Next Issue
Volume 25, May-2
Previous Issue
Volume 25, April-2
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 25, Issue 9 (May-1 2020) – 263 articles

Cover Story (view full-size image): The discovery of novel GSK-3β inhibitors to hinder central disorders is highly needed. 1H-Indazole-3-carboxamide (INDZ) derivatives were previously reported as potent GSK-3β inhibitors. However, they suffer from poor brain penetration. Here, a computer-aided scaffold-hopping strategy was conceived leading to novel imidazo[1,5-a]pyridine-1-carboxamide (IMID 1) and imidazo[1,5-a]pyridine-3-carboxamide (IMID 2) compounds with ameliorated permeability, but slightly reduced GSK-3β potency with respect to the INDZ analogs. In order to rationalize the observed structure–activity relationship, retrospective in silico studies and NMR investigation were carried out, highlighting the key role of the acidic hydrogen of the central core for GSK-3β affinity. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 7341 KiB  
Article
Plasmon-Enhanced Controlled Drug Release from Ag-PMA Capsules
by Giulia Neri, Carmelo Corsaro and Enza Fazio
Molecules 2020, 25(9), 2267; https://doi.org/10.3390/molecules25092267 - 11 May 2020
Cited by 15 | Viewed by 3894
Abstract
Silver (Ag)-grafted PMA (poly-methacrylic acid, sodium salt) nanocomposite loaded with sorafenib tosylate (SFT), an anticancer drug, showed good capability as a drug carrier allowing on-demand control of the dose, timing and duration of the drug release by laser irradiation stimuli. In this study, [...] Read more.
Silver (Ag)-grafted PMA (poly-methacrylic acid, sodium salt) nanocomposite loaded with sorafenib tosylate (SFT), an anticancer drug, showed good capability as a drug carrier allowing on-demand control of the dose, timing and duration of the drug release by laser irradiation stimuli. In this study, the preparation of Ag-PMA capsules loaded with SFT by using sacrificial silica microparticles as templates was reported. A high drug loading (DL%) of ∼13% and encapsulation efficiency (EE%) of about 76% were obtained. The photo-release profiles were regulated via the adjustment of light wavelength and power intensity. A significant improvement of SFT release (14% vs. 21%) by comparing SFT-Ag-PMA capsules with Ag-PMA colloids under the same experimental conditions was observed. Moreover, an increase of drug release by up to 35% was reached by tuning the laser irradiation wavelength near to Ag nanoparticles’ surface plasmon resonance (SPR). These experimental results together with more economical use of the active component suggest the potentiality of SFT-Ag-PMA capsules as a smart drug delivery system. Full article
Show Figures

Graphical abstract

18 pages, 3118 KiB  
Article
Multivariate Analysis of Photoacoustic Spectra for the Detection of Short-Chained Hydrocarbon Isotopologues
by Alain Loh and Marcus Wolff
Molecules 2020, 25(9), 2266; https://doi.org/10.3390/molecules25092266 - 11 May 2020
Cited by 10 | Viewed by 2844
Abstract
We report, to our knowledge, the first optical detection scheme for short-chained hydrocarbon isotopologues. The sensor system is based on photoacoustic spectroscopy (PAS). Two continuous wave, thermoelectrically cooled, distributed feedback interband cascade lasers (DFB-ICLs) with emission wavelengths around 3.33 and 3.38 μm, respectively, [...] Read more.
We report, to our knowledge, the first optical detection scheme for short-chained hydrocarbon isotopologues. The sensor system is based on photoacoustic spectroscopy (PAS). Two continuous wave, thermoelectrically cooled, distributed feedback interband cascade lasers (DFB-ICLs) with emission wavelengths around 3.33 and 3.38 μm, respectively, served as light sources. The investigations comprised the main stable carbon isotopologues of methane (12CH4, 13CH4), ethane (12CH3-12CH3, 13CH3-12CH3, 13CH3-13CH3), and propane (12CH3-12CH2-12CH3, 13CH3-12CH2-12CH3). They were selected because of their importance for numerous applications from climate and planetary research to natural gas exploration. Multiple measurements of single components in nitrogen and synthetic mixtures were conducted at room temperature and atmospheric pressure. Depending on the investigated hydrocarbon isotopologue, detection limits ranging from 0.043 ppmv to 3.4 ppmv were achieved. For a selective concentration determination, multivariate analysis (MVA) was applied. Partial least-squares regression (PLSR) was used to calculate concentrations from the PA spectra. The implementation of MVA has shown that the PA setup in principle works reliably and that the selective concentration determination of short-chained hydrocarbon isotopologues is possible. Full article
(This article belongs to the Special Issue Applications of Photoacoustic Spectroscopy)
Show Figures

Figure 1

13 pages, 2028 KiB  
Communication
Predicting Drug Resistance Using Deep Mutational Scanning
by Gur Pines, Reilly G. Fankhauser and Carrie A. Eckert
Molecules 2020, 25(9), 2265; https://doi.org/10.3390/molecules25092265 - 11 May 2020
Cited by 6 | Viewed by 4225
Abstract
Drug resistance is a major healthcare challenge, resulting in a continuous need to develop new inhibitors. The development of these inhibitors requires an understanding of the mechanisms of resistance for a critical mass of occurrences. Recent genome editing technologies based on high-throughput DNA [...] Read more.
Drug resistance is a major healthcare challenge, resulting in a continuous need to develop new inhibitors. The development of these inhibitors requires an understanding of the mechanisms of resistance for a critical mass of occurrences. Recent genome editing technologies based on high-throughput DNA synthesis and sequencing may help to predict mutations resulting in resistance by testing large mutagenesis libraries. Here we describe the rationale of this approach, with examples and relevance to drug development and resistance in malaria. Full article
(This article belongs to the Special Issue Antimalarial Agents: Design, Synthesis and Biological Evaluation)
Show Figures

Figure 1

12 pages, 1602 KiB  
Article
Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents
by Silvia Román, Joâo Manuel Valente Nabais, Beatriz Ledesma, Carlos Laginhas and Maria-Magdalena Titirici
Molecules 2020, 25(9), 2264; https://doi.org/10.3390/molecules25092264 - 11 May 2020
Cited by 32 | Viewed by 3202
Abstract
The aim of this work was to test activated carbons derived from hydrochars produced from sunflower stem, olive stone and walnut shells, as adsorbents for emerging contaminants in aqueous solution, namely fluoxetine and nicotinic acid. The adsorption capacity was determined by the chemical [...] Read more.
The aim of this work was to test activated carbons derived from hydrochars produced from sunflower stem, olive stone and walnut shells, as adsorbents for emerging contaminants in aqueous solution, namely fluoxetine and nicotinic acid. The adsorption capacity was determined by the chemical nature of the adsorbents, namely the presence of specific functional groups and their positive or negative ionization in aqueous solutions and also by steric factors. The activated carbons produced by air showed a higher adsorption capacity of fluoxetine, whilst the samples produced by carbon dioxide activation were more useful to remove nicotinic acid. In general, surface acidity was advantageous for fluoxetine adsorption and detrimental for nicotinic acid removal. The adsorption mechanisms involved in each case were discussed and related to the adsorbents characteristics. The maximum adsorption capacity, Q0, given by the Langmuir model was 44.1 and 91.9 mg g−1 for fluoxetine and nicotinic acid adsorption, respectively. Full article
(This article belongs to the Special Issue New Materials for a Sustainable Future)
Show Figures

Graphical abstract

16 pages, 5707 KiB  
Article
The Influence of Powder Milling on Properties of SPS Compacted FeAl
by Alena Michalcová, Murat Özkan, Pavol Mikula, Ivo Marek, Anna Knaislová, Jaromír Kopeček and Dalibor Vojtěch
Molecules 2020, 25(9), 2263; https://doi.org/10.3390/molecules25092263 - 11 May 2020
Cited by 8 | Viewed by 2530
Abstract
The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials. The initial powder was milled for [...] Read more.
The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials. The initial powder was milled for 0.5, 1, and 8 h. It was proven that 1 h milling leads to the change in size and morphology of the particles, B2→A2 phase transformation, and to the contamination with the material from a milling vessel. Powder materials were compacted by the SPS process at 900, 1000, and 1100 °C. The differences between the bulk materials were tested by LM, SEM, and TEM microscopy, XRD, and neutron diffraction methods. It was proven that, although the structures of initial powder (B2) and milled powder (A2) were different, both provide after-sintering material with the same structure (D03) with similar structural parameters. Higher hardness and improved ductility of the material sintered from the milled powder are likely caused by the change in chemical composition during the milling process. Full article
(This article belongs to the Special Issue Intermetallics: Synthesis, Structure, Function)
Show Figures

Figure 1

22 pages, 17009 KiB  
Article
Panax quinquefolium L. Ginsenosides from Hairy Root Cultures and Their Clones Exert Cytotoxic, Genotoxic and Pro-Apoptotic Activity towards Human Colon Adenocarcinoma Cell Line Caco-2
by Ewa Kochan, Adriana Nowak, Małgorzata Zakłos-Szyda, Daria Szczuka, Grażyna Szymańska and Ilona Motyl
Molecules 2020, 25(9), 2262; https://doi.org/10.3390/molecules25092262 - 11 May 2020
Cited by 13 | Viewed by 3702
Abstract
American ginseng, Panax quinquefolium (L.), is traditionally used in folk medicine. It exhibits a range of anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity, anti-hyperlipidemic and anti-carcinogenic effects. Its main components are ginsenosides, also known as panaxosides or triterpene saponins. In order to obtain high yields of [...] Read more.
American ginseng, Panax quinquefolium (L.), is traditionally used in folk medicine. It exhibits a range of anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity, anti-hyperlipidemic and anti-carcinogenic effects. Its main components are ginsenosides, also known as panaxosides or triterpene saponins. In order to obtain high yields of ginsenosides, different methods of controlled production are involved, i.e., with hairy root cultures. However, they are still employed under in vitro conditions. Our studies revealed that hairy root cultures subjected to an elicitation process can be considered as a potent source of ginsenosides. The present study examines the biological activity of ginseng hairy root cultures against the Caco-2 human adenocarcinoma cell line. Among our six different clones of P. quinquefolium hairy roots, extracts B and Be (treated with elicitor) were the strongest inhibitors of the cellular metabolic activity. While all extracts induced DNA damage, B and Be also generated reactive oxygen species (ROS) in a concentration-dependent manner, which was correlated with the depletion of the mitochondrial membrane potential and induction of apoptosis. These findings indicate that further research concerning P. quinquefolium hairy root cultures should focus on the activity of rare ginsenosides and other biologically active compound profiles (i.e., phenolic compounds). Full article
(This article belongs to the Special Issue Natural Product Pharmacology and Medicinal Chemistry II)
Show Figures

Graphical abstract

9 pages, 799 KiB  
Article
Identification of Aroma Differences in Refined and Whole Grain Extruded Maize Puffs
by Kenneth Smith and Devin G. Peterson
Molecules 2020, 25(9), 2261; https://doi.org/10.3390/molecules25092261 - 11 May 2020
Cited by 7 | Viewed by 3001
Abstract
Differences in the aroma profiles of extruded maize puffs made from refined grain and whole grain flour were investigated. Gas chromatography/mass spectrometry/olfactometry (GC/MS/O) analysis reported 13 aroma compounds with a flavor dilution (FD) value ≥16. Quantitative analysis identified eight compounds as statistically different, [...] Read more.
Differences in the aroma profiles of extruded maize puffs made from refined grain and whole grain flour were investigated. Gas chromatography/mass spectrometry/olfactometry (GC/MS/O) analysis reported 13 aroma compounds with a flavor dilution (FD) value ≥16. Quantitative analysis identified eight compounds as statistically different, of which seven compounds were higher in concentration in the whole grain sample. Sensory recombination and descriptive analysis further supported the analytical data, with higher mean aroma intensities for cooked, corn chip, roasted, and toasted attributes for the whole grain sample. Generally, the compounds responsible for perceived differences in whole grain maize extruded puffs were associated with increased levels of Maillard reaction products, such as 2-ethyl-3,5-dimethylpyrazine and 2-acetyl-2-thiazoline. Full article
(This article belongs to the Special Issue Volatile Compounds and Smell Chemicals (Odor and Aroma) of Food)
Show Figures

Graphical abstract

14 pages, 2448 KiB  
Article
Exploring Structure-Property Relationships in a Bio-Inspired Family of Bipodal and Electronically-Coupled Bistriphenylamine Dyes for Dye-Sensitized Solar Cell Applications
by Tamara Al-Faouri, Francis L. Buguis, Saba Azizi Soldouz, Olga V. Sarycheva, Burhan A. Hussein, Reeda Mahmood and Bryan D. Koivisto
Molecules 2020, 25(9), 2260; https://doi.org/10.3390/molecules25092260 - 11 May 2020
Cited by 11 | Viewed by 3834
Abstract
A bio-inspired family of organic dyes with bichromic-bipodal architectures were synthesized and tested in dye-sensitized solar cells (DSSC). These dyes are comprised of a D-π-D-A motif with two triphenylamine (TPA) units acting as donors (D) and two cyanoacetic acid acceptors (A) capable of [...] Read more.
A bio-inspired family of organic dyes with bichromic-bipodal architectures were synthesized and tested in dye-sensitized solar cells (DSSC). These dyes are comprised of a D-π-D-A motif with two triphenylamine (TPA) units acting as donors (D) and two cyanoacetic acid acceptors (A) capable of binding to a titania semiconductor. The role of the thiophene π-spacer bridging the two TPA units was examined and the distal TPA (relative to TiO2) was modified with various substituents (-H, -OMe, -SMe, -OHex, -3-thienyl) and contrasted against benchmark L1. It was found that the two TPA donor units could be tuned independently, where π-spacers can tune the proximal TPA and R-substituents can tune the distal TPA. The highest performing DSSCs were those with -SMe, 3-thienyl, and -H substituents, and those with one spacer or no spacers. The donating abilities of R-substituents was important, but their interactions with the electrolyte was more significant in producing high performing DSSCs. The introduction of one π-spacer provided favourable electronic communication within the dye, but more than one was not advantageous. Full article
(This article belongs to the Special Issue Recent Advances in Dye-Sensitized Solar Cells)
Show Figures

Figure 1

11 pages, 2146 KiB  
Article
Fabrication of High-Performance Bamboo–Plastic Composites Reinforced by Natural Halloysite Nanotubes
by Xiaobei Jin, Jingpeng Li, Rong Zhang, Zehui Jiang and Daochun Qin
Molecules 2020, 25(9), 2259; https://doi.org/10.3390/molecules25092259 - 11 May 2020
Cited by 6 | Viewed by 2794
Abstract
Bamboo-plastic composites (BPCs) as new biomass-plastic composites have recently attracted much attention. However, weak mechanical performance and high moisture absorption as well as low thermal stability greatly limit their industrial applications. In this context, different amounts of halloysite nanotubes (HNTs) were used as [...] Read more.
Bamboo-plastic composites (BPCs) as new biomass-plastic composites have recently attracted much attention. However, weak mechanical performance and high moisture absorption as well as low thermal stability greatly limit their industrial applications. In this context, different amounts of halloysite nanotubes (HNTs) were used as a natural reinforcing filler for BPCs. It was found that the thermal stability of BPCs increased with increasing HNT contents. The mechanical strength of BPCs was improved with the increase in HNT loading up to 4 wt% and then worsened, while the impact strengths were slightly reduced. Low HNT content (below 4 wt%) also improved the dynamic thermomechanical properties and reduced the water absorption of the BPCs. Morphological studies confirmed the improved interfacial compatibility of the BPC matrix with 4 wt% HNT loading, and high-concentration HNT loading (above 6 wt%) resulted in easy agglomeration. The results highlight that HNTs could be a feasible candidate as nanoreinforcements for the development of high-performance BPCs. Full article
(This article belongs to the Special Issue 25th Anniversary of Molecules—Recent Advances in Nanochemistry)
Show Figures

Graphical abstract

24 pages, 6436 KiB  
Article
Search for ABCB1 Modulators Among 2-Amine-5-Arylideneimidazolones as a New Perspective to Overcome Cancer Multidrug Resistance
by Aneta Kaczor, Márta Nové, Annamária Kincses, Gabriella Spengler, Ewa Szymańska, Gniewomir Latacz and Jadwiga Handzlik
Molecules 2020, 25(9), 2258; https://doi.org/10.3390/molecules25092258 - 11 May 2020
Cited by 14 | Viewed by 3403
Abstract
Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups [...] Read more.
Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure–activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38–1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico. Full article
Show Figures

Graphical abstract

29 pages, 6971 KiB  
Article
The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells
by Najla O. Zarmouh, Samia S. Messeha, Nelly Mateeva, Madhavi Gangapuram, Kacy Flowers, Suresh V. K. Eyunni, Wang Zhang, Kinfe K. Redda and Karam F. A. Soliman
Molecules 2020, 25(9), 2257; https://doi.org/10.3390/molecules25092257 - 11 May 2020
Cited by 11 | Viewed by 3827
Abstract
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel [...] Read more.
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02–16 μM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 μM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions—between the KKR molecule and MAO-A amino acid residues—to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups—such as chlorine and hydroxyl groups—are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs. Full article
Show Figures

Graphical abstract

23 pages, 4233 KiB  
Article
Surface Modification of Magnetic Nanoparticles by Carbon-Coating Can Increase Its Biosafety: Evidences from Biochemical and Neurobehavioral Tests in Zebrafish
by Nemi Malhotra, Gilbert Audira, Jung-Ren Chen, Petrus Siregar, Hua-Shu Hsu, Jiann-Shing Lee, Tzong-Rong Ger and Chung-Der Hsiao
Molecules 2020, 25(9), 2256; https://doi.org/10.3390/molecules25092256 - 11 May 2020
Cited by 21 | Viewed by 3882
Abstract
Recently, magnetic nanoparticles (MNPs) have gained much attention in the field of biomedical engineering for therapeutic as well as diagnostic purposes. Carbon magnetic nanoparticles (C-MNPs) are a class of MNPs categorized as organic nanoparticles. C-MNPs have been under considerable interest in studying in [...] Read more.
Recently, magnetic nanoparticles (MNPs) have gained much attention in the field of biomedical engineering for therapeutic as well as diagnostic purposes. Carbon magnetic nanoparticles (C-MNPs) are a class of MNPs categorized as organic nanoparticles. C-MNPs have been under considerable interest in studying in various applications such as magnetic resonance imaging, photothermal therapy, and intracellular transportof drugs. Research work is still largely in progress for testing the efficacy of C-MNPs on the theranostics platform in cellular studies and animal models. In this study, we evaluated the neurobehavioral toxicity parameters on the adult zebrafish (Danio rerio) at either low (1 ppm) or high (10 ppm) concentration level of C-MNPs over a period of two weeks by waterborne exposure. The physical properties of the synthesized C-MNPs were characterized by transmission electron microscopy, Raman, and XRD spectrum characterization. Multiple behavior tests for the novel tank, mirror biting, predator avoidance, conspecific social interaction, shoaling, and analysis of biochemical markers were also conducted to elucidate the corresponding mechanism. Our data demonstrate the waterborne exposure of C-MNPs is less toxic than the uncoated MNPs since neither low nor high concentration C-MNPs elicit toxicity response in behavioral and biochemical tests in adult zebrafish. The approach combining biochemical and neurobehavioral approaches would be helpful for understanding C-MNPs association affecting the bioavailability, biosafety, interaction, and uptake of these C-MNPs in the living organism. Full article
(This article belongs to the Special Issue Advances of Magnetic Materials)
Show Figures

Figure 1

17 pages, 3054 KiB  
Article
A Herbal Mixture from Propolis, Pomegranate, and Grape Pomace Endowed with Anti-Inflammatory Activity in an In Vivo Rheumatoid Arthritis Model
by Valentina Parisi, Antonio Vassallo, Claudio Pisano, Giacomo Signorino, Francesco Cardile, Milena Sorrentino, Fabiana Colelli, Alessandra Fucci, Egildo Luca D’Andrea, Nunziatina De Tommasi, Alessandra Braca and Marinella De Leo
Molecules 2020, 25(9), 2255; https://doi.org/10.3390/molecules25092255 - 11 May 2020
Cited by 20 | Viewed by 4305
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by the production of inflammatory factors. In order to overcome the side effects of currently used anti-inflammatory drugs, several attempts have been made to identify natural products capable of relieving RA symptoms. In [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by the production of inflammatory factors. In order to overcome the side effects of currently used anti-inflammatory drugs, several attempts have been made to identify natural products capable of relieving RA symptoms. In this work, a herbal preparation consisting of propolis, pomegranate peel, and Aglianico grape pomace (PPP) extracts (4:1:1) was designed and evaluated for its effect on a murine collagen-induced arthritis (CIA) model. Firstly, the chemical contents of four different Italian propolis collected in the Campania region (Italy) were here reported for the first time. LC-MS analyses showed the presence of 38 constituents, identified in all propolis extracts, belonging to flavonoids and phenolic acids classes. The Pietradefusi extract was the richest one and thus was selected to design the PPP preparation for the in vivo assay. Our results highlight the impact of PPP on RA onset and progression. By using in vivo CIA models, the treatment with PPP resulted in a delayed onset of the disease and alleviated the severity of the clinical symptoms. Furthermore, we demonstrated that early PPP treatment was associated with a reduction in serum levels of IL-17, IL-1b, and IL-17–triggering cytokines. Full article
Show Figures

Figure 1

16 pages, 2974 KiB  
Article
Wide-Antimicrobial Spectrum of Picolinium Salts
by Sarka Salajkova, Marketa Benkova, Jan Marek, Radek Sleha, Lukas Prchal, David Malinak, Rafael Dolezal, Kristina Sepčić, Nina Gunde-Cimerman, Kamil Kuca and Ondrej Soukup
Molecules 2020, 25(9), 2254; https://doi.org/10.3390/molecules25092254 - 11 May 2020
Cited by 10 | Viewed by 3502
Abstract
Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared [...] Read more.
Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Antimicrobial Agents)
Show Figures

Figure 1

15 pages, 4631 KiB  
Article
Synthesis and Spectral Identification of Three Schiff Bases with a 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine Moiety Acting as Novel Pancreatic Lipase Inhibitors: Thermal, DFT, Antioxidant, Antibacterial, and Molecular Docking Investigations
by Ismail Warad, Oraib Ali, Anas Al Ali, Nidal Amin Jaradat, Fatima Hussein, Lubna Abdallah, Nabil Al-Zaqri, Ali Alsalme and Fahad A. Alharthi
Molecules 2020, 25(9), 2253; https://doi.org/10.3390/molecules25092253 - 11 May 2020
Cited by 39 | Viewed by 3944
Abstract
Three new tetradentate NNNS Schiff bases (L1L3) derived from 2-(piperidin-4-yl)ethanamine were prepared in high yields. UV–Visible and FTIR spectroscopy were used to monitor the dehydration reaction between 2-(piperidin-4-yl)ethanamine and the corresponding aldehydes. Structures of the derived Schiff bases were [...] Read more.
Three new tetradentate NNNS Schiff bases (L1L3) derived from 2-(piperidin-4-yl)ethanamine were prepared in high yields. UV–Visible and FTIR spectroscopy were used to monitor the dehydration reaction between 2-(piperidin-4-yl)ethanamine and the corresponding aldehydes. Structures of the derived Schiff bases were deduced by 1H and 13C NMR, FTIR, UV–Vis, MS, EA, EDS, and TG-derived physical measurements. DFT/B3LYP theoretical calculations for optimization, TD-DFT, frequency, Molecular Electrostatic Potential (MEP), and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) / were performed for L2. The in vitro antimicrobial activities of the three Schiff bases were evaluated against several types of bacteria by disk diffusion test using Gentamicin as the standard antibiotic. Schiff bases revealed good antioxidant activity by the DPPH method, and the IC50 values were compared to the Trolox standard. Pancreatic porcine lipase inhibition assay of the synthesized compounds revealed promising activity as compared to the Orlistat reference. Full article
Show Figures

Graphical abstract

12 pages, 2464 KiB  
Article
Targeted Dendrimer-Coated Magnetic Nanoparticles for Selective Delivery of Therapeutics in Living Cells
by Paola Parlanti, Adriano Boni, Giovanni Signore and Melissa Santi
Molecules 2020, 25(9), 2252; https://doi.org/10.3390/molecules25092252 - 10 May 2020
Cited by 16 | Viewed by 3402
Abstract
Nanoparticles are widely used as theranostic agents for the treatment of various pathologies, including cancer. Among all, dendrimers-based nanoparticles represent a valid approach for drugs delivery, thanks to their controllable size and surface properties. Indeed, dendrimers can be easily loaded with different payloads [...] Read more.
Nanoparticles are widely used as theranostic agents for the treatment of various pathologies, including cancer. Among all, dendrimers-based nanoparticles represent a valid approach for drugs delivery, thanks to their controllable size and surface properties. Indeed, dendrimers can be easily loaded with different payloads and functionalized with targeting agents. Moreover, they can be used in combination with other materials such as metal nanoparticles for combinatorial therapies. Here, we present the formulation of an innovative nanostructured hybrid system composed by a metallic core and a dendrimers-based coating that is able to deliver doxorubicin specifically to cancer cells through a targeting agent. Its dual nature allows us to transport nanoparticles to our site of interest through the magnetic field and specifically increase internalization by exploiting the T7 targeting peptide. Our system can release the drug in a controlled pH-dependent way, causing more than 50% of cell death in a pancreatic cancer cell line. Finally, we show how the system was internalized inside cancer cells, highlighting a peculiar disassembly of the nanostructure at the cell surface. Indeed, only the dendrimeric portion is internalized, while the metal core remains outside. Thanks to these features, our nanosystem can be exploited for a multistage magnetic vector. Full article
(This article belongs to the Special Issue Functional Peptide-Based Nanomaterials)
Show Figures

Graphical abstract

15 pages, 4176 KiB  
Article
Unsymmetrical Bisquinolines with High Potency against P. falciparum Malaria
by Katherine M. Liebman, Steven J. Burgess, Bornface Gunsaru, Jane X. Kelly, Yuexin Li, Westin Morrill, Michael C. Liebman and David H. Peyton
Molecules 2020, 25(9), 2251; https://doi.org/10.3390/molecules25092251 - 10 May 2020
Cited by 11 | Viewed by 3537
Abstract
Quinoline-based scaffolds have been the mainstay of antimalarial drugs, including many artemisinin combination therapies (ACTs), over the history of modern drug development. Although much progress has been made in the search for novel antimalarial scaffolds, it may be that quinolines will remain useful, [...] Read more.
Quinoline-based scaffolds have been the mainstay of antimalarial drugs, including many artemisinin combination therapies (ACTs), over the history of modern drug development. Although much progress has been made in the search for novel antimalarial scaffolds, it may be that quinolines will remain useful, especially if very potent compounds from this class are discovered. We report here the results of a structure-activity relationship (SAR) study assessing potential unsymmetrical bisquinoline antiplasmodial drug candidates using in vitro activity against intact parasites in cell culture. Many unsymmetrical bisquinolines were found to be highly potent against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum parasites. Further work to develop such compounds could focus on minimizing toxicities in order to find suitable candidates for clinical evaluation. Full article
(This article belongs to the Special Issue Antimalarial Agents: Design, Synthesis and Biological Evaluation)
Show Figures

Graphical abstract

21 pages, 4175 KiB  
Article
Center-of-Mass iso-Energetic Collision-Induced Decomposition in Tandem Triple Quadrupole Mass Spectrometry
by Federico Maria Rubino
Molecules 2020, 25(9), 2250; https://doi.org/10.3390/molecules25092250 - 10 May 2020
Cited by 4 | Viewed by 4901
Abstract
Two scan modes of the triple quadrupole tandem mass spectrometer, namely Collision Induced Dissociation Precursor Ion scan and Neutral Loss scan, allow selectively pinpointing, in a complex mixture, compounds that feature specific chemical groups, which yield characteristic fragment ions or are lost as [...] Read more.
Two scan modes of the triple quadrupole tandem mass spectrometer, namely Collision Induced Dissociation Precursor Ion scan and Neutral Loss scan, allow selectively pinpointing, in a complex mixture, compounds that feature specific chemical groups, which yield characteristic fragment ions or are lost as distinctive neutral fragments. This feature of the triple quadrupole tandem mass spectrometer allows the non-target screening of mixtures for classes of components. The effective (center-of-mass) energy to achieve specific fragmentation depends on the inter-quadrupole voltage (laboratory-frame collision energy) and on the masses of the precursor molecular ion and of the collision gas, through a non-linear relationship. Thus, in a class of homologous compounds, precursor ions activated at the same laboratory-frame collision energy face different center-of-mass collision energy, and therefore the same fragmentation channel operates with different degrees of efficiency. This article reports a linear equation to calculate the laboratory-frame collision energy necessary to operate Collision-Induced Dissociation at the same center-of-mass energy on closely related compounds with different molecular mass. A routine triple quadrupole tandem mass spectrometer can operate this novel feature (iso-energetic collision-induced dissociation scan; i-CID) to analyze mixtures of endogenous metabolites by Precursor Ion and Neutral Loss scans. The latter experiment also entails the hitherto unprecedented synchronized scanning of all three quadrupoles of the triple quadrupole tandem mass spectrometer. To exemplify the application of this technique, this article shows two proof-of-principle approaches to the determination of biological mixtures, one by Precursor Ion analysis on alpha amino acid derivatized with a popular chromophore, and the other on modified nucleosides with a Neutral Fragment Loss scan. Full article
(This article belongs to the Special Issue (Mass Spectrometric) Non Target Screening–Techniques and Strategies)
Show Figures

Figure 1

14 pages, 1372 KiB  
Article
Proteolytic Volatile Profile and Electrophoretic Analysis of Casein Composition in Milk and Cheese Derived from Mironutrient-Fed Cows
by Andrea Ianni, Francesca Bennato, Camillo Martino, Lisa Grotta, Nicola Franceschini and Giuseppe Martino
Molecules 2020, 25(9), 2249; https://doi.org/10.3390/molecules25092249 - 10 May 2020
Cited by 5 | Viewed by 3048
Abstract
The aim of the study was to evaluate the proteolytic process in Caciocavallo cheese obtained from Friesian cows fed zinc, selenium, and iodine supplementation. Thirty-six Friesian cows, balanced for parity, milk production, and days in milk, were randomly assigned to four groups. The [...] Read more.
The aim of the study was to evaluate the proteolytic process in Caciocavallo cheese obtained from Friesian cows fed zinc, selenium, and iodine supplementation. Thirty-six Friesian cows, balanced for parity, milk production, and days in milk, were randomly assigned to four groups. The control group (CG) was fed with a conventional feeding strategy, while the three remaining groups received a diet enriched with three different trace elements, respectively zinc (ZG), selenium (SG), and iodine (IG). At the end of the experimental period, samples of milk were collected and used to produce Caciocavallo cheese from each experimental group. Cheese samples were then analyzed after 7 and 120 days from the cheese making in order to obtain information on chemical composition and extent of the proteolytic process, evaluated through the electrophoretic analysis of caseins and the determination of volatiles profile. Both milk and cheese samples were richer in the amount of the microelement respectively used for the integration of the cattle’s diet. The zymographic approach was helpful in evaluating, in milk, the proteolytic function performed by endogenous metalloenzymes specifically able to degrade gelatin and casein; this evaluation did not highlight significant differences among the analyzed samples. In cheese, the electrophoretic analysis in reducing and denaturing condition showed the marked ability of β-casein to resist the proteolytic action during ripening, whereas the dietary selenium supplementation was shown to perform a protective action against the degradation of S1 and S2 isoforms of α-casein. The analysis of the volatile profile evidenced the presence of compounds associated with proteolysis of phenylalanine and leucine. This approach showed that selenium was able to negatively influence the biochemical processes that lead to the formation of 3-methyl butanol, although the identification of the specific mechanism needs further investigation. Full article
(This article belongs to the Special Issue Volatile Compounds and Smell Chemicals (Odor and Aroma) of Food)
Show Figures

Figure 1

16 pages, 5666 KiB  
Article
Antimetastatic Effects of Sesamin on Human Head and Neck Squamous Cell Carcinoma through Regulation of Matrix Metalloproteinase-2
by Jian-Ming Chen, Pei-Yin Chen, Chia-Chieh Lin, Ming-Chang Hsieh and Jen-Tsun Lin
Molecules 2020, 25(9), 2248; https://doi.org/10.3390/molecules25092248 - 10 May 2020
Cited by 13 | Viewed by 3142
Abstract
Background: Sesamin is a lignin present in sesame oil from the bark of Zanthoxylum spp. Sesamin reportedly has anticarcinogenic potential and exerts anti-inflammatory effects on several tumors. Hypothesis/Purpose: However, the effect of sesamin on metastatic progression in human head and neck squamous carcinoma [...] Read more.
Background: Sesamin is a lignin present in sesame oil from the bark of Zanthoxylum spp. Sesamin reportedly has anticarcinogenic potential and exerts anti-inflammatory effects on several tumors. Hypothesis/Purpose: However, the effect of sesamin on metastatic progression in human head and neck squamous carcinoma (HNSCC) remains unknown in vitro and in vivo; hence, we investigated the effect of sesamin on HNSCC cells in vitro. Methods and Results: Sesamin-treated human oral cancer cell lines FaDu, HSC-3, and Ca9-22 were subjected to a wound-healing assay. Furthermore, Western blotting was performed to assess the effect of sesamin on the expression levels of matrix metalloproteinase (MMP)-2 and proteins of the MAPK signaling pathway, including p-ERK1/2, P-p38, and p-JNK1/2. In addition, we investigated the association between MMP-2 expression and the MAPK pathway in sesamin-treated oral cancer cells. Sesamin inhibited cell migration and invasion in FaDu, Ca9-22, and HSC-3 cells and suppressed MMP-2 at noncytotoxic concentrations (0 to 40 μM). Furthermore, sesamin significantly reduced p38 MAPK and JNK phosphorylation in a dose-dependent manner in FaDu and HSC-3 cells. Conclusions: These results indicate that sesamin suppresses the migration and invasion of HNSCC cells by regulating MMP-2 and is thus a potential antimetastatic agent for treating HNSCC. Full article
(This article belongs to the Special Issue Study on the Mechanism of Medicinal Plants on Diseases)
Show Figures

Graphical abstract

24 pages, 4846 KiB  
Article
Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors
by Saurabh Kumar Pandey, Milan Melichercik, David Řeha, Rüdiger H. Ettrich and Jannette Carey
Molecules 2020, 25(9), 2247; https://doi.org/10.3390/molecules25092247 - 10 May 2020
Cited by 4 | Viewed by 18333
Abstract
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in [...] Read more.
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes. Full article
(This article belongs to the Special Issue Protein Domains: Structures and Molecular Functions)
Show Figures

Figure 1

8 pages, 1360 KiB  
Communication
Gastroprotective Effect of Juanislamin on Ethanol-Induced Gastric Lesions in Rats: Role of Prostaglandins, Nitric Oxide and Sulfhydryl Groups in the Mechanism of Action
by María Elena Sánchez-Mendoza, Yaraset López-Lorenzo, Leticia Cruz-Antonio, Arturo Cruz-Oseguera, Jazmín García-Machorro and Jesús Arrieta
Molecules 2020, 25(9), 2246; https://doi.org/10.3390/molecules25092246 - 10 May 2020
Cited by 11 | Viewed by 2775
Abstract
Peptic ulcer disease, the most common gastrointestinal disorder, is currently treated with several types of drugs, but all have severe side effects. The aim of the present study was to evaluate the gastroprotective activity of juanislamin, isolated from Calea urticifolia, in a [...] Read more.
Peptic ulcer disease, the most common gastrointestinal disorder, is currently treated with several types of drugs, but all have severe side effects. The aim of the present study was to evaluate the gastroprotective activity of juanislamin, isolated from Calea urticifolia, in a rat model of ethanol-induced gastric lesions. Thirty minutes after orally administering a given dose of juanislamin (from 1 to 30 mg/kg) or carbenoxolone (the reference drug, at 1–100 mg/kg) to rats, 1 mL of ethanol was applied, and the animals were sacrificed 2 h later. The stomachs were removed and opened to measure the total area of lesions in each. To examine the possible participation of prostaglandins, nitric oxide and/or sulfhydryl groups in the mechanism of action of juanislamin, the rats received indomethacin, NG-Nitro-l-arginine methyl ester hydrochloride (l-NAME) or N-ethylmaleimide pretreatment, respectively, before being given juanislamin and undergoing the rest of the methodology. Juanislamin inhibited gastric lesions produced by ethanol in a non-dose-dependent manner, showing the maximum gastroprotective effect (100%) at 10 mg/kg. The activity of juanislamin was not modified by pretreatment with indomethacin, l-NAME or N-ethylmaleimide. In conclusion, juanislamin protected the gastric mucosa from ethanol-induced damage, and its mechanism of action apparently does not involve prostaglandins, nitric oxide or sulfhydryl groups. Full article
Show Figures

Graphical abstract

17 pages, 1006 KiB  
Article
Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines
by Olaf J. Schelezki, Alain Deloire and David W. Jeffery
Molecules 2020, 25(9), 2245; https://doi.org/10.3390/molecules25092245 - 10 May 2020
Cited by 12 | Viewed by 3907
Abstract
Changes to regulations by Food Standards Australia New Zealand have permitted the adjustment of must sugar levels with the addition of water in order to ensure a sound fermentation progress as well as mitigating excessive wine–alcohol levels. This study assessed the implications for [...] Read more.
Changes to regulations by Food Standards Australia New Zealand have permitted the adjustment of must sugar levels with the addition of water in order to ensure a sound fermentation progress as well as mitigating excessive wine–alcohol levels. This study assessed the implications for Shiraz wine quality following a pre-fermentative must dilution (changing liquid-to-solid ratios), in comparison to juice substitution with water (constant liquid-to-solid ratios) that has previously been deemed a promising way to adjust wine–alcohol levels. While working within the legal limit of water addition to grape must, the effects of both approaches on wine quality parameters and sensory characteristics were rather similar, and of negligible nature. However, different implications between substitution and dilution appeared to be driven by grape maturity, and dilution was found to have a greater impact than substitution on some parameters at higher water implementation rates. In line with previous observations, longer hang-time followed by alcohol adjustments via pre-fermentation water addition were of limited merit compared to simply picking grapes earlier. This work provided further knowledge that supports informed decision making regarding the recently permitted approach of using water during winemaking. Full article
(This article belongs to the Collection Wine Chemistry)
Show Figures

Figure 1

21 pages, 5747 KiB  
Article
Formulation, Characterization and Biological Activity Screening of Sodium Alginate-Gum Arabic Nanoparticles Loaded with Curcumin
by Abdelkader Hassani, Syed Mahmood, Hamid Hammad Enezei, Siti Aslina Hussain, Hamad Ali Hamad, Ahmed Faris Aldoghachi, Abdullah Hagar, Abd Almonem Doolaanea and Wisam Nabeel Ibrahim
Molecules 2020, 25(9), 2244; https://doi.org/10.3390/molecules25092244 - 10 May 2020
Cited by 48 | Viewed by 6055
Abstract
The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin [...] Read more.
The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin loaded gum Arabic-sodium alginate nanoparticles (Cur/ALG-GANPs). The Cur/ALG-GANPs were prepared using the ionotropic gelation technique and further subjected to physico-chemical characterization using attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), size distribution, and transmission electron microscopy (TEM). The size of Cur/ALG-GANPs ranged between 10 ± 0.3 nm and 190 ± 0.1 nm and the zeta potential was –15 ± 0.2 mV. The antioxidant study of Cur/ALG-GANPs exhibited effective radical scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) at concentrations that ranged between 30 and 500µg/mL. Cytotoxicity was performed using MTT assay to measure their potential in inhibiting the cell growth and the result demonstrated a significant anticancer activity of Cur/ALG-GANPs against human liver cancer cells (HepG2) than in colon cancer (HT29), lung cancer (A549) and breast cancer (MCF7) cells. Thus, this study indicates that Cur/ALG-GANPs have promising anticancer properties that might aid in future cancer therapy. Full article
Show Figures

Figure 1

12 pages, 1110 KiB  
Review
Do Aspirin and Flavonoids Prevent Cancer through a Common Mechanism Involving Hydroxybenzoic Acids?—The Metabolite Hypothesis
by Ranjini Sankaranarayanan, D. Ramesh Kumar, Janki Patel and G. Jayarama Bhat
Molecules 2020, 25(9), 2243; https://doi.org/10.3390/molecules25092243 - 10 May 2020
Cited by 18 | Viewed by 6422
Abstract
Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary [...] Read more.
Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention. Full article
(This article belongs to the Special Issue Flavonoids and Their Disease Prevention and Treatment Potential)
Show Figures

Figure 1

16 pages, 3545 KiB  
Article
Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength
by Ferran Serra-Parareda, Fernando Julián, Eduardo Espinosa, Alejandro Rodríguez, Francesc X. Espinach and Fabiola Vilaseca
Molecules 2020, 25(9), 2242; https://doi.org/10.3390/molecules25092242 - 10 May 2020
Cited by 16 | Viewed by 4019
Abstract
Awareness on deforestation, forest degradation, and its impact on biodiversity and global warming, is giving rise to the use of alternative fiber sources in replacement of wood feedstock for some applications such as composite materials and energy production. In this category, barley straw [...] Read more.
Awareness on deforestation, forest degradation, and its impact on biodiversity and global warming, is giving rise to the use of alternative fiber sources in replacement of wood feedstock for some applications such as composite materials and energy production. In this category, barley straw is an important agricultural crop, due to its abundance and availability. In the current investigation, the residue was submitted to thermomechanical process for fiber extraction and individualization. The high content of holocellulose combined with their relatively high aspect ratio inspires the potential use of these fibers as reinforcement in plastic composites. Therefore, fully biobased composites were fabricated using barley fibers and a biobased polyethylene (BioPE) as polymer matrix. BioPE is completely biobased and 100% recyclable. As for material performance, the flexural properties of the materials were studied. A good dispersion of the reinforcement inside the plastic was achieved contributing to the elevate increments in the flexural strength. At a 45 wt.% of reinforcement, an increment in the flexural strength of about 147% was attained. The mean contribution of the fibers to the flexural strength was assessed by means of a fiber flexural strength factor, reaching a value of 91.4. The micromechanical analysis allowed the prediction of the intrinsic flexural strength of the fibers, arriving up to around 700 MPa, and coupling factors between 0.18 and 0.19, which are in line with other natural fiber composites. Overall, the investigation brightness on the potential use of barley straw residues as reinforcement in fully biobased polymer composites. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass)
Show Figures

Figure 1

13 pages, 2175 KiB  
Article
Application of Natural Pigments in Ordinary Cooked Ham
by Sandra Dias, Elisabete M. S. Castanheira, A. Gil Fortes, David M. Pereira, A. Rita O. Rodrigues, Regina Pereira and M. Sameiro T. Gonçalves
Molecules 2020, 25(9), 2241; https://doi.org/10.3390/molecules25092241 - 10 May 2020
Cited by 11 | Viewed by 3606
Abstract
The possibility of obtaining a carmine or pink color on ordinary cooked ham by applying natural dyes from three plant species, namely red radish (Raphanus sativus L.), hibiscus (Roselle sabdariffa L.) and red beetroot (Beta vulgaris L.), was investigated. The [...] Read more.
The possibility of obtaining a carmine or pink color on ordinary cooked ham by applying natural dyes from three plant species, namely red radish (Raphanus sativus L.), hibiscus (Roselle sabdariffa L.) and red beetroot (Beta vulgaris L.), was investigated. The extracts were evaluated for the stability at physical-chemical parameters and subjected to cytotoxicity assays in the gastric cell line AGS Encapsulation of the extracts in soybean lecithin liposomes and maltodextrin microcapsules was performed. Lyophilized extracts before and after encapsulation in maltodextrin were applied in the formulation of ordinary cooked ham and used in a pilot scale of production. The color of cooked ham samples from different assays was evaluated visually and by colorimetry. The results suggest that the coloration of ordinary cooked ham obtained with extracts of red beetroot is very promising for future applications in this type of meat product. Full article
(This article belongs to the Special Issue ECSOC-23)
Show Figures

Graphical abstract

10 pages, 976 KiB  
Article
Structural Study of the Compounds Formed in the Reactions of FeCl3·6H2O with Ni(OH)2 in the Presence of Dithiolenes HSRSH (R = C6H2Cl2 or C6H4)
by Esther Delgado, Elisa Hernández, María Pérez, Josefina Perles and Félix Zamora
Molecules 2020, 25(9), 2240; https://doi.org/10.3390/molecules25092240 - 10 May 2020
Viewed by 2773
Abstract
In our attempts to prepare coordination polymers by reaction of FeCl3·6H2O and Ni(OH)2 in the presence of dithiolenes HSC6H2X2SH (X = Cl or H), several ion pairs of compounds containing the anionic [...] Read more.
In our attempts to prepare coordination polymers by reaction of FeCl3·6H2O and Ni(OH)2 in the presence of dithiolenes HSC6H2X2SH (X = Cl or H), several ion pairs of compounds containing the anionic entity [Ni(SC6H2X2S)2] were obtained instead. It was also found that other species without dithiolene ligands were formed in these reactions, giving rise to different ion pairs and a tetrametallic cluster. The careful isolation of the different types of crystalline solids allowed the characterization of all of the resulting compounds by single crystal X-ray diffraction (SCXRD). In order to establish the amount of nickel and iron present in the crystals, complementary total reflection X-ray fluorescence (TXRF) analyses were performed. The eight different structural types that were obtained are described and compared with related ones found in the literature. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry)
Show Figures

Graphical abstract

16 pages, 2522 KiB  
Review
Optical Identification of Middle Ear Infection
by Alisha Prasad, Syed Mohammad Abid Hasan and Manas Ranjan Gartia
Molecules 2020, 25(9), 2239; https://doi.org/10.3390/molecules25092239 - 9 May 2020
Cited by 2 | Viewed by 11098
Abstract
Ear infection is one of the most commonly occurring inflammation diseases in the world, especially for children. Almost every child encounters at least one episode of ear infection before he/she reaches the age of seven. The typical treatment currently followed by physicians is [...] Read more.
Ear infection is one of the most commonly occurring inflammation diseases in the world, especially for children. Almost every child encounters at least one episode of ear infection before he/she reaches the age of seven. The typical treatment currently followed by physicians is visual inspection and antibiotic prescription. In most cases, a lack of improper treatment results in severe bacterial infection. Therefore, it is necessary to design and explore advanced practices for effective diagnosis. In this review paper, we present the various types of ear infection and the related pathogens responsible for middle ear infection. We outline the conventional techniques along with clinical trials using those techniques to detect ear infections. Further, we highlight the need for emerging techniques to reduce ear infection complications. Finally, we emphasize the utility of Raman spectroscopy as a prospective non-invasive technique for the identification of middle ear infection. Full article
Show Figures

Graphical abstract

19 pages, 2410 KiB  
Article
Phenolic and Non-Polar Fractions of the Extracts from Fruits, Leaves, and Twigs of Elaeagnus rhamnoides (L.) A. Nelson—The Implications for Human Barrier Cells
by Beata Sadowska, Joanna Rywaniak, Anna Cichocka, Kinga Cichocka, Jerzy Żuchowski, Urszula Wójcik-Bojek, Marzena Więckowska-Szakiel and Barbara Różalska
Molecules 2020, 25(9), 2238; https://doi.org/10.3390/molecules25092238 - 9 May 2020
Cited by 6 | Viewed by 3747
Abstract
Biological potential of plant extracts are widely described. Because their oral or topical administration is usually recommended, intestinal mucous and skin are the first surfaces exposed to such preparations. Therefore, we asked the question whether phenolic and non-polar fractions of the extracts from [...] Read more.
Biological potential of plant extracts are widely described. Because their oral or topical administration is usually recommended, intestinal mucous and skin are the first surfaces exposed to such preparations. Therefore, we asked the question whether phenolic and non-polar fractions of the extracts from fruits, twigs, and leaves of sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) would be able to modulate the functions of human physiological barrier. The study was carried on caucasian colon epithelial-like Caco-2 cells and human foreskin fibroblasts HFF-1 line. Cell secretory activity (ELISA), the expression of cell surface molecules (flow cytometry), cell migration during wound healing in vitro (scratch assay) were assessed. It was demonstrated for the first time, that sea buckthorn extracts can improve intestinal and skin barrier by increasing of ICAM-1 expression on colon epithelial cells and intensification of IL-8 production by fibroblasts. On the other hand, an inhibition of fibroblasts migration in the presence of those preparations was noted. Therefore, greater attention should be paid on precise description of plant extracts effect depended on target cells and their role to give adequate recommendations for such preparations use. Full article
(This article belongs to the Special Issue Bioactive Compounds with Applications in Health and Food)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop