Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluoxetine Adsorption
2.2. Nicotinic Acid Adsorption
3. Materials and Methods
3.1. Materials
3.2. Adsorption Isotherms
3.3. Adsorption Models
- (a)
- The Langmuir model:qe = (Q0CeKL)/(1 + CeKL)
- (b)
- The Freundlich model:qe = KFCe1/n
- (c)
- The Redlich–Peterson model [33] is an empirical isotherm incorporating three parameters (Equation (3)). It combines elements from the Langmuir and Freundlich equation, and the mechanism of adsorption does not follow ideal monolayer adsorption.qe = (KRCe)/(1 + aRCeg)
- (d)
- The SIPs model [34] uses an equation similar to the Freundlich equation, but it has a finite limit when the concentration is sufficiently high; in this way, this model avoids the continuous increase in the adsorbed amount with an increasing concentration.qe = (KSCeβS)/(1 + αSCeβS)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Bior. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Laginhas, C.; Ledesma, B.; González, J.F. Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process. Technol. 2012, 103, 78–83. [Google Scholar] [CrossRef]
- Falco, C.; Marco-Lozar, J.P.; Salinas-Torres, D.; Morallón, E.; Cazorla-Amorós, D.; Titirici, M.M.; Lozano-Castello, D. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 2013, 62, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Ledesma, B.; Álvarez, A.; Coronella, C.; Qaramaleki, S.V. Suitability of hydrothermal carbonization to convert water hyacinth to added-value products. Renew. Energy 2020, 146, 1649–1658. [Google Scholar] [CrossRef]
- Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Álvarez, A.; Bae, S. Hydrothermal carbonization: Modeling, final properties design and applications: A review. Energies 2018, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Wang, Y.Q.; Zhang, Z.B.; Cao, X.H.; Nie, W.B.; Li, Q.; Hua, R. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl. Surf. Sci. 2013, 273, 68–74. [Google Scholar] [CrossRef]
- Kyzas, G.; Deliyanni, E.A. Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chem. Eng. Res. Des. 2015, 97, 135–144. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Biores. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef]
- Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Biores. Technol. 2011, 102, 6192–6199. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, L.; Li, S.; Geng, J.; Song, Q.; Liu, J.; Wang, C.; Wang, H.; Li, J.; Qin, Z.; et al. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Appl. Surf. Sci. 2011, 257, 8686–8691. [Google Scholar] [CrossRef]
- Román, S.; Valente Nabais, J.M.; Ledesma, B.; González, J.F.; Laginhas, C.; Titirici, M.M. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Micropor. Mesopor. Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Mourão, P.A.M.; Laginhas, C.; Custódio, F.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L. Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors. Fuel Process. Technol. 2011, 92, 241–246. [Google Scholar] [CrossRef]
- Farooq, A.; Reinert, L.; Levêque, J.M.; Papaiconomou, N.; Irfan, N.; Duclaux, L. Adsorption of ionic liquids onto activated carbons: Effect of pH and temperature. Micropor. Mesopor. Mater. 2012, 158, 55–63. [Google Scholar] [CrossRef]
- Nunell, G.V.; Fernández, M.E.; Bonelli, P.R.; Cukierman, A.L. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenerg 2012, 44, 87–95. [Google Scholar] [CrossRef]
- OECD/European Union (2018). Health at a Glance: Europe 2018: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Li, Y.; Zhang, S.; Zhang, W.; Xiong, W.; Ye, Q.; Hou, X.; Wang, C.; Wang, P. Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. J. Env. Manag. 2019, 238, 442–450. [Google Scholar] [CrossRef]
- Kato, M.; Fukuda, T.; Serretti, A.; Wakeno, M.; Okugawa, G.; Ikenaga, Y.; Hosoi, Y.; Takekita, Y.; Mandelli, L.; Azuma, J.; et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog. Neuro. Psychoph. 2008, 32, 398–404. [Google Scholar] [CrossRef]
- Sousa-Moura, D.; Matsubara, E.Y.; Ferraz, I.B.M.; de Oliveira, R.; Szlachetka, I.O.; da Silva, S.W.; Camargo, N.S.; Rosolen, J.M.; Grisolia, C.K.; da Rocha, M.C.O. CNTs coated charcoal as a hybrid composite material: Adsorption of fluoxetine probeby zebrafish embryos and its potential for environmental remediation. Chemosphere 2019, 230, 369–376. [Google Scholar] [CrossRef]
- Silva, B.; Martins, M.; Rosca, M.; Rocha, V.; Lagoa, A.; Nevesa, I.C.; Tavares, T. Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Sep. Purif. 2020, 235, 116–139. [Google Scholar] [CrossRef] [Green Version]
- Bruckert, E.; Labreuche, J.; Amarenco, P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 2010, 210, 353–361. [Google Scholar] [CrossRef]
- Datta, D.; Sah, S.; Rawat, N.; Kumar, R. Application of Magnetically Activated Carbon for the Separation of Nicotinic Acid from Aqueous Solution. J. Chem. Eng. Data 2017, 62, 712–719. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption Isotherm. I, Theoretical. J. Colloid Interf. Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Jaria, G.; Calisto, V.; Gil, M.V.; Otero, M.; Esteve, I. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. J. Colloid Interf. Sci. 2015, 448, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Nabais, J.M.V.; González, J.F.; González-García, C.M.; Ortiz, A.L. Study of the Contributions of Non-Specific and Specific Interactions during Fluoxetine Adsorption onto Activated Carbons. Clean-Soil Air Water 2012, 40, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Castilla, C.; López-Ramón, M.V.; Carrasco-Marín, F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 2000, 38, 1995–2001. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. In Vitro Adsorption Study of Fluoxetine in Activated Carbons and Activated Carbon Fibres. Fuel Process. Technol. 2008, 89, 549–555. [Google Scholar] [CrossRef]
- Apple, C.A.; Wittenberg, B.A.; Wittenberg, B.J. Nicotinic Acid as a Ligand Affecting Leghemoglobin Structure and Oxygen Reactivity. PNAS 1973, 70, 564–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayranci, E.; Duman, O. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J. Hazard. Mater. 2006, 36, 542–552. [Google Scholar] [CrossRef]
- Qureshi, M.; Varshney, K.G.; Zuber, K.; Ahmad, A. Adsorption of Tertiary Nitrogen-Containing Compounds on Activated Carbon. I. Equilibrium Studies of Nicotinic Acid in Aqueous Systems. Colloid Surf. 1990, 50, 7–16. [Google Scholar] [CrossRef]
- Román, S.; González, J.F.; Encinar, J.M. Olive stone: A source of energy generation and a suitable precursor for activated carbon production. In Proceedings of the International Conference on Renewable Energies and Power Quality, Santander, Spain, 13–15 March 2008. [Google Scholar]
- Roman, S.; González, J.F.; González-García, C.M.; Martínez, G.; Encinar, J.M. The adsorptive properties of air activated carbons from walnut-shells. In Proceedings of the 11th Mediterranean Congress of Chemical Engineering, Barcelona, Spain, 21–24 October 2008. [Google Scholar]
- Domínguez, F. Empleo de hydrochars biomásicos como precursores de carbones activos ácidos y básicos para la adsorción de compuestos iónicos. Ph.D. Thesis, University of Extremadura, Badajoz, Spain, 2013. [Google Scholar]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024–1026. [Google Scholar] [CrossRef]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Fluoxetine | Parameters | SFA | SFC | OSA | OSC | WSA | WSC |
Langmuir | q0 (mg g−1) | 16.05 | 13.77 | 44.07 | 9.87 | 22.43 | 26.26 |
KL (L mg−1) | 0.14 | 0.77 | 0.03 | 0.44 | 0.07 | 0.40 | |
R2 | 1.00 | 0.98 | 0.95 | 0.99 | 0.99 | 0.98 | |
Freundlich | KF (mg g−1)(L mg−1)1/n | 6.10 | 8.59 | 2.28 | 5.06 | 0.26 | 9.70 |
n | 3.02 | 9.35 | 1.62 | 15.40 | 4.26 | 4.72 | |
R2 | 0.97 | 0.71 | 0.95 | 0.85 | 0.97 | 0.75 | |
Redlich-Peterson | KR (L g−1) | 23.00 | 32.00 | 72.40 | 25.70 | 26.02 | 20.10 |
aR (L mg−1) | 1.45 | 2.10 | 1.24 | 3.12 | 2.41 | 0.82 | |
g | 0.91 | 1.00 | 0.98 | 0.98 | 0.91 | 1.03 | |
R2 | 0.88 | 0.75 | 0.93 | 0.83 | 0.78 | 0.78 | |
Sips | KS (L mg−1) | 0.66 | 0.77 | 0.85 | 0.94 | 0.76 | 0.88 |
αS (mg g−1) | 16.20 | 14.20 | 34.50 | 9.55 | 21.20 | 24.50 | |
βS | 0.85 | 1.35 | 0.46 | 0.68 | 0.59 | 0.71 | |
R2 | 0.96 | 0.96 | 0.93 | 0.81 | 0.96 | 0.96 | |
Nicotinic Acid | Parameters | SFA | SFC | OSA | OSC | WSA | WSC |
Langmuir | q0 (mg g−1) | 57.21 | 89.59 | 77.44 | 81.93 | 16.18 | 91.91 |
KL (L mg−1) | 1.14 | 4.41 | 2.42 | 1.64 | 0.86 | 0.12 | |
R2 | 1.000 | 0.999 | 1.000 | 0.814 | 0.999 | 0.992 | |
Freundlich | KF (mg g−1)(L mg−1)1/n | 20.42 | 66.31 | 21.68 | 41.53 | 5.77 | 17.43 |
n | 4.49 | 2.90 | 7.25 | 4.09 | 3.82 | 2.58 | |
R2 | 0.76 | 0.98 | 0.98 | 0.84 | 0.89 | 0.96 | |
Redlich-Peterson | KR (L g−1) | 28.90 | 286.55 | 212.00 | 224.50 | 26.02 | 30.61 |
aR (L mg−1) | 0.49 | 3.12 | 2.33 | 3.60 | 2.13 | 1.14 | |
g | 1.00 | 0.99 | 0.65 | 0.85 | 0.99 | 0.69 | |
R2 | 0.81 | 0.96 | 0.92 | 0.74 | 0.94 | 0.99 | |
Sips | KS (L mg−1) | 4.20 | 4.35 | 3.90 | 4.20 | 4.70 | 4.15 |
αS (mg g−1) | 52.00 | 89.20 | 75.50 | 78.60 | 13.70 | 88.50 | |
βS | 1.60 | 1.75 | 1.03 | 1.98 | 0.36 | 0.18 | |
R2 | 0.99 | 0.99 | 0.89 | 0.82 | 0.92 | 0.94 |
Samples | SBET m2 g−1 | Vmi cm3 g−1 | Vme cm3 g−1 | Vma cm3 g−1 | PZC |
---|---|---|---|---|---|
WSA | 213 | 0.105 | 0.052 | 2.361 | 4.43 |
WSC | 379 | 0.196 | 0.017 | 2.253 | 8.53 |
SFA | 434 | 0.228 | 0.031 | 6.292 | 4.25 |
SFC | 438 | 0.230 | 0.047 | 5.211 | 8.12 |
OSA | 204 | 0.115 | 0.002 | 2.094 | 4.05 |
OSC | 438 | 0.231 | 0.006 | 3.558 | 9.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román, S.; Valente Nabais, J.M.; Ledesma, B.; Laginhas, C.; Titirici, M.-M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules 2020, 25, 2264. https://doi.org/10.3390/molecules25092264
Román S, Valente Nabais JM, Ledesma B, Laginhas C, Titirici M-M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules. 2020; 25(9):2264. https://doi.org/10.3390/molecules25092264
Chicago/Turabian StyleRomán, Silvia, Joâo Manuel Valente Nabais, Beatriz Ledesma, Carlos Laginhas, and Maria-Magdalena Titirici. 2020. "Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents" Molecules 25, no. 9: 2264. https://doi.org/10.3390/molecules25092264