You are currently viewing a new version of our website. To view the old version click .

Minerals

Minerals is an international, peer-reviewed, open access journal of natural mineral systems, mineral resources, mining, and mineral processing.
Minerals is published monthly online by MDPI.
Quartile Ranking JCR - Q2 (Mining and Mineral Processing | Mineralogy | Geochemistry and Geophysics)

All Articles (10,083)

The recent increase in end-of-life (EoL) lithium-ion batteries (LiBs) has become a significant concern worldwide. Most studies in the literature have primarily focused on recovering cathode active metals from black mass (BM), whereas the separation of anode–cathode foils, plastics, and casing metals which are the essential components of LiBs has received relatively little attention. To reduce costs and maximize the recovery of valuable metals in subsequent hydrometallurgical or pyrometallurgical processes, EoL LiBs require appropriate pre-treatment. This study aims to scrape off the BM adhering to the electrode foils resulting from gradual crushing and subsequently separate the plastics and copper (Cu) from other metals through a two-step selective flotation process. The results demonstrated that plastics, due to their natural hydrophobicity, could be effectively removed using a frother, achieving more than 95% recovery with less than 5% metallic contamination. Following plastic flotation, Cu particles were floated in the presence of 3418A, yielding a Cu concentrate containing 65.13% Cu with a recovery rate of 96.4%. Additionally, the aluminum (Al) content in the non-floating material, remaining in the cell, increased to approximately 77%.

14 October 2025

Schematic illustration of the main components of a typical Li-ion battery cell.
  • Correction
  • Open Access

In the published publication [...]

15 October 2025

The booming new energy industry has fueled a surge in global lithium demand, with the annual demand for lithium carbonate (Li2CO3) equivalent (LCE) projected to reach 11.2 million tons by 2050. As a key raw material for lithium extraction, spodumene generates approximately 10–15 tons of lithium slag per ton of lithium carbonate (Li2CO3) produced. However, the comprehensive utilization rate of lithium slag in China remains below 30%, and most of it is disposed of through landfilling, posing soil pollution risks. This review summarizes the main lithium extraction processes from spodumene: the sulfuric acid method (with a lithium recovery rate of over 96% but high acid consumption); alkali processes (achieving 96%–99% lithium recovery and featuring low equipment corrosion, yet with untested applicability to low-grade ores); salt roasting (simplifying purification processes but only achieving ~60% sulfate recovery); and chlorination roasting (with a lithium recovery rate of over 95% but requiring strict safety controls). Additionally, this review covers the resource utilization of lithium slag: 8–10 million tons of gypsum can be recovered annually (filling 16%–20% of China’s industrial by-product gypsum supply gap); the silica–alumina micro-powder can enhance concrete strength and reduce glass fiber production costs; and over 94% of tantalum (Ta) and niobium (Nb) can be recovered from fine tantalite concentrate slag. Key research gaps and future development directions are also identified to support the low-carbon development of the lithium industry.

14 October 2025

The Xujiahe Formation (FM) is a significant source rock layer in the Sichuan Basin. In recent years, a growing number of scholars believe that the shale gas potential of the Xujiahe Formation is equally substantial, with the first member of the formation being the richest resource. The deposition of Member (Mbr) 1 of Xujiahe FM represents the first and most extensive transgression event within the entire Xujiahe Formation. This study investigates the sedimentary environment and organic matter (OM) enrichment mechanisms of the dark mud shales in the Mbr1 of Xujiahe FM on the southeastern margin of the Sichuan Basin, utilizing methods such as elemental geochemistry and organic geochemistry analyses. The results indicate that these dark mud shales possess a relatively high OM abundance, averaging 2.20% and reaching a maximum of 6.22%. The OM is primarily Type II2 to Type III. Furthermore, the paleoclimate during the Mbr1 period in the study area was warm and humid with lush aquatic vegetation. Intense weathering and ample precipitation transported large amounts of nutrients into the lacustrine/marine basin, promoting the growth and reproduction of algae and terrestrial plants. Correlation analysis between the Total Organic Carbon (TOC) content and various geochemical proxies in the Mbr1 mud shales suggests that OM enrichment in the study area was primarily controlled by the climate and sedimentation rate; substantial OM accumulation occurred only with abundant terrigenous OM input and a relatively high sedimentation rate. Redox conditions, primarily productivity, and terrigenous detrital input acted as secondary factors, collectively modulating OM enrichment. Event-driven transgressions also played an important role in creating conditions favorable for OM preservation. Synthesizing the influence of these multiple factors on OM enrichment, this study proposes two distinct composite models for OM enrichment, dominated by climate and sedimentation rate.

13 October 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Environmental Pollution and Assessment in Mining Areas
Reprint

Environmental Pollution and Assessment in Mining Areas

Editors: Mari Luz García Lorenzo, José María Esbrí, Oscar Andreu Sánchez

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Minerals - ISSN 2075-163XCreative Common CC BY license