Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Vintage Conditions and Fruit Parameters
2.2. Basic Wine Composition
2.3. Colour and Tannin Properties
2.4. Implications for Wine Sensory Quality
3. Materials and Methods
3.1. Chemicals
3.2. Climate Data
3.3. Harvest and Winemaking
3.4. Analysis of Basic Chemical Parameters
3.5. Extraction and Isolation of Grape and Wine Tannin
3.5.1. Wine-Like Extraction
3.5.2. Isolation of Wine Tannin
3.6. Analysis of Tannins and Wine Colour
3.7. Sensory Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schelezki, O.J.; Smith, P.A.; Hranilovic, A.; Bindon, K.A.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition. Food Chem. 2018, 244, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Schelezki, O.J.; Suklje, K.; Boss, P.K.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties. Food Chem. 2018, 259, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Kontoudakis, N.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Aust. J. Grape Wine Res. 2011, 17, 230–238. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Volatile and sensory profiling of Shiraz wine in response to alcohol management: Comparison of harvest timing versus technological approaches. Food Res. Int. 2018, 109, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Schelezki, O.J.; Antalick, G.; Šuklje, K.; Jeffery, D.W. Pre-fermentation approaches to producing lower alcohol wines from Cabernet Sauvignon and Shiraz: Implications for wine quality based on chemical and sensory analysis. Food Chem. 2020, 309, 125698. [Google Scholar] [CrossRef]
- Sherman, E.; Greenwood, D.R.; Villas-Boâs, S.G.; Heymann, H.; Harbertson, J.F. Impact of grape maturity and ethanol concentration on sensory properties of Washington State Merlot wines. Am. J. Enol. Vitic. 2017, 68, 344–356. [Google Scholar] [CrossRef]
- Wine Australia. National Vintage Report 2019; Wine Australia: Adelaide, Australia, 2019; pp. 1–63. [Google Scholar]
- Suklje, K.; Zhang, X.; Antalick, G.; Clark, A.C.; Deloire, A.; Schmidtke, L.M. Berry shriveling significantly alters Shiraz (Vitis vinifera L.) grape and wine chemical composition. J. Agric. Food Chem. 2016, 64, 870–880. [Google Scholar] [CrossRef]
- Teng, B.; Petrie, P.R.; Smith, P.A.; Bindon, K.A. Comparison of water addition and early-harvest strategies to decrease alcohol concentration in Vitis vinifera cv. Shiraz wine: Impact on wine phenolics, tannin composition and colour properties. Aust. J. Grape Wine Res. 2020, 26, 158–171. [Google Scholar] [CrossRef]
- Australian Government. Standard 4.5.1: Wine Production Requirements; Federal Register of Legislation: Canberra, Australia, 2017.
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Triolo, R.; Roby, J.P.; Plaia, A.; Hilbert, G.; Buscemi, S.; Di Lorenzo, R.; van Leeuwen, C. Hierarchy of factors impacting grape berry mass. Separation of direct and indirect effects on major berry metabolites. Am. J. Enol. Vitic. 2017, 69, 103–112. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Acids. In Understanding Wine Chemistry, 1st ed.; Wiley: Chichester, UK, 2016. [Google Scholar]
- Yanniotis, S.; Kotseridis, G.; Orfanidou, A.; Petraki, A. Effect of ethanol, dry extract and glycerol on the viscosity of wine. J. Food Eng. 2007, 81, 399–403. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Cozzolino, D.; Herderich, M.J.; Smith, P.A. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations. J. Agric. Food Chem. 2010, 58, 12313–12319. [Google Scholar] [CrossRef] [PubMed]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem. 2013, 138, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Perez-Magarino, S.; Gonzalez-San Jose, M.L. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chem. 2006, 96, 197–208. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Pastor del Rio, J.L.; Kennedy, J.A. Development of proanthocyanidins in Vitis vinifera L. cv. Pinot Noir grapes and extraction into wine. Am. J. Enol. Vitic. 2006, 57, 125–132. [Google Scholar]
- Bindon, K.A.; Bacic, A.; Kennedy, J.A. Tissue-specific and developmental modifications of grape cell walls influence the adsorption of proanthocyanidins. J. Agric. Food Chem. 2012, 60, 9249–9260. [Google Scholar] [CrossRef]
- Bindon, K.A.; Madani, S.H.; Pendleton, P.; Smith, P.A.; Kennedy, J.A. Factors affecting skin tannin extractability in ripening grapes. J. Agric. Food Chem. 2014, 62, 1130–1141. [Google Scholar] [CrossRef]
- Bautista-Ortin, A.B.; Rodriguez-Rodriguez, P.; Gil-Munoz, R.; Jimenez-Pascual, E.; Busse-Valverde, N.; Martinez-Cutillas, A.; Lopez-Roca, J.M.; Gomez-Plaza, E. Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Aust. J. Grape Wine Res. 2012, 18, 123–130. [Google Scholar] [CrossRef]
- Bindon, K.A.; Kassara, S.; Smith, P.A. Towards a model of grape tannin extraction under wine-like conditions: The role of suspended mesocarp material and anthocyanin concentration. Aust. J. Grape Wine Res. 2017, 23, 22–32. [Google Scholar] [CrossRef]
- McRae, J.M.; Ziora, Z.M.; Kassara, S.; Cooper, M.A.; Smith, P.A. Ethanol concentration influences the mechanisms of wine tannin interactions with poly(L-proline) in model wine. J. Agric. Food Chem. 2015, 63, 4345–4352. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Garcia, Y.; Smith, P.A.; Bindon, K.A. Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydr. Polym. 2014, 114, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Zamora, F. Dealcoholised wines and low-alcohol wines. In Wine Safety, Consumer Preference, and Human Health; Moreno-Arribas, M.V., Suáldea, B.B., Eds.; Springer: Madrid, Spain, 2016. [Google Scholar]
- Ma, W.; Guo, A.Q.; Zhang, Y.L.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Ferreira, V.; Escudero, A.; Campo, E.; Cacho, J. The Chemical Foundations of Wine Aroma: A Role Game Aiming at Wine Quality, Personality and Varietal Expression. In Proceedings of the Thirteenth Australian Wine Industry Technical Conference, Adelaide, Australia, 28 July–2 August 2007; Blair, R.J., Williams, P.J., Pretorius, I.S., Eds.; Australian Wine Industry Technical Conference Inc.: Adelaide, Australia, 2007; pp. 142–150. [Google Scholar]
- Australian Government Bureau of Meteorology Monthly Climate Statistics, Noarlunga. Available online: http://www.bom.gov.au/climate/averages/tables/cw_023885_All.shtml. (accessed on 15 May 2018).
- Deloire, A. Predicting harvest date using berry sugar accumulation. Wines Vines 2013, May 1, 58–61. [Google Scholar]
- Li, S.; Bindon, K.; Bastian, S.E.; Jiranek, V.; Wilkinson, K.L. Use of winemaking supplements to modify the composition and sensory properties of Shiraz wine. J. Agric. Food Chem. 2017, 65, 1353–1364. [Google Scholar] [CrossRef]
- Bindon, K.A.; Kassara, S.; Cynkar, W.U.; Robinson, E.M.C.; Scrimgeour, N.; Smith, P.A. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef]
- Jeffery, D.W.; Mercurio, M.D.; Herderich, M.J.; Hayasaka, Y.; Smith, P.A. Rapid isolation of red wine polymeric polyphenols by solid-phase extraction. J. Agric. Food Chem. 2008, 56, 2571–2580. [Google Scholar] [CrossRef]
- Kassara, S.; Kennedy, J.A. Relationship between red wine grade and phenolics. 2. Tannin composition and size. J. Agric. Food Chem. 2011, 59, 8409–8412. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics—Adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food; Springer: New York, NY, USA, 2010. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Month | Ø Temp Min (°C) | Ø Temp Max (°C) | Ø Temp (°C) | ∑ Rainfall (mm) |
---|---|---|---|---|
Jul ′16 | 9.0 (+0.3) | 14.5 (−0.3) | 11.8 (0.0) | 118.4 (+51.8) |
Aug ′16 | 8.8 (0.0) | 16.5 (+0.6) | 12.7 (+0.3) | 68.6 (+14.9) |
Sep ′16 | 9.8 (−0.6) | 16.6 (−2.0) | 13.2 (−1.3) | 64.0 (+18.1) |
Oct ′16 | 10.4 (−1.1) | 19.9 (−1.5) | 15.2 (−1.3) | 65.8 (+33.8) |
Nov ′16 | 12.0 (−2.1) | 22.8 (−2.1) | 17.4 (−2.1) | 16.0 (−5.1) |
Dec ′16 | 15.2 (−0.2) | 26.6 (+0.2) | 20.9 (0.0) | 48.0 (+26.1) |
Jan ′17 | 17.6 (+0.5) | 28.5 (−0.2) | 23.1 (+0.2) | 34.2 (+16.1) |
Feb ′17 | 16.5 (−0.4) | 26.8 (−0.9) | 21.7 (−0.6) | 14.2 (−5.4) |
Mar ′17 | 17.5 (+1.9) | 27.7 (+2.0) | 22.6 (+1.9) | 9.2 (−12.4) |
Apr ′17 | 14.1 (+0.5) | 22.5 (+0.2) | 18.3 (+0.3) | 50.0 (+16.6) |
May ′17 | 11.1 (−0.4) | 18.3 (−0.2) | 14.7 (−0.3) | 25.8 (−27.9) |
Jun ′17 | 7.7 (−1.6) | 16.2 (+0.6) | 12.0 (−0.5) | 21.8 (−40.9) |
Parameter | Fresh Fruit | Mature Fruit |
---|---|---|
Harvest date | 8 March 2017 | 20 March 2017 |
TSS [°Brix] | 22.7 ± 0.1 b | 25.5 ± 0.0 a |
Berry weight [g/berry] | 0.89 ± 0.02 | 0.90 ± 0.02 |
TA [g/L] 2 | 5.8 ± 0.1 a | 4.5 ± 0.1 b |
pH | 3.82 ± 0.00 b | 4.03 ± 0.00 a |
Extractable tannin3 | ||
mg/g berry | 0.36 ± 0.01 b | 0.53 ± 0.02 a |
mg/berry | 0.31 ± 0.01 b | 0.38 ± 0.03 a |
Wine | Water Addition Rate [% v/v] | Alcohol Level [% v/v] | TA [g/L] 2 | pH | Malic Acid [g/L] | Acetic Acid [g/L] | Glycerol [g/L] | Acetaldehyde [g/L] | Fructose [g/L] 3 |
---|---|---|---|---|---|---|---|---|---|
FF Control | n/a | 13.6 ± 0.1 a | 7.1 ± 0.2 | 3.48 ± 0.05 c | 3.05 ± 0.65 | 0.37 ± 0.04 a,b | 9.0 ± 1.22 a,b | 0.46 ± 0.17 a | 0.11 ± 0.16 |
FF_S1 | 41.0 | 9.6 ± 0.1 e | 6.5 ± 0.1 | 3.53 ± 0.01 b,c | 2.83 ± 0.08 | 0.42 ± 0.02 a | 7.2 ± 0.1 c,d | 0.26 ± 0.01 b,c | 0.10 ± 0.14 |
FF_S2 | 26.3 | 11.1 ± 0.1 c | 6.7 ± 0.1 b | 3.58 ± 0.05 a,b | 3.07 ± 0.03 | 0.36 ± 0.01 b,c | 8.1 ± 0.2 b,c | 0.32 ± 0.01 a,b,c | 0.22 ± 0.16 |
FF_S3 | 11.6 | 12.6 ± 0.0 b | 7.0 ± 0.0 | 3.57 ± 0.01 a,b,c | 3.36 ± 0.17 | 0.32 ± 0.01 c,d | 9.2 ± 0.2 a | 0.40 ± 0.06 a,b | 0.12 ± 0.18 |
FF_D1 | 41.0 | 9.0 ± 0.1 f | 6.2 ± 0.0 | 3.39 ± 0.03 d | 2.52 ± 0.03 | 0.39 ± 0.00 a,b | 6.7 ± 0.1 d | 0.21 ± 0.01 c | 0.08 ± 0.11 |
FF_D2 | 26.3 | 10.8 ± 0.1 d | 6.6 ± 0.1 b | 3.53 ± 0.03 b,c | 2.94 ± 0.06 | 0.34 ± 0.04 b,c,d | 8.0 ± 0.2 c | 0.28 ± 0.03 b,c | 0.20 ± 0.14 |
FF_D3 | 11.6 | 12.6 ± 0.1 b | 7.9 ± 1.4 | 3.62 ± 0.02 a | 3.25 ± 0.06 | 0.30 ± 0.02 d | 9.1 ± 0.1 a,b | 0.38 ± 0.03 a,b | 0.12 ± 0.17 |
p-value | - | <0.0001 | 0.120 | <0.0001 | 0.087 | 0.004 | 0.000 | 0.039 | 0.951 |
Control | - | 13.6 a | 7.1 | 3.48 a | 3.05 | 0.37 | 9.0a | 0.46 | 0.11 |
Substitution | - | 11.1 b | 6.8 | 3.56 b | 3.09 | 0.36 | 8.2b | 0.33 | 0.15 |
Dilution | - | 10.8 c | 6.9 | 3.51 c | 2.90 | 0.34 | 7.9b | 0.29 | 0.13 |
p-value | - | <0.0001 | 0.6332 | 0.0138 | 0.2251 | 0.1013 | 0.3081 | 0.3516 | 0.8680 |
MF Control | n/a | 15.5 ± 0.1 a | 7.0 ± 0.0 b | 3.52 ± 0.01 a | 2.86 ± 0.02 a | 0.33 ± 0.03 | 11.6 ± 0.1 a | 0.75 ± 0.00 a | 0.90 ± 0.29 a |
MF_S1 | 47.2 | 10.6 ± 0.1 e | 6.6 ± 0.2 c | 3.50 ± 0.00 a,b | 2.28 ± 0.07 b,c | 0.38 ± 0.01 | 7.6 ± 0.1 d | 0.33 ± 0.03 c,d | 0.39 ± 0.01 b |
MF_S2 | 34.0 | 12.0 ± 0.0 c | 6.7 ± 0.0 c | 3.49 ± 0.02 b,c | 2.47 ± 0.05 b | 0.35 ± 0.04 | 8.6 ± 0.2 c,d | 0.36 ± 0.02 c | 0.44 ± 0.01 b |
MF_S3 | 10.2 | 14.5 ± 0.0 b | 7.3 ± 0.2 a | 3.52 ± 0.02 a | 2.76 ± 0.02 a | 0.32 ± 0.0 | 10.5 ± 0.1 b | 0.61 ± 0.03 b | 0.58 ± 0.01 b |
MF_D1 | 47.2 | 9.60 ± 0.20 f | 6.3 ± 0.0 d | 3.31 ± 0.02 e | 2.17 ± 0.19 c | 0.30 ± 0.02 | 7.8 ± 0.5 d | 0.23 ± 0.04 d | 0.35 ± 0.05 b |
MF_D2 | 34.0 | 11.7 ± 0.1 d | 6.5 ± 0.0 c,d | 3.38 ± 0.00 d | 2.47 ± 0.24 b | 0.31 ± 0.05 | 9.1 ± 1.0 c | 0.36 ± 0.14 c | 0.46 ± 0.08 b |
MF_D3 | 10.2 | 14.4 ± 0.0 b | 7.0 ± 0.1 b | 3.46 ± 0.02 c | 2.78 ± 0.01 a | 0.29 ± 0.01 | 10.7 ± 0.2 a,b | 0.55 ± 0.02 b | 0.54 ± 0.00 b |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.074 | <0.0001 | <0.0001 | <0.0001 | |
Control | - | 15.5 a | 7.0 | 3.52 a | 2.85 | 0.35 a | 11.6 | 0.75 | 0.90 |
Substitution | - | 12.4 b | 6.8 a | 3.50 a | 2.50 | 0.33 a,b | 8.9 | 0.44 | 0.47 |
Dilution | - | 11.9 c | 6.6 b | 3.39 b | 2.47 | 0.30 b | 9.2 | 0.38 | 0.45 |
p-value | - | <0.0001 | 0.0033 | <0.0001 | 0.6639 | 0.0055 | 0.2955 | 0.1126 | 0.7488 |
Wine | Colour Density [au] | Total Anthocyanin [mg/L] | Total Phenolics [au] | SO2 Resistant Pigments [au] | Tannin MM [g/mol] 2 | MCP Tannin [mg/L] 3 |
---|---|---|---|---|---|---|
FF Control | 8.7 ± 0.2 a | 693 ± 11 a | 42.8 ± 0.8 a | 1.42 ± 0.06 a | 1544 ± 22 a | 595 ± 48 a,b |
FF_S1 | 7.7 ± 0.2 c | 598 ± 12 c | 36.0 ± 0.8 c | 1.16 ± 0.02 c | 1489 ± 4 b | 463 ± 37 b,c |
FF_S2 | 8.2 ± 0.4 b | 654 ± 15 b | 39.4 ± 0.8 b | 1.25 ± 0.03 b | 1516 ± 13 a,b | 399 ± 23 c |
FF_S3 | 8.9 ± 0.2 a | 688 ± 17 a | 41.9 ± 0.7 a | 1.39 ± 0.04 a | 1534 ± 18 a | 651 ± 1 a |
FF_D1 | 5.8 ± 0.1 e | 468 ± 9 e | 27.8 ± 0.9 e | 0.89 ± 0.01 e | 1421 ± 18 c | 231 ± 17 d |
FF_D2 | 6.8 ± 0.1 d | 540 ± 20 d | 32.7 ± 0.8 d | 1.08 ± 0.01 d | 1477 ± 31 b | 455 ± 80 b,c |
FF_D3 | 8.6 ± 0.1 a,b | 647 ± 12 b | 40.1 ± 1.0 b | 1.30 ± 0.02 b | 1537 ± 10 a | 618 ± 148 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Control | 8.7 a | 693 a | 42.8 a | 1.42 a | 1544 a | 595 |
Substitution | 8.3 b | 647 b | 39.1 b | 1.27 b | 1513 a | 504 |
Dilution | 7.1 c | 552 c | 33.5 c | 1.09 c | 1478 b | 435 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0055 | 0.0987 |
MF Control | 15.4 ± 0.5 a | 944 ± 33 a | 61.0 ± 2.0 a | 2.30 ± 0.05 a | 1640 ± 47 a | 917 ± 61 a |
MF_S1 | 10.2 ± 0.3 e | 727 ± 10 e | 42.6 ± 0.8 e | 1.52 ± 0.03 e | 1509 ± 10 b,c | 680 ± 62 b |
MF_S2 | 11.7 ± 0.1 d | 784 ± 10 d | 47.0 ± 0.7 d | 1.71 ± 0.01 d | 1551 ± 11 b | 734 ± 62 b |
MF_S3 | 14.2 ± 0.2 b | 905 ± 19 b | 57.2 ± 0.6 b | 2.16 ± 0.03 b | 1639 ± 18 a | 1011 ± 67 a |
MF_D1 | 7.80 ± 0.19 f | 565 ± 4 g | 33.5 ± 0.3 f | 1.12 ± 0.01 f | 1492 ± 3 c | 286 ± 20 c |
MF_D2 | 11.1 ± 1.2 d,e | 673 ± 18 f | 42.0 ± 0.7 e | 1.50 ± 0.07 e | 1536 ± 6 b,c | 598 ± 109 b |
MF_D3 | 12.8 ± 0.3 c | 821 ± 6 c | 50.4 ± 0.5 c | 1.93 ± 0.03 c | 1633 ± 16 a | 951 ± 43 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Control | 15.4 a | 944 a | 61.0 a | 2.30 a | 1640 | 917 a |
Substitution | 12.0 b | 806 b | 48.9 b | 1.80 b | 1566 | 809 a |
Dilution | 10.6 c | 686 c | 42.0 c | 1.51 c | 1554 | 612 b |
p-value | 0.0003 | <0.0001 | <0.0001 | <0.0001 | 0.3053 | <0.0001 |
Fresh Fruit | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FF Control | FF_D1 | FF_D2 | FF_D3 | FF_S1 | FF_S2 | FF_S3 | p-value | Control | Dilution | Substi-tution | p-Value | |
% ABV | 13.6 | 9.0 | 10.8 | 12.6 | 9.6 | 11.1 | 12.6 | - | - | - | - | - |
Aroma | ||||||||||||
Dried fruit | 42.1 a,b | 26.2 c | 33.6 a,b,c | 48.0 a,b | 29.0 b,c | 29.3 b,c | 50.4 a | 0.0174 | 42.1 | 35.9 | 34.5 | 0.949 |
Confectionery | 49.2 a | 27.1 c,d | 31.6 b,c,d | 37.7 a,b,c | 20.5 d | 40.3 a,b,c | 46.3 a,b | 0.0038 | 49.2 | 32.1 | 34.4 | 0.444 |
Mixed spice | 45.2 a | 22.8 c | 23.4 c | 38.6 a,b,c | 27.1 b,c | 29.3 b,c | 35.3 a,b,c | 0.0035 | 45.2 | 28.3 | 30.0 | 0.552 |
Sweaty | 26.7 c | 47.1 a,b | 44.0 a,b | 34.8 b,c | 57.0 a | 36.2 b,c | 50.2 a,b | 0.0039 | 26.7 | 41.9 | 47.5 | 0.215 |
Alcohol | 51.3 a | 29.2 c | 35.0 b,c | 36.1 b,c | 30.0 c | 43.8 a,b,c | 51.1 a,b | 0.0145 | 51.3 | 33.4 | 40.4 | 0.074 |
Flavour | ||||||||||||
Flavour intensity | 65.1 a | 35.3 d | 51.8 bc | 52.3 b,c | 47.7 c | 51.0 c | 63.8 a,b | <0.0001 | 65.1 a | 46.4 c | 53.0 b | 0.020 |
Sour fruit | 48.3 b,c | 57.3 a,b | 66.7 a | 54.8 a,b,c | 63.4 a | 67.0 a | 40.2 c | 0.0073 | 48.3 | 59.6 | 59.0 | 0.541 |
Dried fruit | 33.8 a,b | 20.1 b | 25.1 b | 31.6 a,b | 21.5 b | 19.6 b | 45.3 a | 0.0194 | 33.8 | 25.6 | 26.7 | 0.474 |
Dark fruit | 52.1 a,b | 35.8 b,c | 39.7 b,c | 48.5 a,b,c | 41.0 b,c | 33.0 c | 63.6 a | 0.0187 | 52.1 | 41.3 | 43.6 | 0.374 |
Confectionery | 47.4 a | 16.8 d | 26.3 c,d | 29.7 b,c | 15.8 d | 32.6 b,c | 40.4 a,b | <0.0001 | 47.4 | 24.2 | 28.2 | 0.161 |
Mixed spice | 36.6 a | 18.8 d | 21.5 c,d | 32.8 a,b,c | 23.5 d,c,d | 21.9 c,d | 36.1 a,b | 0.0055 | 36.6 | 24.4 | 26.0 | 0.420 |
Green | 29.8 c | 44.9 a | 42.5 a,b | 39.0 a,b,c | 48.3 a | 38.3 a,b,c | 23.3 c | 0.0402 | 29.8 | 42.1 | 38.3 | 0.227 |
Alcohol | 62.8 a | 23.8 d | 35.3 c,d | 47.5 b,c | 26.6 d | 41.6 b,c | 55.3 a,b | <0.0001 | 62.8 | 35.5 | 39.4 | 0.145 |
Mouthfeel | ||||||||||||
Body | 53.3 a | 20.4 c | 29.3 b,c | 37.3 b | 25.3 c | 37.0 b | 50.8 a | <0.0001 | 53.3 a | 29.0 c | 36.0 b | 0.009 |
Astringency | 53.5 a | 22.0 e | 38.3 cd | 43.0 a,b,c | 30.5 d,e | 40.9 b,c,d | 52.8 a,b | <0.0001 | 53.5 a | 34.4 b | 40.0 b | 0.042 |
Mature Fruit | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MF Control | MF_D1 | MF_D2 | MF_D3 | MF_S1 | MF_S2 | MF_S3 | p-value | Control | Dilution | Substi-tution | p-Value | |
% ABV | 15.5 | 9.6 | 11.7 | 14.4 | 10.6 | 12.0 | 14.5 | - | - | - | - | - |
Aroma | ||||||||||||
Aroma intensity | 71.3 a | 52.5 c | 62.8 a,b | 69.7 a | 58.4 b,c | 59.0 b,c | 69.0 a | 0.0005 | 71.3 | 61.7 | 62.2 | 0.857 |
Dried fruit | 52.2 a,b | 40.0 b,c | 47.9 a,b | 52.5 a,b | 30.0 c | 44.8 a,b,c | 58.2 a | 0.0245 | 52.2 | 46.8 | 44.3 | 0.603 |
Confectionery | 50.8 | 28.5 | 40.0 | 46.0 | 40.8 | 42.6 | 42.5 | 0.1701 | 50.8 | 38.5 | 42.0 | 0.448 |
Mixed spice | 50.8 a | 30.0 c | 34.9 b,c | 35.1 b,c | 37.7 a,b,c | 33.3 b,c | 46.3 a,b | 0.0221 | 50.8 | 33.3 | 39.1 | 0.134 |
Sweaty | 36.7 | 43.2 | 40.2 | 26.2 | 36.1 | 22.0 | 32.3 | 0.0894 | 36.7 | 36.5 | 30.1 | 0.159 |
Alcohol | 69.5 a | 29.8 d | 49.8 b,c | 65.0 a | 37.5 c,d | 44.4 c | 61.6 a,b | <0.0001 | 69.5 | 48.2 | 47.8 | 0.930 |
Flavour | ||||||||||||
Flavour intensity | 75.3 a | 40.9 d | 56.5 c | 71.7 a,b | 54.5 c | 63.9 b,c | 67.5 a,b | <0.0001 | 75.3 | 56.4 | 62.0 | 0.058 |
Sour fruit | 28.0 c | 53.5 a | 37.8 b,c | 36.5 b,c | 51.3 a,b | 45.8 a,b | 29.0 c | 0.0028 | 29.0 | 42.6 | 42.0 | 0.893 |
Dried fruit | 58.5 a | 30.4 c,d | 45.0 a,b,c | 50.9 a,b | 25.9 d | 38.8 b,c,d | 54.8 a,b | 0.0003 | 58.5 | 42.1 | 39.8 | 0.633 |
Dark fruit | 68.5 a | 45.9 b,c | 53.3 a,b,c | 60.8 a,b | 40.9 c | 55.4 a,b,c | 66.0 a | 0.0069 | 68.5 | 53.3 | 54.1 | 0.862 |
Confectionery | 49.8 a | 20.5 c | 33.8 b,c | 47.5 a,b | 34.2 c | 34.0 b,c | 50.8 a | 0.0001 | 49.8 | 33.9 | 38.7 | 0.259 |
Mixed spice | 50.4 a | 22.4 c | 33.0 b,c | 42.0 a,b | 31.6 b,c | 38.4 a,b | 46.2 a | 0.0005 | 50.4 | 32.4 | 38.7 | 0.098 |
Green | 19.2 c | 34.5 a | 23.1 b,c | 18.6 c | 30.4 a,b | 23.0 b,c | 24.2 a,b,c | 0.0442 | 19.2 | 25.4 | 25.9 | 0.886 |
Alcohol | 83.0 a | 19.8 e | 48.6 c | 74.5 a,b | 36.3 d | 57.3 c | 72.9 b | <0.0001 | 83 a | 47.7 c | 55.5 b | 0.006 |
Mouthfeel | ||||||||||||
Body | 74.7 a | 21.8 e | 38.8 d | 63.3 b | 38.3 d | 50.0 c | 64.3 b | <0.0001 | 74.7 a | 41.3 c | 50.8 b | 0.0003 |
Astringency | 66.5 a | 20.0 d | 44.1 b,c | 60.9 a | 35.8 c | 50.1 b | 60.6 a | <0.0001 | 66.5 a | 41.7 c | 48.8 b | 0.010 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schelezki, O.J.; Deloire, A.; Jeffery, D.W. Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines. Molecules 2020, 25, 2245. https://doi.org/10.3390/molecules25092245
Schelezki OJ, Deloire A, Jeffery DW. Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines. Molecules. 2020; 25(9):2245. https://doi.org/10.3390/molecules25092245
Chicago/Turabian StyleSchelezki, Olaf J., Alain Deloire, and David W. Jeffery. 2020. "Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines" Molecules 25, no. 9: 2245. https://doi.org/10.3390/molecules25092245
APA StyleSchelezki, O. J., Deloire, A., & Jeffery, D. W. (2020). Substitution or Dilution? Assessing Pre-Fermentative Water Implementation to Produce Lower Alcohol Shiraz Wines. Molecules, 25(9), 2245. https://doi.org/10.3390/molecules25092245