Special Issue "Minerals of Kimberlites: An Insight into Petrogenesis and the Diamond Potential of Deep Mantle Magmas"

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Crystallography and Physical Chemistry of Minerals".

Deadline for manuscript submissions: 1 February 2020.

Special Issue Editors

Dr. Igor Sharygin
E-Mail
Guest Editor
1. Institute of the Earth's Crust, Siberian Вrаnсh of the Russian Academy of Sciences, Irkutsk, Russia
2. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Interests: kimberlites and related rocks; mantle xenoliths and their minerals; inclusions in mantle-derived minerals; intraplate magmatism; mantle melts/fluids; kimberlite indicator minerals; diamonds; experimental petrology
Prof. Dr. Dmitry Zedgenizov
E-Mail
Guest Editor
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Interests: diamonds, mantle rocks and minerals; inclusions in diamonds; carbon; nitrogen; mantle melts/fluids

Special Issue Information

Dear Colleagues,

Kimberlites are igneous rocks that represent the deepest magmas originated from the mantle (> 150 km) and typically occur within cratons. Studies of kimberlites and their mantle xenoliths provide fundamentally important information about the composition, structure, and melting history of the subcratonic mantle. Kimberlites are also economically important, as they are a major source of diamonds. Kimberlites are hybrid rocks consisting of minerals of different origins: xenogenic minerals produced by the fragmentation of foreign mantle and crustal rocks, primary minerals crystallized from kimberlite melt, and later minerals formed during the post-magmatic alteration of kimberlites. The mineralogy of individual kimberlites may be extremely variable and complex. Garnet, chromite, ilmenite, chromium diopside, and olivine occur in kimberlites in significantly higher quantities than diamonds. As kimberlite indicator minerals, they are used for diamond prospecting, as well as for the primary assessment of whether a target kimberlite is diamond-bearing or not. Thus, the interpretation of mineralogical data is essential for an understanding of both kimberlite petrogenesis and diamond potential.

This Special Issue aims to cover research topics related to different aspects of kimberlite mineralogy, including groundmass mineralogy, diamonds, diamond inclusions, mantle xenoliths, and kimberlite indicator minerals, etc. Papers on kimberlite-related rocks (lamproites, lamprophyres, etc.) and those presenting high temperature and high pressure experimental data on kimberlite mineralogy are also welcome.

Dr. Igor Sharygin
Prof. Dr. Dmitry Zedgenizov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

Kimberlite
Magma
Mantle
Melt
Diamond
Craton
Lithosphere
Mantle xenoliths
Kimberlite indicator minerals

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Mixed-Habit Type Ib-IaA Diamond from An Udachnaya Eclogite
Minerals 2019, 9(12), 741; https://doi.org/10.3390/min9120741 - 29 Nov 2019
Abstract
The variety of morphology and properties of natural diamonds reflects variations in the conditions of their formation in different mantle environments. This study presents new data on the distribution of impurity centers in diamond type Ib-IaA from xenolith of bimineral eclogite from the [...] Read more.
The variety of morphology and properties of natural diamonds reflects variations in the conditions of their formation in different mantle environments. This study presents new data on the distribution of impurity centers in diamond type Ib-IaA from xenolith of bimineral eclogite from the Udachnaya kimberlite pipe. The high content of non-aggregated nitrogen C defects in the studied diamonds indicates their formation shortly before the stage of transportation to the surface by the kimberlite melt. The observed sectorial heterogeneity of the distribution of C- and A-defects indicates that aggregation of nitrogen in the octahedral sectors occurs faster than in the cuboid sectors. Full article
Open AccessArticle
Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe
Minerals 2019, 9(12), 734; https://doi.org/10.3390/min9120734 - 28 Nov 2019
Abstract
Microinclusions of high-density fluids (HDFs) were studied in coated diamonds from the Udachnaya kimberlite pipe (Siberian craton, Russia). The presence of C-centers in the coats testifies to their formation shortly before kimberlite eruption, whereas the cores have much longer mantle residence in chemically [...] Read more.
Microinclusions of high-density fluids (HDFs) were studied in coated diamonds from the Udachnaya kimberlite pipe (Siberian craton, Russia). The presence of C-centers in the coats testifies to their formation shortly before kimberlite eruption, whereas the cores have much longer mantle residence in chemically different mantle substrates, i.e., peridotite-type (P-type) and eclogite-type (E-type). The carbon isotope composition indicates an isotopically homogeneous carbon source for coats and a heterogeneous source for cores. Microinclusions in the coats belong to two groups: high-Mg carbonatitic and low-Mg carbonatitic to silicic. A relationship was found between high-Mg carbonatitic HDFs and peridotitic host rocks and between low-Mg carbonatitic to silicic and eclogites. The composition of high-Mg carbonatitic HDFs with a “planed” trace-element pattern can evolve to low-Mg carbonatitic to silicic during percolation through different mantle rocks. The compositional variations of microinclusions in the coats reflect this evolution. Full article
Open AccessArticle
Phlogopite-Forming Reactions as Indicators of Metasomatism in the Lithospheric Mantle
Minerals 2019, 9(11), 685; https://doi.org/10.3390/min9110685 - 06 Nov 2019
Abstract
Phlogopite is widely accepted as a major mineral indicator of the modal metasomatism in the upper mantle within a very wide P–T range. The paper reviews data on various phlogopite-forming reactions in upper-mantle peridotites. The review includes both descriptions of naturally occurring reactions [...] Read more.
Phlogopite is widely accepted as a major mineral indicator of the modal metasomatism in the upper mantle within a very wide P–T range. The paper reviews data on various phlogopite-forming reactions in upper-mantle peridotites. The review includes both descriptions of naturally occurring reactions and results of experiments that model some of these reactions. Relations of phlogopite with other potassic phases, such as K-richterite, sanidine and K-titanates, are discussed. These data are taken as a basis for thermodynamic modeling of the phlogopite-forming reactions for specific mantle rocks in terms of log(aH2O) − log(aK2O) diagrams (pseudosections) using the Gibbs free energy minimization. These diagrams allow estimation of potassium-water activity relations during metasomatic transformations of mantle rocks, prediction sequences of mineral assemblages with respect to these parameters and comparison of metasomatic processes in the rocks of different composition. This approach is illustrated by examples from peridotite xenoliths from kimberlites. Full article
Show Figures

Graphical abstract

Open AccessArticle
Formation Sequence of Different Spinel Species in Megacrystalline Peridotites of the Udachnaya-East Kimberlite Pipe (Yakutia): Evidence for the Metasomatism of Depleted Mantle
Minerals 2019, 9(10), 607; https://doi.org/10.3390/min9100607 - 03 Oct 2019
Abstract
The large compositional variations in spinels from extremely depleted, megacrystalline harzburgite–dunites in the Udachnaya-East kimberlite pipe, Yakutia, apparently reflect multistage metasomatism. Changes in the redox regime are reflected in the compositions of different parts of mineral grains. From most reduced to most oxidized, [...] Read more.
The large compositional variations in spinels from extremely depleted, megacrystalline harzburgite–dunites in the Udachnaya-East kimberlite pipe, Yakutia, apparently reflect multistage metasomatism. Changes in the redox regime are reflected in the compositions of different parts of mineral grains. From most reduced to most oxidized, spinel compositions divide into: (1) primary (rock-forming) Cr-spinel and spinel from the central parts of sulfide grains, (2) spinel from microcracks in olivine, (3) spinel in kelyphitic rim around garnet between garnet and olivine (Rim1 and Rim2 spinel), and (4) spinel in transformed kelyphitic rim around garnet between garnet and kimberlite (Rim3 spinel). P-T conditions for the vast majority of samples, calculated using the composition of primary Cr-spinel, fall in the diamond stability field. A change in the composition of spinels of different generations occurs along the sides of the classical triangle of spinel compositions Al–Cr–Fe3+: (1) Rim2 to Rim1 spinel—Al–Cr trend, (2) primary Cr-spinel to magnetite rim in the edge—Cr–Fe3+ (kimberlite) trend, (3) replacing Rim1 to Rim3—Al–Fe3+ trend. Full article
Show Figures

Figure 1

Open AccessArticle
Silicate Melt Inclusions in Diamonds of Eclogite Paragenesis from Placers on the Northeastern Siberian Craton
Minerals 2019, 9(7), 412; https://doi.org/10.3390/min9070412 - 05 Jul 2019
Abstract
New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the [...] Read more.
New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab. Full article
Show Figures

Figure 1

Open AccessArticle
Geochemistry of Magmatic and Xenocrystic Spinel in the No.30 Kimberlite Pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential
Minerals 2019, 9(6), 382; https://doi.org/10.3390/min9060382 - 24 Jun 2019
Abstract
There are two genetic types of spinel (magmatic spinel crystallizing directly from kimberlite magma and xenocrystic spinel derived from mantle xenoliths) in the No.30 kimberlite pipe (Liaoning Province, North China Craton). Their geochemistry is investigated to reveal processes of diamond capture and resorption [...] Read more.
There are two genetic types of spinel (magmatic spinel crystallizing directly from kimberlite magma and xenocrystic spinel derived from mantle xenoliths) in the No.30 kimberlite pipe (Liaoning Province, North China Craton). Their geochemistry is investigated to reveal processes of diamond capture and resorption during kimberlite magmatism to constrain the diamond potential. Magmatic spinels are mostly euhedral to subhedral, 20 to 60 µm in size, and have compositional zones: the cores are classified as chromite with high Cr and Mg contents, and the rims are classified as magnetite with low Cr and high ferric Fe. The compositional trends suggest that magmatic spinel and olivine phenocrysts are crystallized contemporaneously during the early stages of kimberlite crystallization. During this period, temperature (T) and oxygen fugacity (fO2) values calculated at an assumed pressure of 1 GPa are in the range of 994–1274 °C and 1.6–2.4 log fO2 units below the nickel-nickel oxide (NNO) buffer, respectively. The high values of fO2 suggest heavy diamond resorption during kimberlite magmatism. Estimated temperatures of xenocrystic spinel range from 828 to 1394 °C, and their distributions indicate that only a small proportion of xenocrystic spinels are derived from the diamond stabilization field, which suggests a low potential of diamond capture. The low diamond capture and heavy diamond resorption during kimberlite magmatism contributed to the low diamond grade of the No.30 kimberlite. Full article
Show Figures

Figure 1

Open AccessArticle
Diamond-Bearing Root Beneath the Northern East European Platform (Arkhangelsk Region, Russia): Evidence from Cr-Pyrope Trace-Element Geochemistry
Minerals 2019, 9(5), 261; https://doi.org/10.3390/min9050261 - 30 Apr 2019
Abstract
In this study, we reconstruct the composition and metasomatic evolution of the lithospheric mantle beneath the poorly-studied southern Arkhangelsk region, based on the geochemistry of 145 Cr-pyrope grains recovered from samples of modern rivers and stream sediments, to evaluate the diamond exploration potential [...] Read more.
In this study, we reconstruct the composition and metasomatic evolution of the lithospheric mantle beneath the poorly-studied southern Arkhangelsk region, based on the geochemistry of 145 Cr-pyrope grains recovered from samples of modern rivers and stream sediments, to evaluate the diamond exploration potential of these territories. Based on the concentrations of Cr2O3, CaO, TiO2, and rare earth elements (REEs), the garnets are divided into four groups: (1) low-chromium lherzolitic pyropes with fractionated heavy REE patterns; (2) low- to medium-chromium pyropes of lherzolitic and megacryst associations with flat heavy REE patterns; (3) high-chromium lherzolitic pyropes with “humped” REE patterns; and (4) high-chromium and low-chromium lherzolitic and harzburgitic pyropes with sinusoidal REE patterns. The pyrope geochemistry suggests a multi-stage model for the evolution of the lithospheric mantle, including partial melting to different degrees and further metasomatic overprints by silicate and carbonatite melts. The results confirm that the lithospheric mantle beneath the study area is suitable for the formation and preservation of diamonds. The significant percentage of diamond-associated pyropes (15%) emphasizes the likelihood of high diamond contents in kimberlites to be discovered within the study area. Full article
Show Figures

Figure 1

Open AccessArticle
Specific Multiphase Assemblages of Carbonatitic and Al-Rich Silicic Diamond-Forming Fluids/Melts: TEM Observation of Microinclusions in Cuboid Diamonds from the Placers of Northeastern Siberian Craton
Minerals 2019, 9(1), 50; https://doi.org/10.3390/min9010050 - 15 Jan 2019
Cited by 3
Abstract
The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the [...] Read more.
The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the microinclusions indicates two contrasting growth media: Mg-rich carbonatitic and Al-rich silicic. Each media has their own specific set of daughter phases. Carbonatitic microinclusions are characterized by the presence of dolomite, phlogopite, apatite, Mg, Fe-oxide, KCl, rutile, magnetite, Fe-sulfides, and hydrous fluid phases. Silicic microinclusions are composed mainly of free SiO2 phase (quartz), high-Si mica (phengite), Al-silicate (paragonite), F-apatite, Ca-carbonates enriched with Sr and Ba, Fe-sulfides, and hydrous fluid phases. These associations resulted from the cooling of diamond-forming carbonatitic and silicic fluids/melts preserved in microinclusions in cuboid diamonds during their ascent to the surface. The observed compositional variations indicate different origins and evolutions of these fluids/melts. Full article
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Polymineralic Inclusions in Megacrysts as Proxies for Kimberlite Melt Evolution—A Review
Minerals 2019, 9(9), 530; https://doi.org/10.3390/min9090530 - 30 Aug 2019
Abstract
Polymineralic inclusions in megacrysts have been reported to occur in kimberlites worldwide. The inclusions are likely the products of early kimberlite melt(s) which invaded the pre-existing megacryst minerals at mantle depths (i.e., at pressures ranging from 4 to 6 GPa) and crystallized or [...] Read more.
Polymineralic inclusions in megacrysts have been reported to occur in kimberlites worldwide. The inclusions are likely the products of early kimberlite melt(s) which invaded the pre-existing megacryst minerals at mantle depths (i.e., at pressures ranging from 4 to 6 GPa) and crystallized or quenched upon emplacement of the host kimberlite. The abundance of carbonate minerals (e.g., calcite, dolomite) and hydrous silicate minerals (e.g., phlogopite, serpentine, chlorite) within polymineralic inclusions suggests that the trapped melt was more volatile-rich than the host kimberlite now emplaced in the crust. However, the exact composition of this presumed early kimberlite melt, including the inventory of trace elements and volatiles, remains to be more narrowly constrained. For instance, one major question concerns the role of accessory alkali-halogen-phases in polymineralic inclusions, i.e., whether such phases constitute a common primary feature of kimberlite melt(s), or whether they become enriched in late-stage differentiation processes. Recent studies have shown that polymineralic inclusions react with their host minerals during ascent of the kimberlite, while being largely shielded from processes that affect the host kimberlite, e.g., the assimilation of xenoliths (mantle and crustal), degassing of volatiles, and secondary alteration. Importantly, some polymineralic inclusions within different megacryst minerals were shown to preserve fresh glass. A major conclusion of this review is that the abundance and mineralogy of polymineralic inclusions are directly influenced by the physical and chemical properties of their host minerals. When taking the different interactions with their host minerals into account, polymineralic inclusions in megacrysts can serve as useful proxies for the multi-stage origin and evolution of kimberlite melt/magma, because they can (i) reveal information about primary characteristics of the kimberlite melt, and (ii) trace the evolution of kimberlite magma on its way from the upper mantle to the crust. Full article
Show Figures

Figure 1

Back to TopTop