Next Article in Journal
Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China)
Previous Article in Journal
Gem Corundum Deposits of Greece: Geology, Mineralogy and Genesis
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Minerals 2019, 9(1), 50; https://doi.org/10.3390/min9010050

Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton

1
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
2
Geology and Geophysics Department, Novosibirsk State University, 630090 Novosibirsk, Russia
3
Helmholtz-Centre Potsdam, German Research Centre For Geosciences GFZ, 14473 Potsdam, Germany
*
Author to whom correspondence should be addressed.
Received: 5 December 2018 / Revised: 3 January 2019 / Accepted: 10 January 2019 / Published: 15 January 2019
Full-Text   |   PDF [2938 KB, uploaded 16 January 2019]   |  

Abstract

The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the microinclusions indicates two contrasting growth media: Mg-rich carbonatitic and Al-rich silicic. Each media has their own specific set of daughter phases. Carbonatitic microinclusions are characterized by the presence of dolomite, phlogopite, apatite, Mg, Fe-oxide, KCl, rutile, magnetite, Fe-sulfides, and hydrous fluid phases. Silicic microinclusions are composed mainly of free SiO2 phase (quartz), high-Si mica (phengite), Al-silicate (paragonite), F-apatite, Ca-carbonates enriched with Sr and Ba, Fe-sulfides, and hydrous fluid phases. These associations resulted from the cooling of diamond-forming carbonatitic and silicic fluids/melts preserved in microinclusions in cuboid diamonds during their ascent to the surface. The observed compositional variations indicate different origins and evolutions of these fluids/melts. View Full-Text
Keywords: cuboid diamonds; microinclusions; diamond-forming fluids/melts; mantle cuboid diamonds; microinclusions; diamond-forming fluids/melts; mantle
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Logvinova, A.; Zedgenizov, D.; Wirth, R. Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton. Minerals 2019, 9, 50.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Minerals EISSN 2075-163X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top