You are currently viewing a new version of our website. To view the old version click .

Minerals

Minerals is an international, peer-reviewed, open access journal of natural mineral systems, mineral resources, mining, and mineral processing, and is published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Mining and Mineral Processing | Mineralogy | Geochemistry and Geophysics)

All Articles (10,395)

Lake sediments on the Tibetan Plateau serve as crucial carbon sinks in the regional carbon cycles. In recent decades, climate change has triggered significant hydrological changes in many lakes across this region, potentially impacting their carbon-sink functions. Previous studies have predominantly focused on the dynamics of organic carbon burial, largely overlooking the contribution of inorganic carbon sinks, and particularly lacking systematic investigation into the carbon burial processes in lakes experiencing water level decline. Therefore, this study examines a sediment core from Lake Yamzhog Yumco, a lake in the southern Tibetan Plateau with a gradually declining water level. The mineralogical and geochemical analyses of both lake and catchment sediments show that the inorganic carbon (carbonates are dominated by aragonite) and organic carbon are primarily authigenic origin. Over the past four decades, the inorganic carbon burial rate (ICBR) in Lake Yamzhog Yumco has been primarily controlled by water level fluctuations and is closely related to hydrochemical processes regulated by regional climate change. In contrast, the increase in the organic carbon burial rate (OCBR) has been co-influenced by both water level changes and regional temperature. During this period, the ICBR reached as high as 186 g m−2 yr−1, approximately five times the OCBR. This demonstrates that in lakes in semi-arid regions, the sink potential of inorganic carbon significantly exceeds that of organic carbon, highlighting the necessity of incorporating inorganic carbon burial into carbon-sink assessments. This study provides novel perspectives for a deeper understanding of the driving mechanisms behind carbon burial in Tibetan Plateau lakes and offers a scientific basis for accurately assessing and predicting regional carbon-sink potential.

2 January 2026

(a) World map, (b) Geographical location of Lake Yamzhog Yumco, (c) Lake morphology and distribution of sampling sites. The red star indicates the sediment core site, and the orange triangles indicate the catchment sampling sites.

The Mianhuakeng deposit, located within the Zhuguangshan batholith in the Nanling area, is currently recognized as the largest granite-related uranium deposit in China. A portion of the uranium ore bodies is spatially associated with NE-trending mafic veins within the granite. In this study, the field investigation, zircon U-Pb dating, S and Pb isotope analysis, and whole-rock geochemical analysis were conducted on these mafic veins to explore their crystallization age, petrogenesis, tectonic setting, and relationships with uranium mineralization. The weighted mean result of zircon U-Pb is 189 ± 3 Ma, suggesting that the mafic dyke was crystallized during the Early Jurassic. The whole-rock geochemistry and isotopes exhibit characteristics of intraplate basalts, suggesting that the mafic dykes originate from an enriched mantle source consisting of garnet–spinel lherzolite, with an estimated partial melting of 1%–5%. Mafic magmas underwent low-degree contamination from the lower crust during upwelling, induced by the extension of the lithosphere during the Early Jurassic. The analyses of pyrite sulfur isotopes in mafic samples vary between −2.9‰ and 1.8‰, significantly different from that of pyrite (−14.4‰ to −7.8‰) formed during the uranium mineralization. Furthermore, the ages of the pitchblende of 127–54 Ma are much younger than the crystallization ages of mafic dykes, indicating that the mafic magmas did not contribute to the uranium mineralization of Mianhuakeng deposit during magmatism. However, the abundant reducing minerals (e.g., pyrite, hornblende, and Fe2+-bearing minerals) in the mafic dykes can act as a redox barrier, reducing mobile U6+ to immobile U4+ during fluid–rock interaction, thereby facilitating uranium precipitation from the hydrothermal ore-forming fluids. The secondary fractures created by the intrusion of mafic magma probably provided favorable pathways for the movement of hydrothermal fluids.

1 January 2026

The foundation of successful mineral exploration is precise bauxite horizon demarcation and grade estimation. Although core analysis is the industry standard method, it is costly, labor-intensive, and has a relatively low processing capacity. To overcome these limitations, this study constructed an Extreme Gradient Boosting (XGBoost) classifier based on the logging parameters of natural gamma logging (GR), natural gamma spectroscopy logging (GGL), three-lateral logging (LL3), and compensated density logging (CDN) in order to achieve the automation of ore layer identification and grade prediction. The karst-type bauxite in Lvliang, Shanxi, was used to validate the research. The model was trained using the data from four wells in Shenjiazhuang. The trained model was directly applied to a blind well in Xingxian without parameter adjustment. Strong cross-site generalization was demonstrated by horizon recognition, which achieved 98.18% accuracy, 96.62% precision, 91.49% recall, and an F1 score of 93.99%. Based on the Al/Si ratio (A/S) and the content of Al2O3, the grade prediction classifies the samples into three grades: high-, medium-, and low-grade. The Mean Absolute Errors (MAEs) for the prediction of high- and medium-grade subsets of Al2O3 were 0.906 and 1.643, respectively, and those for A/S were 1.224 and 1.146, respectively. And the coefficient of determination (R2) for each grade level was greater than 0.8. These results support XGBoost’s field applicability and resilience for intelligent bauxite exploration.

31 December 2025

A Novel Approach for Ceramic Ball Media Formulation in Wet Ball Mills

  • Yuqing Li,
  • Ningning Liao and
  • Caibin Wu
  • + 5 authors

Ceramic balls, as an emerging grinding medium, require a systematic method for optimizing their size distribution in wet ball mills. This study proposes an innovative approach that integrates Duan’s semi-theoretical ball diameter formula with breakage statistical mechanics to determine the optimal ceramic ball size distribution. The ideal ball diameters for grinding 2.36–3.0 mm, 1.18–2.36 mm, 0.60–1.18 mm, and 0.30–0.60 mm tungsten ore were identified as 55 mm, 50 mm, 35 mm, and 20 mm, respectively. Subsequently, the optimal ball size distribution was formulated as CB3: Ø55 mm:Ø50 mm:Ø35 mm:Ø20 mm = 30%:40%:20%:10%. Comparative sieve analysis and discrete element method (DEM) simulations confirmed that the CB3 distribution yields the highest proportion of qualified particles, the most favorable collision frequency, and the greatest kinetic energy among all tested configurations. The proposed method demonstrates both accuracy and practicality, providing a theoretical foundation for the industrial application of ceramic ball grinding systems.

31 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Large Igneous Provinces
Reprint

Large Igneous Provinces

Research Frontiers
Editors: Richard E. Ernst, Hafida El Bilali
Industrial Minerals Flotation
Reprint

Industrial Minerals Flotation

Fundamentals and Applications
Editors: Xuming Wang, Jan D. Miller

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Minerals - ISSN 2075-163X