505 KB) | HTML Full-text | XML Full-text
Abstract
Rigorous peer-review is the corner-stone of high-quality academic publishing [...] Full article
Open AccessArticle Properties and Application of Backfill Materials in Coal Mines in China
Minerals 2019, 9(1), 53; https://doi.org/10.3390/min9010053
Received: 20 November 2018 / Revised: 25 December 2018 / Accepted: 9 January 2019 / Published: 17 January 2019
Viewed by 280 | PDF Full-text (9350 KB) | HTML Full-text | XML Full-text
Abstract
Coal is the basic resource underpinning energy generation in China, however, constant, large-scale mining of coal results in many problems such as ecological destruction of mining areas. As a result, backfilling of solid waste underground is proposed to control strata and surface subsidence [...] Read more.
Coal is the basic resource underpinning energy generation in China, however, constant, large-scale mining of coal results in many problems such as ecological destruction of mining areas. As a result, backfilling of solid waste underground is proposed to control strata and surface subsidence and to protect the environment. At present, these materials, such as granular material, cemented material and high-water-content materials are mainly used for backfilling. This study summarised the types of backfill materials that are used in coal mines in China along with the backfilling process. Moreover, distribution and characteristics of mines backfilled with these backfill materials were obtained and analysed. Considering the socio-environmental aspects that affect backfilling, this research proposed a guideline for the selection of backfill materials and then analysed specific engineering cases of three backfill materials. In addition, the future development of backfill materials was discussed. With extensive extraction of shallow coal resources in China and, therefore, rapid depletion of coal resources in eastern regions of China, coal mining depth is increasing significantly. As a result, it is required to investigate new backfill materials suited for the deep high-stress environment. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining)
Figures

Figure 1

Open AccessArticle In Situ X-Ray CT Investigations of Meso-Damage Evolution of Cemented Waste Rock-Tailings Backfill (CWRTB) during Triaxial Deformation
Minerals 2019, 9(1), 52; https://doi.org/10.3390/min9010052
Received: 4 December 2018 / Revised: 3 January 2019 / Accepted: 6 January 2019 / Published: 16 January 2019
Viewed by 250 | PDF Full-text (11008 KB) | HTML Full-text | XML Full-text
Abstract
This work presents an experimental study that focused on the meso-damage evolution of cemented waste rock-tailing backfill (CWRTB) under triaxial compression using the in situ X-ray computed tomography (CT) technique. Although numerous investigations have studied the magnitude of the strength of CWRTB material, [...] Read more.
This work presents an experimental study that focused on the meso-damage evolution of cemented waste rock-tailing backfill (CWRTB) under triaxial compression using the in situ X-ray computed tomography (CT) technique. Although numerous investigations have studied the magnitude of the strength of CWRTB material, the mesoscopic damage evolution mechanisms under triaxial deformation are still poorly understood. Artificial CWRTB samples with a waste rock proportion of 30% were prepared by mixing tailings, waste rock, cement, and water. A specific self-developed loading device was used to match the CT machine to real-time CT scanning for the CWRTB sample. A series of 2D CT images were obtained by performing CT imaging at five key points throughout the test and from three positions in the sample. The CT values, for the purpose of meso-damage evolution in CWRTB, were identified. The results showed that the axial stress–strain curve presented strain hardening characteristics. The CT data revealed the inhomogeneous damage field inside the CWRTB sample and the most severely damaged regions that were usually located at the waste block-tailings paste interfaces. The changes in CT values for the different regions of interest (ROI) revealed the complicated interactions between the waste blocks and the tailings paste matrix. The meso-structural changes, formation of the localized bands, and the associated stress dilatancy phenomenon were strongly influenced by the interactions between the waste blocks and tailing paste. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining)
Figures

Figure 1

Open AccessArticle Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China)
Minerals 2019, 9(1), 51; https://doi.org/10.3390/min9010051
Received: 30 November 2018 / Revised: 2 January 2019 / Accepted: 10 January 2019 / Published: 16 January 2019
Viewed by 231 | PDF Full-text (7027 KB) | HTML Full-text | XML Full-text
Abstract
The Yuanjiang Ni deposit in southwestern margin of the Yunnan Plateau is the only economically important lateritic Ni deposit in China. It contains 21.2 Mt ore with an average grade of 1.05 wt % Ni and has been recognized as the second largest [...] Read more.
The Yuanjiang Ni deposit in southwestern margin of the Yunnan Plateau is the only economically important lateritic Ni deposit in China. It contains 21.2 Mt ore with an average grade of 1.05 wt % Ni and has been recognized as the second largest Ni producer in China following the Jinchuan super-large magmatic Ni–Cu deposit. This Ni deposit is hosted within the lateritic regolith derived from serpentinite within the regional Paleo-Tethyan Ophiolite remnants. Local landscape controls the distribution of the Ni mineralized regolith, and spatially it is characterized by developing on several stepped planation surfaces. Three types of lateritic Ni ores are identified based on Ni-hosting minerals, namely oxide ore, oxide-silicate mixed ore and silicate ore. In the dominant silicate ore, two phyllosilicate minerals (serpentine and talc) are the Ni-host minerals. Their Ni compositions, however, are remarkably different. Serpentine (0.34–1.2 wt % Ni) has a higher Ni concentration than talc (0.18–0.26 wt % Ni), indicating that the serpentine is more significantly enriched in Ni during weathering process compared to talc. This explains why talc veining reduces Ni grade. The geochemical index (S/SAF value = 0.33–0.81, UMIA values = 17–60) indicates that the serpentinite-derived regolith has experienced, at least, weak to moderate lateritization. Based on several lines of paleoclimate evidence, the history of lateritization at Yuanjiang area probably dates to the Oligocene-Miocene boundary and has extended to the present. With a hydrology-controlled lateritization process ongoing, continuous operation of Ni migration from the serpentinite-forming minerals to weathered minerals (goethite and serpentine) gave rise to the development of three types of Ni ore in the regolith. Notably, the formation and preservation of the Yuanjiang lateritic Ni deposit has been strongly impacted by regional multi-staged tectonic uplift during the development of Yunnan Plateau. This active tectonic setting has promoted weathering of serpentinite and supergene Ni enrichment, but is also responsible for its partial erosion. Full article
(This article belongs to the Special Issue Serpentine Group Minerals)
Figures

Figure 1

Open AccessArticle Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton
Minerals 2019, 9(1), 50; https://doi.org/10.3390/min9010050
Received: 5 December 2018 / Revised: 3 January 2019 / Accepted: 10 January 2019 / Published: 15 January 2019
Viewed by 341 | PDF Full-text (2938 KB) | HTML Full-text | XML Full-text
Abstract
The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the [...] Read more.
The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the microinclusions indicates two contrasting growth media: Mg-rich carbonatitic and Al-rich silicic. Each media has their own specific set of daughter phases. Carbonatitic microinclusions are characterized by the presence of dolomite, phlogopite, apatite, Mg, Fe-oxide, KCl, rutile, magnetite, Fe-sulfides, and hydrous fluid phases. Silicic microinclusions are composed mainly of free SiO2 phase (quartz), high-Si mica (phengite), Al-silicate (paragonite), F-apatite, Ca-carbonates enriched with Sr and Ba, Fe-sulfides, and hydrous fluid phases. These associations resulted from the cooling of diamond-forming carbonatitic and silicic fluids/melts preserved in microinclusions in cuboid diamonds during their ascent to the surface. The observed compositional variations indicate different origins and evolutions of these fluids/melts. Full article
Figures

Figure 1

Open AccessArticle Gem Corundum Deposits of Greece: Geology, Mineralogy and Genesis
Minerals 2019, 9(1), 49; https://doi.org/10.3390/min9010049
Received: 13 December 2018 / Revised: 10 January 2019 / Accepted: 14 January 2019 / Published: 15 January 2019
Viewed by 387 | PDF Full-text (23058 KB) | HTML Full-text | XML Full-text
Abstract
Greece contains several gem corundum deposits set within diverse geological settings, mostly within the Rhodope (Xanthi and Drama areas) and Attico-Cycladic (Naxos and Ikaria islands) tectono-metamorphic units. In the Xanthi area, the sapphire (pink, blue to purple) deposits are stratiform, occurring within marble [...] Read more.
Greece contains several gem corundum deposits set within diverse geological settings, mostly within the Rhodope (Xanthi and Drama areas) and Attico-Cycladic (Naxos and Ikaria islands) tectono-metamorphic units. In the Xanthi area, the sapphire (pink, blue to purple) deposits are stratiform, occurring within marble layers alternating with amphibolites. Deep red rubies in the Paranesti-Drama area are restricted to boudinaged lenses of Al-rich metapyroxenites alternating with amphibolites and gneisses. Both occurrences are oriented parallel to the ultra-high pressure/high pressure (UHP/HP) Nestos suture zone. On central Naxos Island, colored sapphires are associated with desilicated granite pegmatites intruding ultramafic lithologies (plumasites), occurring either within the pegmatites themselves or associated metasomatic reaction zones. In contrast, on southern Naxos and Ikaria Islands, blue sapphires occur in extensional fissures within Mesozoic metabauxites hosted in marbles. Mineral inclusions in corundums are in equilibrium and/or postdate corundum crystallization and comprise: spinel and pargasite (Paranesti), spinel, zircon (Xanthi), margarite, zircon, apatite, diaspore, phlogopite and chlorite (Naxos) and chloritoid, ilmenite, hematite, ulvospinel, rutile and zircon (Ikaria). The main chromophore elements within the Greek corundums show a wide range in concentration: the Fe contents vary from (average values) 1099 ppm in the blue sapphires of Xanthi, 424 ppm in the pink sapphires of Xanthi, 2654 ppm for Paranesti rubies, 4326 ppm for the Ikaria sapphires, 3706 for southern Naxos blue sapphires, 4777 for purple and 3301 for pink sapphire from Naxos plumasite, and finally 4677 to 1532 for blue to colorless sapphires from Naxos plumasites, respectively. The Ti concentrations (average values) are very low in rubies from Paranesti (41 ppm), with values of 2871 ppm and 509 in the blue and pink sapphires of Xanthi, respectively, of 1263 ppm for the Ikaria blue sapphires, and 520 ppm, 181 ppm in Naxos purple, pink sapphires, respectively. The blue to colorless sapphires from Naxos plumasites contain 1944 to 264 ppm Ti, respectively. The very high Ti contents of the Xanthi blue sapphires may reflect submicroscopic rutile inclusions. The Cr (average values) ranges from 4 to 691 ppm in the blue, purple and pink colored corundums from Naxos plumasite, is quite fixed (222 ppm) for Ikaria sapphires, ranges from 90 to 297 ppm in the blue and pink sapphires from Xanthi, reaches 9142 ppm in the corundums of Paranesti, with highest values of 15,347 ppm in deep red colored varieties. Each occurrence has both unique mineral assemblage and trace element chemistry (with variable Fe/Mg, Ga/Mg, Ga/Cr and Fe/Ti ratios). Additionally, oxygen isotope compositions confirm their geological typology, i.e., with, respectively δ18O of 4.9 ± 0.2‰ for sapphire in plumasite, 20.5‰ for sapphire in marble and 1‰ for ruby in mafics. The fluid inclusions study evidenced water free CO2 dominant fluids with traces of CH4 or N2, and low CO2 densities (0.46 and 0.67 g/cm3), which were probably trapped after the metamorphic peak. The Paranesti, Xanthi and central Naxos corundum deposits can be classified as metamorphic sensu stricto (s.s.) and metasomatic, respectively, those from southern Naxos and Ikaria display atypical magmatic signature indicating a hydrothermal origin. Greek corundums are characterized by wide color variation, homogeneity of the color hues, and transparency, and can be considered as potential gemstones. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Gems)
Figures

Figure 1

Open AccessArticle Geopolymer Synthesis Using Garnet Tailings from Molybdenum Mines
Minerals 2019, 9(1), 48; https://doi.org/10.3390/min9010048
Received: 14 November 2018 / Revised: 30 December 2018 / Accepted: 8 January 2019 / Published: 15 January 2019
Viewed by 269 | PDF Full-text (6391 KB) | HTML Full-text | XML Full-text
Abstract
Garnet tailings obtained in large quantities from molybdenum ore beneficiation are regarded as industrial waste, which not only occupies large areas of land but also causes environmental issues and ecological fines. Preparing garnet tailings based geopolymers (GTGs) is one of the efficient methods [...] Read more.
Garnet tailings obtained in large quantities from molybdenum ore beneficiation are regarded as industrial waste, which not only occupies large areas of land but also causes environmental issues and ecological fines. Preparing garnet tailings based geopolymers (GTGs) is one of the efficient methods to recycle and utilize garnet mine tailings. In this work, geopolymers were synthesized using garnet tailing (GT) and metakaolin (MK) as the main precursors and sodium silicate as the alkali-activation agent. The effect of MK and alkali activator dosage, as well as curing temperature on the compression strength of GTGs were analyzed in detail. Results showed that the maximum strength (46 MPa, 3 days) was reached at a 20 wt % MK dosage with 35% sodium silicate addition cured at room temperature. The microstructure and phase composition of GTGs were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR), which confirmed the formation of an amorphous geopolymer gel. Lastly, it can be concluded that the garnet tailing is a promising material for geopolymer production, as an alternative for its utilization. Full article
Figures

Figure 1

Open AccessArticle Serpentine–Hisingerite Solid Solution in Altered Ferroan Peridotite and Olivine Gabbro
Minerals 2019, 9(1), 47; https://doi.org/10.3390/min9010047
Received: 20 November 2018 / Revised: 6 January 2019 / Accepted: 11 January 2019 / Published: 15 January 2019
Viewed by 280 | PDF Full-text (1879 KB) | HTML Full-text | XML Full-text
Abstract
We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, containing approximately equal amounts of end-members serpentine ((Mg,Fe2+)3Si2O5(OH)4) and hisingerite (□Fe3+2Si2O5(OH)4·nH2O). These [...] Read more.
We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, containing approximately equal amounts of end-members serpentine ((Mg,Fe2+)3Si2O5(OH)4) and hisingerite (□Fe3+2Si2O5(OH)4·nH2O). These analyses suggest that all intermediate compositions can exist stably, a proposal that was heretofore impossible because phyllosilicate with the compositions reported here have not been previously observed. In samples from the Duluth Complex (Minnesota, USA) containing igneous olivine Fa36–44, a continuous range in phyllosilicate compositions is associated with hydrothermal Mg extraction from the system and consequent relative enrichments in Fe2+, Fe3+ (hisingerite), Si, and Mn. Altered ferroan–olivine-bearing samples from the Laramie Complex (Wyoming, USA) show a compositional variability of secondary FeMg–phyllosilicate (e.g., Mg–hisingerite) that is discontinuous and likely the result of differing igneous olivine compositions and local equilibration during alteration. Together, these examples demonstrate that the products of serpentinization of ferroan peridotite include phyllosilicate with iron contents proportionally larger than the reactant olivine, in contrast to the common observation of Mg-enriched serpentine in “traditional” alpine and seafloor serpentinites. To augment and contextualize our analyses, we additionally compiled greenalite and hisingerite analyses from the literature. These data show that greenalite in metamorphosed banded iron formation contains progressively more octahedral-site vacancies (larger apfu of Si) in higher XFe samples, a consequence of both increased hisingerite substitution and structure modulation (sheet inversions). Some high-Si greenalite remains ferroan and seems to be a structural analogue of the highly modulated sheet silicate caryopilite. Using a thermodynamic model of hydrothermal alteration in the Fe–silicate system, we show that the formation of secondary hydrothermal olivine and serpentine–hisingerite solid solutions after primary olivine may be attributed to appropriate values of thermodynamic parameters such as elevated a S i O 2 ( a q ) and decreased a H 2 ( a q ) at low temperatures (~200 °C). Importantly, recent observations of Martian rocks have indicated that they are evolved magmatically like the ferroan peridotites analyzed here, which, in turn, suggests that the processes and phyllosilicate assemblages recorded here are more directly relevant to those occurring on Mars than are traditional terrestrial serpentinites. Full article
(This article belongs to the Special Issue Serpentine Group Minerals)
Figures

Graphical abstract

Open AccessArticle Study of K-Feldspar and Lime Hydrothermal Reaction: Phase and Mechanism with Reaction Temperature and Increasing Ca/Si Ratio
Minerals 2019, 9(1), 46; https://doi.org/10.3390/min9010046
Received: 15 December 2018 / Revised: 30 December 2018 / Accepted: 9 January 2019 / Published: 14 January 2019
Viewed by 306 | PDF Full-text (5862 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To elucidate the physicochemical properties of the artificial silicate composite material, K-feldspar and lime were reacted in mild hydrothermal conditions (different reaction temperatures and various K-feldspar/lime ratios). Formed phases were investigated using various techniques, such as X-ray powder diffraction, the Rietveld method, scanning [...] Read more.
To elucidate the physicochemical properties of the artificial silicate composite material, K-feldspar and lime were reacted in mild hydrothermal conditions (different reaction temperatures and various K-feldspar/lime ratios). Formed phases were investigated using various techniques, such as X-ray powder diffraction, the Rietveld method, scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectrometry. The analysis revealed that tobermorite, grossular (hydrogarnet), alpha-dicalcium silicate hydrate (α-C2SH), amorphous calcium silicate hydrate, potassium carbonate, bütschliite, calcite, and calcium hydroxide formed with various conditions. Both the temperature and the Ca/Si molar ratio in the starting material greatly affected the formation of phases, especially the generation of tobermorite and α-C2SH. The substitution of H4O4 ↔ SiO4 proceeded with the increase of the Ca/Si molar ratio rather than the reaction temperature and the reaction time. More hydrogen was incorporated in hydrogarnet through the substitution of H4O4 ↔ SiO4 with the increase of the Ca/Si molar ratio in the starting material. Due to the properties of tobermorite as a cation exchanger and its potential applications in hazardous waste disposal, experimental parameters should be optimized to obtain better performance of the artificial silicate composite material from K-feldspar and lime hydrothermal reaction. The dissolution mechanism of K-feldspar was also discussed. Full article
Figures

Graphical abstract

Open AccessArticle Basin Evolution and Massive Sulfide Deposition at Rammelsberg (Germany): Updating the Subsidence Analysis
Minerals 2019, 9(1), 45; https://doi.org/10.3390/min9010045
Received: 21 November 2018 / Revised: 24 December 2018 / Accepted: 4 January 2019 / Published: 14 January 2019
Viewed by 254 | PDF Full-text (1980 KB) | HTML Full-text | XML Full-text
Abstract
The Rammelsberg sulfide deposit is classically considered as a SEDEX-type deposit. The origin of SEDEX-type massive sulfides links with the evolution of their hosting basins. They frequently constitute the source for the metal-enriched basinal brines transported afterwards as mineralizing hydrothermal fluids. This study [...] Read more.
The Rammelsberg sulfide deposit is classically considered as a SEDEX-type deposit. The origin of SEDEX-type massive sulfides links with the evolution of their hosting basins. They frequently constitute the source for the metal-enriched basinal brines transported afterwards as mineralizing hydrothermal fluids. This study revisits previous data concerning the analysis of the basin that hosts the Rammelsberg deposit, the Goslar basin, updating its subsidence analysis and providing new tectonic and total subsidence curves from two different paleogeographic locations: the depocenter and the basin margin. The basin evolution is defined by five stages depicting different subsidence intensity and mechanisms for each of these locations. The stratigraphic position of Rammelsberg coincides with a drastic change in the basin evolution. A rapid tectonic subsidence event is proposed as a trigger mechanism for hydrothermal activity. The paleogeographic location and the relation between supply of mineralizing fluids and sedimentation rate were critical for the concentration or dissemination of sulfides. Full article
(This article belongs to the Special Issue Massive Sulfide Deposits all around the World)
Figures

Graphical abstract

Open AccessArticle Influence of High Conductive Magnetite Impurity on the Electrical Conductivity of Dry Olivine Aggregates at High Temperature and High Pressure
Minerals 2019, 9(1), 44; https://doi.org/10.3390/min9010044
Received: 27 December 2018 / Revised: 7 January 2019 / Accepted: 11 January 2019 / Published: 13 January 2019
Viewed by 332 | PDF Full-text (4342 KB) | HTML Full-text | XML Full-text
Abstract
The electrical conductivity of dry sintered olivine aggregates with various contents of magnetite (0, 3, 5, 7, 10, 20, and 100 vol. %) was measured at temperatures of 873–1273 K and a pressure of 2.0 GPa within a frequency range of 0.1–106 [...] Read more.
The electrical conductivity of dry sintered olivine aggregates with various contents of magnetite (0, 3, 5, 7, 10, 20, and 100 vol. %) was measured at temperatures of 873–1273 K and a pressure of 2.0 GPa within a frequency range of 0.1–106 Hz. The changes of the electrical conductivity of the samples with temperature followed an Arrhenius relation. The electrical conductivity of the sintered olivine aggregates increased as the magnetite-bearing content increased, and the activation enthalpy decreased, accordingly. When the content of interconnected magnetite was higher than the percolation threshold (~5 vol. %), the electrical conductivity of the samples was markedly enhanced. As the pressure increased from 1.0 to 3.0 GPa, the electrical conductivity of the magnetite-free olivine aggregates decreased, whereas the electrical conductivity of the 5 vol. % magnetite-bearing sample increased. Furthermore, the activation energy and activation volume of the 5 vol. % magnetite-bearing sintered olivine aggregates at atmospheric pressure were calculated to be 0.16 ± 0.04 eV and −1.50 ± 0.04 cm3/mole respectively. Due to the high value of percolation threshold (~5 vol. %) in the magnetite impurity sample, our present results suggest that regional high conductivity anomalies in the deep Earth’s interior cannot be explained by the presence of the interconnected magnetite-bearing olivine aggregates. Full article
Figures

Figure 1

Open AccessArticle Selective Separation of Scheelite from Calcite by Self-Assembly of H2SiO3 Polymer Using Al3+ in Pb-BHA Flotation
Minerals 2019, 9(1), 43; https://doi.org/10.3390/min9010043
Received: 10 December 2018 / Revised: 8 January 2019 / Accepted: 10 January 2019 / Published: 13 January 2019
Viewed by 377 | PDF Full-text (3568 KB) | HTML Full-text | XML Full-text
Abstract
The flotation separation of scheelite from calcite is problematic, where sodium silicate modified by polyvalent metal ions has shown some advantages for selective depression. In this study, an Al-Na2SiO3 polymer was used as the depressant for the flotation separation of [...] Read more.
The flotation separation of scheelite from calcite is problematic, where sodium silicate modified by polyvalent metal ions has shown some advantages for selective depression. In this study, an Al-Na2SiO3 polymer was used as the depressant for the flotation separation of scheelite from calcite using a lead complex of benzohydroxamic acid (Pb-BHA) as the collector. Furthermore, a number of measurements were conducted to investigate the structure of the Al-Na2SiO3 polymer and its adsorption behavior with Pb-BHA complexes on the mineral surface. Flotation experiments indicated that the Al-Na2SiO3 polymer shows good selectivity for the flotation separation of scheelite from calcite at pH 8, where the optimum ratio of sodium silicate to aluminum sulfate was 2:1. Fourier-Transform Infrared (FTIR) and solution chemical analyses revealed that aluminum hydroxide complexes and the hydroxy moiety of silicic acid are able to self-assemble via condensation affording an Al-Na2SiO3 polymer, i.e., a composite aluminosilicate polymer. The zeta potential measurements and adsorption capacity measurements indicated that, upon adsorption of the Al-Na2SiO3 polymer and Pb-BHA complexes on the mineral surface, the Al-Na2SiO3 polymer had less influence on the adsorption of Pb-BHA complexes on the scheelite surface, while the opposite was true for calcite. Therefore, more Pb-BHA complexes and fewer Al-Na2SiO3 polymers were deposited on the scheelite surface, while fewer Pb-BHA complexes and more Al-Na2SiO3 polymers were adsorbed on the calcite surface. The selective separation of scheelite from calcite was attributed to the cooperative selectivity of the Pb-BHA complexes and Al-Na2SiO3 polymer. Full article
(This article belongs to the Special Issue Flotation Reagents)
Figures

Figure 1

Open AccessReview Spinels in Meteorites: Observation Using Mössbauer Spectroscopy
Minerals 2019, 9(1), 42; https://doi.org/10.3390/min9010042
Received: 5 September 2018 / Revised: 29 December 2018 / Accepted: 9 January 2019 / Published: 13 January 2019
Viewed by 338 | PDF Full-text (6813 KB) | HTML Full-text | XML Full-text
Abstract
In this mini-review, we consider the results of various meteorite studies using Mössbauer spectroscopy with a high velocity resolution in order to reveal the minor spectral components related to spinels such as chromite, hercynite, magnesiochromite, magnesioferrite and daubréelite in bulk meteorite matter or [...] Read more.
In this mini-review, we consider the results of various meteorite studies using Mössbauer spectroscopy with a high velocity resolution in order to reveal the minor spectral components related to spinels such as chromite, hercynite, magnesiochromite, magnesioferrite and daubréelite in bulk meteorite matter or in some extracted phases. Spinels observation in the Mössbauer spectra is supported by characterization of the studied samples by means of optical and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and magnetization measurements. Mössbauer parameters obtained for extraterrestrial spinels are compared with those obtained for terrestrial analogs published in the literature. Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Figures

Figure 1

Open AccessArticle Utilization of Ammonium Chloride as a Novel Selective Depressant in Reverse Flotation of Potassium Chloride
Minerals 2019, 9(1), 41; https://doi.org/10.3390/min9010041
Received: 14 November 2018 / Revised: 3 January 2019 / Accepted: 10 January 2019 / Published: 13 January 2019
Viewed by 373 | PDF Full-text (5010 KB) | HTML Full-text | XML Full-text
Abstract
The separation of sylvite (KCl) and halite (NaCl), two main minerals in potash ores, is difficult because of the high ion concentration, fine particles of NaCl, and aggregation of KCl and NaCl in the saturated system. This study employed ammonium chloride (NH4 [...] Read more.
The separation of sylvite (KCl) and halite (NaCl), two main minerals in potash ores, is difficult because of the high ion concentration, fine particles of NaCl, and aggregation of KCl and NaCl in the saturated system. This study employed ammonium chloride (NH4Cl) as a new depressant and dodecyl morpholine as a collector in the reverse flotation process. The depressing mechanisms were studied by adsorption capacity experiments, infrared spectral analysis, and molecular dynamics simulations. The flotation tests showed that NaCl recovery increased to 97% after the addition of NH4Cl, while KCl recovery was reduced to <1%. Notably, NH4Cl not only acted as a selective KCl depressant, but also activated NaCl flotation. The FTIR measurements showed that NH4Cl was physically adsorbed onto the KCl and NaCl surfaces. Adsorption capacity experiments and molecular dynamics simulations confirmed more favorable NH4Cl adsorption on the KCl surface than on the NaCl surface. Moreover, the KCl mineral surface was more hydrophilic, while that of NaCl was more hydrophobic. Relative concentration analysis revealed that >90% ammonium and chloride ions were distributed 2–10 Å away from the KCl surface but were dispersed on the NaCl surface, indicating that NH4Cl exhibited stronger intermolecular interactions with KCl than with NaCl. Full article
(This article belongs to the Section Mineral Processing and Metallurgy)
Figures

Figure 1

Open AccessArticle Evolution of Clays in Cretaceous Marly Series (Álava Block, Basque Cantabrian Basin, Spain): Diagenesis and Detrital Input Control
Minerals 2019, 9(1), 40; https://doi.org/10.3390/min9010040
Received: 10 October 2018 / Revised: 26 December 2018 / Accepted: 4 January 2019 / Published: 12 January 2019
Viewed by 264 | PDF Full-text (4228 KB) | HTML Full-text | XML Full-text
Abstract
Two stratigraphic sections of carbonate sediments with significant thickness differences and without appreciable tectonic deformation were studied near the trough and on a threshold zone at the Álava Trough. Such characteristics make them appropriate to analyze the influence of a slow progression of [...] Read more.
Two stratigraphic sections of carbonate sediments with significant thickness differences and without appreciable tectonic deformation were studied near the trough and on a threshold zone at the Álava Trough. Such characteristics make them appropriate to analyze the influence of a slow progression of the diagenesis over the original clay suite. X Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Analytical Electron Microscopy (AEM) techniques were applied in natural and alkylammonium-treated samples. Diagenesis slightly modified the clay mineralogy, the disappearance of smectite, and the variation in the content and ordering of the I/S mixed layer, with burial being the most noteworthy process. The total charge in the 2:1 expandable layers of smectite and I/S shows a slight increase, preferentially located on tetrahedral sheets, with depth. The data suggest a moderate diagenesis grade for the studied materials. The combination of techniques allowed identification of several types of detrital micaceous phases, as well-crystallized K-rich micas, Na-K micas, mica-chlorite stacks, and illites, with an expandable behaviour after the alkylammonium treatment. The total charge of illites did not change with diagenesis, suggesting their detrital origin. This research shows that the detrital assemblage masks the diagenetic evolution in the basin, which indicates the importance of the combination of different techniques to infer correctly the diagenetic grade in a sedimentary basin. Full article
(This article belongs to the Special Issue From Diagenesis to Low-Grade Metamorphism)
Figures

Figure 1

Open AccessArticle Behavior of Tin and Antimony in Secondary Copper Smelting Process
Minerals 2019, 9(1), 39; https://doi.org/10.3390/min9010039
Received: 18 December 2018 / Revised: 4 January 2019 / Accepted: 8 January 2019 / Published: 12 January 2019
Viewed by 329 | PDF Full-text (2486 KB) | HTML Full-text | XML Full-text
Abstract
Different types of metal-bearing wastes, such as WEEE (Waste Electrical and Electronic Equipment), are important urban minerals in modern society, and the efficient recycling and reuse of their metal values is of key interest. Pyrometallurgical copper smelting is one of the most prominent [...] Read more.
Different types of metal-bearing wastes, such as WEEE (Waste Electrical and Electronic Equipment), are important urban minerals in modern society, and the efficient recycling and reuse of their metal values is of key interest. Pyrometallurgical copper smelting is one of the most prominent ways of treating WEEE, however, more accurate experimental data is needed regarding the behavior of different elements during each process stage. This article investigates the behavior of tin and antimony, both commonly present as trace elements in electrical and electronic waste, in secondary (i.e., sulfur-free) copper smelting conditions. The experiments were conducted in oxygen partial pressure range of 10−10–10−5 atm, covering the different process steps in copper smelting. The basis of the equilibrium system was metallic copper–iron silicate slag, with the addition of alumina and potassium oxide to account for the presence of these compounds in the actual industrial process. The results showed that the distribution coefficients of both trace metals, LCu/slag = [wt % Me]copper/(wt % Me)slag, increased significantly as a function of decreasing oxygen pressure, and the addition of basic potassium oxide also had an increasing effect on the distribution coefficient. A brief comparison between EPMA and LA-ICP-MS (electron probe microanalysis and laser ablation–inductively coupled plasma–mass spectrometry), the two in situ analytical techniques used, was also presented and discussed. Full article
(This article belongs to the Special Issue Towards Sustainability in Extractive Metallurgy)
Figures

Figure 1

Open AccessArticle Total and Effective Stresses in Backfilled Stopes during the Fill Placement on a Pervious Base for Barricade Design
Minerals 2019, 9(1), 38; https://doi.org/10.3390/min9010038
Received: 10 November 2018 / Revised: 30 December 2018 / Accepted: 7 January 2019 / Published: 11 January 2019
Viewed by 321 | PDF Full-text (3961 KB) | HTML Full-text | XML Full-text
Abstract
Backfill is increasingly used in underground mines worldwide. Its successful application depends on the stability of the barricades built at the base of the stopes to hold the backfill in place, which in turn depends on the knowledge of the pore water pressure [...] Read more.
Backfill is increasingly used in underground mines worldwide. Its successful application depends on the stability of the barricades built at the base of the stopes to hold the backfill in place, which in turn depends on the knowledge of the pore water pressure (PWP) and stresses during, or shortly after, the placement of the slurried backfill. Until now, self-weight consolidation is usually considered for the estimation of the PWP. There is no solution available to evaluate the total and effective stresses during, and shortly after, the filling operation. As excess PWP can simultaneously be generated (increased) and dissipated (decreased) during the backfilling operation, effective stresses can develop when the filling rate is low and/or hydraulic conductivity of the backfill is high. The arching effect has to be considered to evaluate the effective and total stresses in the backfilled stopes. In this paper, a pseudo-analytical solution is proposed to evaluate the effective and total stresses in backfilled stopes during the backfill deposition on a permeable base, by considering the self-weight consolidation and arching effect. The proposed solution is validated by numerical results obtained by Plaxis2D. A few sample applications of the proposed solution are shown. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining)
Figures

Figure 1

Open AccessArticle Geochronological and Geochemical Constraints on the Formation of the Giant Zaozigou Au-Sb Deposit, West Qinling, China
Minerals 2019, 9(1), 37; https://doi.org/10.3390/min9010037
Received: 8 December 2018 / Revised: 26 December 2018 / Accepted: 2 January 2019 / Published: 11 January 2019
Cited by 1 | Viewed by 345 | PDF Full-text (8803 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Zaozigou Au-Sb deposit has been controversial in its genesis and remains one of the most difficult ore systems to fully understand in West Qinling. The mineralization shows a broad spatial association with Triassic dikes and sills, which were previously thought to be [...] Read more.
The Zaozigou Au-Sb deposit has been controversial in its genesis and remains one of the most difficult ore systems to fully understand in West Qinling. The mineralization shows a broad spatial association with Triassic dikes and sills, which were previously thought to be genetically related to mineralization. Our U-Pb zircon dating in this contribution indicates that the ore-hosting porphyritic dacites were formed at 246.1 ± 5.2 Ma and 248.1 ± 3.8 Ma. The magmatic zircons yield εHf(t) values ranging from −12.5 to −8.9, with corresponding two-stage model ages of 2.08 to 1.83 Ga. The magma therefore could be derived from partial melting of Paleoproterozoic crustal materials. The ore-hosting porphyritic dacites have low oxygen fugacity, with ΔFMQ ranging from −4.61 to −2.56, indicating that magmas could have been sulfide-saturated during evolution in deep chambers and precluding the possibility that metals were released from the melt. Zaozigou exhibits characteristics widespread volcanics, massive sulfide mineralization, rare reduced mineral assemblage and discrete alteration zones which are not typical of reduced intrusion-related or porphyry gold systems. We propose that the spatially-related Triassic porphyritic dacite and dike swarm is not genetically related to the ore formation of Zaozigou Au-Sb deposit. Full article
(This article belongs to the Special Issue Polymetallic Metallogenic System)
Figures

Graphical abstract

Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top