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Abstract: In this mini-review, we consider the results of various meteorite studies using Mössbauer
spectroscopy with a high velocity resolution in order to reveal the minor spectral components related
to spinels such as chromite, hercynite, magnesiochromite, magnesioferrite and daubréelite in bulk
meteorite matter or in some extracted phases. Spinels observation in the Mössbauer spectra is
supported by characterization of the studied samples by means of optical and scanning electron
microscopy, energy dispersive spectroscopy, X-ray diffraction and magnetization measurements.
Mössbauer parameters obtained for extraterrestrial spinels are compared with those obtained for
terrestrial analogs published in the literature.
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1. Introduction

Meteorites are space messengers reaching the Earth and bringing information about solar system
formation. These rocks are the result of their parent bodies’ (asteroids and planets) collisions in
space. A simple classification of meteorites permits us to consider three groups: stony, stony-iron
and iron meteorites (more detailed meteorite classification can be found in [1] and references therein).
The basic information about chemical and mineral composition of various meteorites can be found in
reviews [2,3]. Almost all meteoritic minerals can be found on Earth. However, terrestrial minerals were
formed in significantly different conditions in comparison with extraterrestrial minerals, which were
affected by various extreme factors in space (very slow cooling, reheating, impact melting, etc.).
Therefore, the phase composition of meteorites and the physical properties of their minerals are
of interest for a complex investigation. All meteorites consist of iron-bearing minerals represented
by Fe-Ni-Co alloy in the forms of α-Fe(Ni, Co), α2-Fe(Ni, Co), γ-Fe(Ni, Co) and γ-FeNi phases,
olivine (Fe, Mg)2SiO4, orthopyroxene (Fe, Mg)SiO3, clinopyroxene (Fe, Mg, Ca)SiO3, troilite FeS and
some other minerals. Iron-bearing spinels can also be found in meteorites as the minor accessory
minerals. Some of them, for example daubréelite (FeCr2S4) and chromite (FeCr2O4), were formed with
meteorite matter in space. Other spinels such as magnetite (Fe3O4) or magnesioferrite (MgFe2O4) can
be a result of meteorites weathering (oxidation) in the terrestrial conditions. Since all these minerals
contain iron, it is possible to use 57Fe Mössbauer spectroscopy for studying meteorites. About 55 years
of experience demonstrate significant progress in the development of Mössbauer spectroscopy of
various meteorites from the first review [4] until the modern studies (see, for instance, [5,6]). However,
the Mössbauer spectra of meteorites are very complex and consist of various numbers of major
and minor components related to different phases and mineral compositions of rocks. Therefore,
revealing of the minor phases, for instance, spinels, appears to be very difficult in the Mössbauer
spectra of bulk meteorite samples. Therefore, we used Mössbauer spectrometers with a high velocity
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resolution. The velocity driving system in these spectrometers has the higher discretization of the
velocity reference signal (212 versus 29 in conventional spectrometers). This leads to the smaller Doppler
modulation step for resonant γ-quanta energy, that is why the high velocity resolution Mössbauer
spectroscopy is a useful technique for excavating the minor components in the complex spectra due to
much higher sensitivity, precision and accuracy then those in conventional Mössbauer spectrometers.
Some advances of this method in meteorites study have been considered in [7–9]. Therefore, in this
mini-review, we consider our results related to the observation of various spinel phases in meteorites
using the high velocity resolution Mössbauer spectroscopy. Additional information obtained by other
techniques such as optical microscopy, scanning electron microscopy (SEM) with energy dispersive
spectroscopy (EDS), X-ray diffraction (XRD) and magnetization measurements is used for supporting
observation of spinels.

2. Materials and Methods

We studied several fragments of different ordinary chondrites (Chelyabinsk LL5 No 1a and
No 2, Northwest Africa (NWA) 6286 LL6 and NWA 7857 LL6, Tsarev L5 and Annama H5),
Seymchan main group pallasite (PMG) and troilite inclusion extracted from Sikhote-Alin IIAB iron
meteorite. Polished sections of these meteorite fragments were prepared by the standard method
for samples characterization by optical microscopy and SEM with EDS. Powdered samples were
then prepared from the polished surfaces for XRD, magnetization measurements and Mössbauer
spectroscopy. Additionally, the fusion crust from Chelyabinsk LL5 fragment No 1a and the massive
troilite inclusion from the Sikhote-Alin iron meteorite were removed and prepared as a powder for the
study. Details of different samples preparation and characterization were described in [9–15].

Meteorites characterization was done using an Axiovert 40 MAT optical microscope (Carl Zeiss,
Oberkochen, Germany), a ΣIGMA VP electron microscope (Carl Zeiss, Oberkochen, Germany) with
an X-max 80 (Oxford Instruments, Abingdon, Oxfordshire, England) energy dispersive spectroscopy
device, an AMRAY 1830 scanning electron microscope equipped with EDAX PV9800 energy dispersive
spectrometer, X-ray diffractometers Shimadzu XRD-7000 and Panalytical X’Pert Pro MPD and
commercial SQUID magnetometer MPMS-5S (Quantum Design, San Diego, CA, USA).

Mössbauer spectra were measured using an automated precision Mössbauer spectrometric system
built on the base of the SM-2201 spectrometer with a saw-tooth shape velocity reference signal formed
by the digital-analog converter using discretization of 212 (quantification of the velocity reference signal
using 4096 steps) and a liquid nitrogen cryostat with moving absorber. The high level of the velocity
scale discretization provides much better adjustment to resonance, and significantly increases the
spectra quality and analytical possibilities of Mössbauer spectroscopy. On the other hand, this increases
the measurement time. Registration of γ-rays was done using scintillator detector with NaI(Tl) crystal
with a thickness of 0.1 mm. Details and characteristics of this spectrometer and the system as well as
this method’s features are described in [16,17]. The (1.8–1.0) × 109 Bq 57Co in rhodium matrix sources
(Ritverc GmbH, St. Petersburg, Russian Federation) were at room temperature. The Mössbauer spectra
were measured in transmission geometry with moving absorber in the cryostat and recorded in 4096
channels. To increase the signal-to-noise ratio in the complex spectra with the minor components,
they were converted into 1024 channels by consequent summation of four neighboring channels to
reach higher statistics and larger signal-to-noise ratio (details for each sample study are given in [9–15]).

Mössbauer spectra were computer-fitted with a UNIVEM-MS program using the least squares
procedure with a Lorentzian line shape. This procedure uses the usual perturbation of the first
order method for magnetically split components. Therefore, the spectral component of troilite,
which requires the full static Hamiltonian for the fit, cannot be fitted correctly. To overcome this
problem, the Mössbauer spectra containing troilite component were fitted using a simulation of the
full static Hamiltonian by means of the method described in detail in [18,19]. The results obtained are
very close to parameters for the minor spectral components obtained from the ordinary chondrites
Mössbauer spectra fits using both the full static Hamiltonian and above-mentioned simulation method.
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The spectral parameters, such as isomer shift, δ, quadrupole splitting, ∆EQ, quadrupole shift for
magnetically split spectra, ε (∆EQ = 2ε), hyperfine magnetic field, Heff, line width (a full width at a
half maximum), Γ, relative subspectrum area, A, and statistical quality of the fit, χ2, were determined.
Calibration of the velocity scale was made using the reference absorber of α-Fe foil with a thickness
of 7 µm. The line shapes were pure Lorentzian with the first and the sixth, the second and the fifth,
and the third and the fourth line widths values of Γ1,6 = 0.238 ± 0.008 mm/s, Γ2,5 = 0.232 ± 0.008 mm/s
and Γ3,4 = 0.223 ± 0.008 mm/s for the α-Fe spectrum recorded in 4096 channels. The velocity range
was about ±(10–7) mm/s depending on the studied sample. The instrumental (systematic) error for
each spectrum point was ±0.5 channel (the velocity scale). The instrumental (systematic) error for the
hyperfine parameters was ±1 channel. If an error calculated with the fitting procedure (fitting error)
for these parameters exceeded the instrumental (systematic) error, we used the larger error instead.
Relative error for A did not usually exceed 10%. Criteria for the best fits were differential spectrum,
χ2 and physical meaning of the spectral parameters. Isomer shifts are given relative to α-Fe at 295 K.

To demonstrate the difference in the quality of the Mössbauer spectra measured with conventional
velocity resolution and with a high velocity resolution, we show a comparison of the Mössbauer spectra
of Mount Tazerzait L5 ordinary chondrite samples in Figure 1. This comparison could be good evidence
of the effect of increasing the velocity resolution (discretization of the velocity reference signal) in
Mössbauer spectrometers and spectra.
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Figure 1. Mössbauer spectra of Mount Tazerzait L5 samples measured: (left) using conventional 
Mössbauer spectrometer with a low velocity resolution and folding (in 256 channels) from Ref. [8] 
cited in [17]; and (right) using Mössbauer spectrometer SM-2201 with a high velocity resolution (4096 
channels) without folding (this spectrum was further converted into 1024-channel spectrum to 
increase signal-to-noise ratio for the minor spectral components); the differential spectrum is shown 
below. T = 295 K. Adopted from [17]. 

3. Results and Discussion 

Figure 1. Mössbauer spectra of Mount Tazerzait L5 samples measured: (left) using conventional
Mössbauer spectrometer with a low velocity resolution and folding (in 256 channels) from Ref. [8]
cited in [17]; and (right) using Mössbauer spectrometer SM-2201 with a high velocity resolution
(4096 channels) without folding (this spectrum was further converted into 1024-channel spectrum to
increase signal-to-noise ratio for the minor spectral components); the differential spectrum is shown
below. T = 295 K. Adopted from [17].

3. Results and Discussion

Spinel phases were observed in all studied samples. However, these spinels were different for
different types of meteorites. Therefore, we consider these results for stony (ordinary chondrites),
stony-iron (main group pallasite) and iron meteorites separately.

3.1. Chromite in Ordinary Chondrites

Optical microscopy of polished sections of Chelyabinsk LL5, NWA 6286 LL6, NWA 7857 LL6,
Tsarev L5 and Annama H5 fragments demonstrated the presence of silicate phases with small metallic
Fe-Ni-Co grains, troilite and chromite inclusions. A representative optical microphotograph of the
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NWA 6286 polished section is shown in Figure 2a. SEM with EDS demonstrated the presence of olivine,
pyroxenes, troilite, α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases and chromite (representative SEM image of
NWA 6286 is shown in Figure 2b).
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Figure 2. Microphotographs of NWA 6286 polished section obtained using: (a) optical microscopy;
and (b) scanning electron microscopy. Adopted from [13].

Chemical analysis of selected chromite inclusions in Chelyabinsk LL5, NWA 6286 LL6, NWA 7857
LL6, Tsarev L5 and Annama H5 fragments carried out with EDS showed some variations in metal
content (see Table 1). These inclusions contain Cr and Fe as the main metals. However, it was found
the presence of Al as the third metal, except chromite in Tsarev L5. In chromite inclusions of the
latter ordinary chondrite Mg and Al were presented with a similar content as the third and the
fourth metals. The presence of Al as the third metal in chromite inclusions indicates the formation of
additional spinels such as hercynite FeAl2O4 or mixed Fe(Al1–xCrx)2O4 spinel. Therefore, XRD patterns
of Chelyabinsk LL5, NWA 6286 LL6, NWA 7857 LL6, Tsarev L5 and Annama H5 fragments were
fitted using the Rietveld full profile analysis without and with accounting for the minor spinel phases
of chromite and hercynite. A comparison of both fits demonstrated that accounting for two minor
spinels led to a better fitting quality (representative XRD pattern for the powdered bulk NWA 6286
matter is shown in Figure 3a). The phase composition for studied meteorites is presented in Table 2.
It should be noted that the presence of Mg in chromite in Tsarev L5 is comparable with Al content and
therefore indicates the presence of Mg-bearing spinels. We have so far been unable to reveal these
minor spinels from this XRD pattern. However, measurements of the zero-field-cooled (ZFC) and
field-cooled (FC) magnetization curves for NWA 6286 LL6, NWA 7857 LL6, Tsarev L5 and Annama H5
fragments demonstrated the phase transition in the temperature range of 48–60 K (see representative
ZFC/FC curves in Figure 3b for NWA 6286). This temperature range is in agreement with the range for
Curie temperature of 40–80 K for the chromite ferrimagnetic-paramagnetic phase transition in various
ordinary chondrites obtained in [20].
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Table 1. Average values and ranges of the content (in at. %) of some metals determined in selected
chromite inclusions in ordinary chondrites by energy dispersive spectroscopy.

Metal Chelyabinsk
LL5 No 1a

Chelyabinsk
LL5 No 2

NWA 6286
LL6

NWA 7857
LL6

Tsarev
L5 Annama H5

Fe 13.2 13.1 12.2–13.5 10.2–16.1 10.7 8.0–8.4
Cr 21.2 21.0 19.9–21.6 17.5–28.4 21.1 15.2–16.1
Al 3.5 3.9 3.1–3.8 3.3–4.8 3.2 2.8–3.0
Mg 1.5 1.3 1.5–1.9 1.2–2.0 3.7 1.8–1.4
Ti 1.0 0.6 0.9–1.6 0.2–1.1 1.0 0.4
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Figure 3. Characterization of the powdered bulk NWA 6286 matter: (a) X-ray diffraction pattern
with indication of some reflexes of the iron-bearing phases: Ol is olivine, OPy is orthopyroxene,
CPy is clinopyroxene, Tr is troilite, Ch is chromite, Hc is hercynite, α is α-phase, and γ is γ-phase.
(b) Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves with inset that shows an
enlarged part of ZFC curve indicated the phase transition in chromite. Adopted from [13].

Table 2. Phase composition (in wt.%) of some ordinary chondrites determined by X-ray diffraction.

Phase/Mineral Chelyabinsk
LL5 No 1a 1

Chelyabinsk
LL5 No 2 2

NWA 6286
LL6 3

NWA 7857
LL6 3 Tsarev L5 4 Annama H5 5

Olivine 50.6 48.6 57.3 59.2 43.1 38.6
Anorthite 8.2 8.2 11.8 9.4 9.7 4.7

Orthopyroxene 31.9 25.2 18.9 19.9 28.6 36.6
Clinopyroxene 5.5 6.9 3.7 3.6 6.2 1.4

Troilite 6.7 6.2 4.8 3.6 7.2 5.6
α-Fe(Ni, Co) 1.4 1.8 0.2 1.8

0.6
9.0

γ-Fe(Ni, Co) 0.9 0.8 1.2 0.5 1.3
Chromite 1.5 1.5 1.7 1.7 3.5 2.7
Hercynite 0.4 0.8 0.4 0.3 0.7 0.2

1 [9]; 2 submitted for publication; 3 [13]; 4 [14]; 5 [12].

Two representative Mössbauer spectra of non-weathered LL ordinary chondrites are shown
in Figure 4.
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Figure 4. Mössbauer spectra of LL ordinary chondrites: (a) NWA 6286; and (b) Chelyabinsk,
fragment No 2. Indicated components are the results of the best fits. The differential spectra are
shown below. T = 295 K. Adopted from [13,21], respectively.

These spectra demonstrate a very complex composition of different magnetic and paramagnetic
components. The best fits of the Chelyabinsk LL5 (fragments No 1a and No 2), NWA 6286 LL6
and NWA 7857 LL6 Mössbauer spectra revealed components which were related to the M1 and
M2 sites in silicate phases (olivine, orthopyroxene and clinopyroxene), ferromagnetic α2-Fe(Ni,
Co), α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases and a paramagnetic γ-Fe(Ni, Co) phase, troilite and
non-stoichiometric troilite Fe1–xS, chromite and hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel on
the basis of Mössbauer hyperfine parameters. It is well known that the Mössbauer spectra of normal
chromites measured at room temperature demonstrate single-peak shapes, which were fitted as a
quadrupole doublet with a very small value of quadrupole splitting: ∆EQ = 0.15 mm/s in [22] and
∆EQ = 0.06 mm/s (δ = 0.92 mm/s) in [23], or as a single line with δ = 0.90 mm/s in [24], δ = 0.92 mm/s
in [25] and δ = 0.93 mm/s in [26]. However, experimental observation of ∆EQ value, which is smaller
than the 57Fe natural line width (0.19 mm/s), is doubtful because, in fact, any Lorentzian line can be
decomposed into two equal Lorentzian lines with slightly different peak positions. Therefore, it is
reasonable to consider a paramagnetic single line for the chromite Mössbauer spectrum. In contrast,
the Mössbauer spectra of hercynite and mixed Fe(Al1–xCrx)2O4 spinel demonstrated a quadrupole
doublet with the following hyperfine parameters: δ = 0.91 mm/s and ∆EQ = 1.57 mm/s obtained for
hercynite in [24], while ∆EQ value for the mixed Fe(Al1–xCrx)2O4 spinel may vary depending on x
(see [27]). Suggesting small x values, we can consider similar Mössbauer hyperfine parameters for
these spinels and use one quadrupole doublet to fit component assigned to hercynite and/or mixed
Fe(Al1–xCrx)2O4 spinel.

Revealing the chromite component in the Mössbauer spectra of weathered ordinary chondrites is
very complex because the spectral component related to the paramagnetic ferric compounds overlaps
with chromite single peak (see [19,21]). Nevertheless, measurement of the Mössbauer spectrum of
the weathered Tsarev L5 new fragment with better quality than in a previous study [19] permitted us
to reveal spectral components associated with chromite and hercynite (Figure 5a). However, it was
not possible to find spectral components related to Mg-bearing spinels. The latter spinels can be
presented at least by magnesioferrite MgFe2O4 or by magnesiochromite (Fe1–xMgx)Cr2O4. The room
temperature Mössbauer spectrum of bulk magnesioferrite demonstrates magnetic ordering with two
six-line patterns related to the 57Fe in tetrahedral (A) and octahedral [B] positions with hyperfine
parameters: δA = ~0.26 mm/s, Heff

A = 464 kOe; δB = ~0.35 mm/s, Heff
B = 496 kOe, respectively
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(see, for instance, [28,29]). Therefore, it is not possible to observe a very small contribution of
possible magnesioferrite magnetic sextets beyond the spectral noise. The room temperature Mössbauer
spectrum of magnesiochromite is similar to chromite and demonstrates the paramagnetic singlet with δ
value of about 0.9 mm/s (see [23]). In this case, it is very difficult to extract correctly a very small singlet
component in addition to a singlet related to chromite with relatively larger area, when both singlets
overlap with a doublet related to ferric compounds with much larger relative area. For example,
when we introduced an additional small singlet line into the fitting model, we obtained slightly
better fit with two singlets with the following parameters: δ = 0.855 ± 0.015 mm/s, A ≈ 1.3(1) % and
δ = 1.198 ± 0.019 mm/s, A ≈ 0.7(1) %. The first singlet can be related to chromite while the second
one can be assigned to magnesiochromite with a larger δ value than that obtained in [23]. However,
the reliability of this result can be confirmed in the case of the study of non-weathered ordinary
chondrites with similar chemical composition of chromite inclusions. As for quadrupole doublet
associated with hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel, its presence can be found by analysis
of the small peak at about +1.7 mm/s, which is related mainly to the fourth peak in the troilite sextet.
The six-line pattern for troilite should be fitted with the constrained peak areas ratio A1,6:A2,5:A3,4 =
3:2:1. In the fit without a quadrupole doublet associated with hercynite and free variation of troilite
sextet areas, the value of A3,4 is larger to keep the required constraint, while the fit with this constraint
shows a misfit at the differential spectrum for the peak at about ±1.7 mm/s. Adding the quadrupole
doublet, which can be related to hercynite, improves the fit, while Mössbauer parameters of this
doublet are suitable to be associated with hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel. A similar
approach was used for the above-mentioned non-weathered ordinary chondrites.
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Indicated components are the results of the best fits. The differential spectra are shown below. T = 295 K.
Adopted from [12,14], respectively.

The Mössbauer spectrum of non-weathered Annama H5 (Figure 5b) shows a huge contribution
of components related to Fe-Ni-Co alloy. In this spectrum, there is also a problem with revealing
the minor components related to spinels, which overlap with other spectral components. However,
in this spectrum, it was also possible to find spinel components because: (i) an envelope peak at
about +0.9 mm/s demonstrates some features, which can be better fitted using a minor singlet peak
in addition to the overlapped fourth peaks of seven magnetic sextets related to the Fe-Ni-Co phases;
and (ii) additional quadrupole doublet is needed for the better fit of the fourth peak of troilite sextet at
about +1.7 mm/s similar to those described for the Tsarev L5 Mössbauer spectrum.
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Mössbauer parameters obtained for chromite and hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel
from the Mössbauer spectra of ordinary chondrites are presented in Table 3 in comparison with data
for synthetic chromite and hercynite.

Table 3. Mössbauer parameters for spinels found in the bulk ordinary chondrites in comparison with
data obtained for synthetic spinels.

Parameter Chelyabinsk
LL5 No 1a 1

Chelyabinsk
LL5 No 2 2

NWA 6286
LL6 3

NWA 7857
LL6 4 Tsarev L5 3 Annama H5 5 Synthetic

Spinels 6

Chromite
Γ, mm/s 0.776 ± 0.107 0.776 ± 0.034 0.700 ± 0.028 0.776 ± 0.028 0.568 ± 0.030 0.498 ± 0.028 0.33
δ, mm/s 0.855 ± 0.026 0.777 ± 0.017 0.776 ± 0.014 0.662 ± 0.014 0.909 ± 0.015 0.748 ± 0.014 0.90

A, % ~1.6(2) ~2.7(3) ~3.1(3) ~2.9(3) ~2.3(2) ~2.4(2) 100
Hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel

Γ, mm/s 0.234 ± 0.033 0.238 ± 0.033 0.235 ± 0.028 0.237 ± 0.028 0.246 ± 0.030 0.260 ± 0.028 0.75
δ, mm/s 0.883 ± 0.027 0.997 ± 0.017 0.987 ± 0.014 0.959 ± 0.014 0.843 ± 0.015 0.852 ± 0.014 0.91

∆EQ, mm/s 1.499 ± 0.469 1.480 ± 0.017 1.434 ± 0.014 1.504 ± 0.014 1.414 ± 0.018 1.465 ± 0.014 1.57
A, % ~0.7(1) ~1.7(2) ~0.9(1) ~1.6(2) ~1.0(1) ~0.9(1) 100

1 [9]; 2 [21]; 3 [13]; 4 [14]; 5 [12]; 6 [24].

3.2. Chromite in Seymchan Main Group Pallasite

Characterization of the stony part of a slightly weathered Seymchan PMG fragment using optical
microscopy showed the presence of olivine with inclusions of troilite and chromite (Figure 6a).
SEM with EDS confirmed the presence of troilite and chromite inclusions in olivine while stony
fragments were imbedded in Fe-Ni-Co alloy matrix (Figure 6b). Chemical analysis of chromite
inclusions demonstrated the presence of ~26–28 at.% of Cr, ~9–10 at.% of Fe, ~5–6 at.% of Mg and
~0.7–1 at.% of Al. In contrast to chromite in the studied ordinary chondrites, chromite inclusions in the
stony part of Seymchan PMG contain Mg as the third metal, while Al content is significantly smaller.
Therefore, chromite inclusions can also contain Mg-bearing spinels. For example, magnesiochromite
may be a result of Fe substitution by Mg. However, EDS cannot distinguish the presence of
magnesiochromite or magnesioferrite in chromite.
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spectroscopy. Adopted from [15].

The results of further characterization of the stony part extracted from Seymchan PMG by XRD
and magnetization measurements are shown in Figure 7. The fit of the XRD pattern demonstrates
that there are positions of minor reflexes corresponding to chromite and magnesiochromite instead of
MgFe2O4. The phase composition of the stony part from Seymchan PMG was determined as follows:
olivine (~95.5 wt.%), clinopyroxene (~2.3 wt.%), chromite (~1.1 wt.%), troilite (~0.3 wt.%) and mixed
iron-magnesium chromite (~0.8 wt.%).
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Figure 7. Stony part of Seymchan main group pallasite: (a) X-ray diffraction pattern with indication of
some reflexes of the iron-bearing phases: Ol is olivine, CPy is clinopyroxene, Tr is troilite, Ch is chromite,
and MCh is magnesiochromite. (b) Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves
with inset which shows enlarged part of ZFC/FC curves indicated a small bulge, probably related to
the phase transition in chromite. Adopted from [15].

Magnetization measurements showed a very weak bulge at 56 K, which is from the range of Curie
temperature for chromite [20]. The reason for so small bulge in comparison with that for ordinary
chondrites (see Figure 3b) might be explained as follows. Chromite should be randomly distributed in
the bulk material, that is why very low chromite content appeared to be in the sample of few mg that
was taken for magnetization measurements from the bulk powder.

The Mössbauer spectra of the stony part extracted from Seymchan PMG were measured in large
and small velocity ranges (Figure 8) to check the presence of magnetically split components (troilite and
magnesioferrite demonstrate magnetically split spectra at room temperature). The Mössbauer spectrum
measured in a large velocity range showed only one magnetic sextet related to troilite. This spectrum
was decomposed also in several quadrupole doublets related to silicate phases and unknown ferrous
and ferric compounds and one singlet which was attributed to chromite. The presence of a weak ferric
spectral component did not prevent us revealing a singlet subspectrum. To increase resolution in the
spectrum, we measured the same sample in a small velocity range. The same spectral components
were used to fit this spectrum (for troilite subspectrum, we know peak positions for the second and
the fifth, and the third and the fourth lines in the sextet). However, to reach the best fit, we had to
add an additional minor single line to fit the envelope spectrum feature in the range +0.5–1.2 mm/s.
Mössbauer parameters for these two singlets are as follows: Γ = 0.776 ± 0.016 mm/s, δ = 0.886 ± 0.009
mm/s, and A = ~3.4(3) % and Γ = 0.213 ± 0.016 mm/s, δ = 0.796 ± 0.021 mm/s, and A = ~0.20(2) %.
A singlet with relatively larger area was associated with chromite while the second singlet was assigned
to magnesiochromite. The δ value for magnesiochromite determined in the stony part of Seymchan
PMG is slightly smaller than the δ = 0.92 mm/s value obtained for synthetic magnesiochromite samples
in [23]. The δ value for chromite in the stony part extracted from Seymchan PMG is in agreement with
the range of δ values shown for chromites in Table 3.
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3.3. Daubréelite in Troilite Extracted from the Sikhote-Alin Iron Meteorite

A massive troilite inclusion was found in the polished section of one fragment of the Sikhote-Alin
IIAB iron meteorite (Figure 9a). This troilite, extracted from the α-Fe(Ni, Co) matrix, was analyzed by
SEM with EDS (Figure 9b). Chemical analysis of several troilite particles demonstrated the presence
of ~34 wt.% of S, ~65 wt.% of Fe and ~1 wt.% of Cr (averaged values). The latter can indicate
that there is a small amount of daubréelite FeCr2S4 in troilite extracted from the Sikhote-Alin iron
meteorite. The XRD pattern of the troilite inclusion was measured and fitted using the full profile
Rietveld analysis (Figure 10a). The results showed the presence of ~93 wt.% of troilite and ~7 wt.% of
daubréelite. The unit cell of this daubréelite (cubic spinel structure, space group Fd3m) with parameters
a = b = c = 9.98(5) Å is shown in Figure 10b.Minerals 2018, 8, x FOR PEER REVIEW  9 of 12 
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Figure 9. Troilite inclusion in Sikhote-Alin IIAB iron meteorite: (a) photograph of massive troilite
inclusion in α-Fe(Ni, Co) matrix; and (b) scanning electron microscopy image of troilite particle
extracted from Sikhote-Alin iron meteorite. Adopted from [11].
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Figure 10. Characterization of troilite inclusion extracted from Sikhote-Alin iron meteorite: (a) X-ray
diffraction pattern with Miller indices for troilite reflections (in bold) and for daubréelite reflections
(in bold italic); and (b) the unit cell structure of daubréelite found in troilite inclusion extracted
from Sikhote-Alin iron meteorite; a, b, and c are the unit cell parameters; —Fe,

Minerals 2018, 8, x FOR PEER REVIEW  11 of 16 

 

  
(a) (b) 

Figure 9. Troilite inclusion in Sikhote-Alin IIAB iron meteorite: (a) photograph of massive troilite 
inclusion in α-Fe(Ni, Co) matrix; and (b) scanning electron microscopy image of troilite particle 
extracted from Sikhote-Alin iron meteorite. Adopted from [11]. 

  

(a) (b) 

Figure 10. Characterization of troilite inclusion extracted from Sikhote-Alin iron meteorite: (a) X-ray 
diffraction pattern with Miller indices for troilite reflections (in bold) and for daubréelite reflections 
(in bold italic); and (b) the unit cell structure of daubréelite found in troilite inclusion extracted from 
Sikhote-Alin iron meteorite; a, b, and c are the unit cell parameters;  – Fe,  – Cr, and  – S. 
Adopted from [11]. 

The room temperature Mössbauer spectrum of the troilite inclusion extracted from the  
Sikhote-Alin iron meteorite is shown in Figure 11b. Originally, in [11], this spectrum was fitted using 
the full static Hamiltonian for troilite component. However, here we present a simple fit using a 
simulation of the full static Hamiltonian for troilite component and an additional four sextets for  
non-stoichiometric troilite Fe1–xS for better observation of an additional spectral component related 
to daubréelite. Its spectral component has a single-peak shape with the following parameters: Γ = 
0.776 ± 0.008 mm/s, δ = 0.584 ± 0.009 mm/s, and A = 2.6(3) %. This single peak disappears in the 
spectrum measured at 90 K [11] due to the magnetic phase transition and the appearance of a very 
small magnetic sextet related to daubréelite, extraction of which is very difficult in the spectrum 
with many overlapped sextets. It is well known that the Mössbauer spectra of daubréelite 
demonstrate a single peak component only above Curie temperature (see, for instance, [34]). The 
room temperature Mössbauer spectrum of the polycrystalline synthetic FeCr2S4 sample measured in 
[35] shows a single peak with δ = 1.2 mm/s that is twice larger than those obtained for daubréelite 
found in the troilite inclusion extracted from the Sikhote-Alin iron meteorite. However, other results 
obtained earlier in [36,37] demonstrate similar δ values: ~0.59 mm/s.  

7000

12000

17000

22000

27000

16 26 36 46 56 66 76 86

IN
TE

N
SI

TY
,  

co
un

ts

2 THETA, °

100 
101 

220 

110 

311 004 

112 

104 
400 

203 

114 

210 

211 
511 

440 

213 

300 

116 
008 

222 
311 

224 
118 

315 
321 

405 

308 

412 

—Cr, and

Minerals 2018, 8, x FOR PEER REVIEW  11 of 16 

 

  
(a) (b) 

Figure 9. Troilite inclusion in Sikhote-Alin IIAB iron meteorite: (a) photograph of massive troilite 
inclusion in α-Fe(Ni, Co) matrix; and (b) scanning electron microscopy image of troilite particle 
extracted from Sikhote-Alin iron meteorite. Adopted from [11]. 

  

(a) (b) 

Figure 10. Characterization of troilite inclusion extracted from Sikhote-Alin iron meteorite: (a) X-ray 
diffraction pattern with Miller indices for troilite reflections (in bold) and for daubréelite reflections 
(in bold italic); and (b) the unit cell structure of daubréelite found in troilite inclusion extracted from 
Sikhote-Alin iron meteorite; a, b, and c are the unit cell parameters;  – Fe,  – Cr, and  – S. 
Adopted from [11]. 

The room temperature Mössbauer spectrum of the troilite inclusion extracted from the  
Sikhote-Alin iron meteorite is shown in Figure 11b. Originally, in [11], this spectrum was fitted using 
the full static Hamiltonian for troilite component. However, here we present a simple fit using a 
simulation of the full static Hamiltonian for troilite component and an additional four sextets for  
non-stoichiometric troilite Fe1–xS for better observation of an additional spectral component related 
to daubréelite. Its spectral component has a single-peak shape with the following parameters: Γ = 
0.776 ± 0.008 mm/s, δ = 0.584 ± 0.009 mm/s, and A = 2.6(3) %. This single peak disappears in the 
spectrum measured at 90 K [11] due to the magnetic phase transition and the appearance of a very 
small magnetic sextet related to daubréelite, extraction of which is very difficult in the spectrum 
with many overlapped sextets. It is well known that the Mössbauer spectra of daubréelite 
demonstrate a single peak component only above Curie temperature (see, for instance, [34]). The 
room temperature Mössbauer spectrum of the polycrystalline synthetic FeCr2S4 sample measured in 
[35] shows a single peak with δ = 1.2 mm/s that is twice larger than those obtained for daubréelite 
found in the troilite inclusion extracted from the Sikhote-Alin iron meteorite. However, other results 
obtained earlier in [36,37] demonstrate similar δ values: ~0.59 mm/s.  

7000

12000

17000

22000

27000

16 26 36 46 56 66 76 86

IN
TE

N
SI

TY
,  

co
un

ts

2 THETA, °

100 
101 

220 

110 

311 004 

112 

104 
400 

203 

114 

210 

211 
511 

440 

213 

300 

116 
008 

222 
311 

224 
118 

315 
321 

405 

308 

412 

—S.
Adopted from [11].

Magnetization measurements of the troilite inclusion extracted from the Sikhote-Alin iron
meteorite demonstrated two features in the ZFC/FC curves (Figure 11a): (i) a distinguished peak
at 74 K; and (ii) a sharp magnetic transition at 168 K. It is well known that daubréelite has the
ferrimagnetic–paramagnetic phase transition around 177 K (see, for instance, [30] and references
therein) while recently a transition temperature of 166.5 K was found in [31]. Therefore, the magnetic
phase transition at 168 K can be assigned to the ferrimagnetic–paramagnetic phase transition in
daubréelite in the troilite inclusion. Based on the data about the cubic to triclinic phase transition in
daubréelite at ~60 K [32], the peak around 74 K can be assigned also to another phase transition in
daubréelite found in the troilite inclusion. Similar magnetization behavior was observed earlier for
troilite extracted from the Nantan iron meteorite, and phase transitions at 70 and 169 K were related to
the phase transitions in daubréelite presented in troilite [33]. Therefore, both features in the ZFC/FC
curves demonstrate the presence of daubréelite in the troilite inclusion extracted from the Sikhote-Alin
iron meteorite.
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The room temperature Mössbauer spectrum of the troilite inclusion extracted from the
Sikhote-Alin iron meteorite is shown in Figure 11b. Originally, in [11], this spectrum was fitted
using the full static Hamiltonian for troilite component. However, here we present a simple fit using
a simulation of the full static Hamiltonian for troilite component and an additional four sextets
for non-stoichiometric troilite Fe1–xS for better observation of an additional spectral component
related to daubréelite. Its spectral component has a single-peak shape with the following parameters:
Γ = 0.776 ± 0.008 mm/s, δ = 0.584 ± 0.009 mm/s, and A = 2.6(3) %. This single peak disappears in the
spectrum measured at 90 K [11] due to the magnetic phase transition and the appearance of a very
small magnetic sextet related to daubréelite, extraction of which is very difficult in the spectrum with
many overlapped sextets. It is well known that the Mössbauer spectra of daubréelite demonstrate a
single peak component only above Curie temperature (see, for instance, [34]). The room temperature
Mössbauer spectrum of the polycrystalline synthetic FeCr2S4 sample measured in [35] shows a single
peak with δ = 1.2 mm/s that is twice larger than those obtained for daubréelite found in the troilite
inclusion extracted from the Sikhote-Alin iron meteorite. However, other results obtained earlier
in [36,37] demonstrate similar δ values: ~0.59 mm/s.

3.4. Magnesioferrite in the Fusion Crust of Chelyabinsk LL5 Fragment

The fusion crust is a glass-like solidified melt resulting from meteorite surface combustion in the
Earth’s atmosphere during its fall. Various studies of meteorite fusion crusts showed formation
of magnetite Fe3O4, a spinel resulting from iron oxidation during combustion of the Fe-Ni-Co
alloy [38,39]. We studied the fusion crust removed from ordinary chondrite Chelyabinsk LL5 fragment
No 1a [10]. The XRD pattern of the fusion crust from Chelyabinsk LL5 fragment No 1a is shown
in Figure 12a. The fit of this pattern using the Rietveld full profile analysis demonstrated the
presence of olivine (~50 wt. %), pyroxene (~27 wt. %) and troilite (~4 wt. %) phases, Fe-Ni-Co alloy
(~1 wt. %) and an additional phase related to magnesioferrite (~18 wt. %) instead of magnetite.
The two main reflexes [2 2 0] and [3 1 1] at 2Θ ~30◦ and ~35.5◦, respectively, corresponding to
magnesioferrite (PDF 01-089-6188), are clearly seen in the X-ray diffractogram, confirming the presence
of magnesioferrite. There is an X-ray amorphous halo in 2Θ range ~30–36◦ that may be a result of the
presence of some amount of nanosized magnesioferrite particles in the glass-like fusion crust. The first
Mössbauer spectrum of the fusion crust from Chelyabinsk LL5 fragment No 1a, which should only be
considered as a preliminary result, is shown in Figure 12b. In this spectrum, a pronounced six-line
pattern with larger hyperfine field than that for sextets related to the Fe-Ni-Co alloy and troilite is
clearly seen. The best fit of this spectrum revealed five magnetic sextets and five quadrupole doublets,
as shown in Figure 12b. Besides two sextets related to Fe-Ni-Co alloy and troilite, respectively, and four
quadrupole doublets related to the M1 and M2 sites in both olivine and pyroxene, three additional
magnetic sextets with the following parameters were found: (1) δ = 0.271 ± 0.020 mm/s, Heff = 481.0
± 0.6 kOe, A = ~16(2) %; (2) δ = 0.528 ± 0.029 mm/s, Heff = 479.0 ± 1.3 kOe, A = ~6(1) %; and (3)
δ = 0.562 ± 0.020 mm/s, Heff = 444.6 ± 1.8 kOe, A = ~11(1) %. One additional quadrupole doublet
with parameters δ = 0.502 ± 0.026 mm/s, ∆EQ = 0.993 ± 0.047 mm/s, and A = ~7(1) % was found.
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Figure 12. The fusion crust from Chelyabinsk LL5 fragment 1a: (a) X-ray diffraction pattern,
arrows indicate reflexes of the main phases such as Ol (olivine), Py (pyroxene), Tr (troilite), and MF
(magnesioferrite); and (b) Mössbauer spectrum measured at 295 K: indicated components are the result
of the preliminary fit, the differential spectrum is shown below. Adopted from [10].

It is well known that magnesioferrite has a spinel structure with Fe3+ and Mg2+ cations in
both tetrahedral (A) and octahedral [B] positions in different proportions within the formula:
(Mg1–xFex)A[MgyFe2−y]BO4. Mössbauer spectra of the bulk magnesioferrite usually demonstrate
two magnetic sextets related to the 57Fe in both (A) and [B] positions, as shown above in Section 3.1
(see [28,29]). Mössbauer hyperfine parameters permit sextets related to two different positions in
spinel to be distinguished, because the values of δ are smaller with larger values of Heff for sextets
related to (A) positions while δ values are larger with smaller values of Heff for sextets related to
[B] positions. However, in the case of nanosized magnesioferrite the Mössbauer spectra were fitted
using three magnetic sextets: one sextet was related to (A) positions while two sextets were related
to [B] positions, as well as one quadrupole doublet related to the paramagnetic state of the smallest
magnesioferrite particles [40]. Moreover, the values of δ = 0.37 mm/s and ∆EQ = 0.99 mm/s obtained
for the paramagnetic quadrupole doublet in [40] appeared to be close to above-mentioned Mössbauer
parameters for a paramagnetic doublet revealed in the spectrum of the fusion crust in [10]. Therefore,
sextet (1) was related to the 57Fe in (A) positions while sextets (2) and (3) were assigned to the 57Fe in
[B] positions. The rest quadrupole doublet can be associated with nanosized magnesioferrite particles
which are in the paramagnetic state. Thus, the first study of the fusion crust from Chelyabinsk LL5
fragment No 1a using XRD and Mössbauer spectroscopy observed the presence of magnesioferrite
instead of magnetite.

4. Conclusions

Different meteorites (stony, stony-iron and iron) contain the minor spinel phases as accessories
to the main minerals. Therefore, observation of the iron-bearing spinels in the Mössbauer
spectra of bulk meteorite materials is not easy. Nevertheless, application of the high velocity
resolution Mössbauer spectroscopy permits us to observe the minor spectral components in the
complex meteorite spectra related to spinel phases. The complex study, using optical microscopy,
scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction and magnetization
measurements, in addition to Mössbauer spectroscopy, permits us to identify and prove the presence
of iron-bearing spinels in meteorites. Thus, it is possible to observe various spinels such as
chromite, hercynite, magnesiochromite, daubréelite and magnesioferrite in different meteorites using
Mössbauer spectroscopy.
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