You are currently on the new version of our website. Access the old version .

World Electric Vehicle Journal

World Electric Vehicle Journal (WEVJ) is the first international, peer-reviewed, open access journal that comprehensively covers all studies related to battery, hybrid, and fuel cell electric vehicles, published monthly online.
Quartile Ranking JCR - Q2 (Engineering, Electrical and Electronic | Transportation Science and Technology)

All Articles (3,159)

The built-in V-shaped permanent magnet motor can effectively utilize reluctance torque to improve torque density, but there is also a problem of large torque ripple causing high vibration noise. This article proposes a rotor structure with four magnetic isolation holes to reduce torque ripple in V-shaped built-in permanent magnet motors. Firstly, a finite element analysis model of the built-in V-shaped permanent magnet motor is established. The influence of slot width, rotor rib width, and magnetic bridge parameters on the torque of the permanent magnet motor was studied through parameterized scanning, and an optimization scheme was selected. Then, the position and size of the magnetic hole were optimized through an adaptive single-objective algorithm. Compared with the ordinary built-in V-shaped structure, the torque ripple of the built-in V-shaped permanent magnet motor with four magnetic isolation holes is reduced from 17.7% to 6.7%. The proposed internal V-shaped rotor structure with magnetic isolation holes and the optimization method can effectively reduce torque ripple, thus effectively solving the problem of vibration noise caused by torque ripple.

21 January 2026

Built-in V-shaped permanent magnet motor.

Infrastructure Barriers to the Electrification of Vehicle Fleets in Russian Cities

  • Alexander E. Plesovskikh,
  • Nelly S. Kolyan and
  • Anton I. Pyzhev
  • + 1 author

Switching to electric vehicles (EVs) could help reduce air pollution in cities. This is especially important for cities in Russia that have grown quickly because of industry, like those in Siberia, where environmental problems are particularly acute. However, several factors continue to hinder the rapid expansion of EVs on the market, such as an additional strain on the energy infrastructure, which threatens to cause power outages. This study proposes a model for estimating the electricity consumption by EVs in the largest Russian cities, taking into account the technical characteristics of the EV fleet and climatic conditions. The calculations indicate that if 15% of the current car fleet are replaced by EVs, electricity consumption in the 16 largest cities in Russia would increase by 2.2 TWh per year in total. The estimated additional demand in particular cities varies between 33 mln and 769 mln kWh per year, depending on the number of vehicles and the local climate. Furthermore, we conducted an intra-day simulation of electricity consumption from EVs in a conditional Russian city with a population of over one million people. Three scenarios for the power grid load have been developed: (A) the maximum scenario, in which all EVs have a battery level of 0%; (B) the medium scenario, where EVs’ state of charge is distributed between 0% and 100%, and (C) the minimum scenario, involving charging scheduling that allows only EVs with a battery level of 20% or less to charge. The findings show that replacing just 15% of the car fleet with electric vehicles will trigger an increase in current daily household urban consumption of 28.4% in scenario (C), 75.6% in scenario (B) and 141.8% in scenario (A). Consequently, even in Russia’s largest cities, the further proliferation of EVs requires large-scale investments in power infrastructure. An additional 1 mln kWh used by EVs per day may require $160.7 mln investments in energy facilities and urban distribution networks. These findings highlight the necessity of a more thorough cost–benefit analysis of widespread electric vehicle adoption in densely populated urban areas.

20 January 2026

Electric mobility has emerged as a pivotal component of global decarbonization and sustainable transport strategies [...]

20 January 2026

The disorderly charging of a large number of electric vehicles (EVs) intensifies the operational pressure on the distribution network and negatively impacts the users’ charging experience. This paper proposes an orderly-charging optimization strategy based on the Deep Deterministic Policy Gradient (DDPG) algorithm. First, a comprehensive EV charging behavior model is developed, incorporating regional functional characteristics, vehicle categories, and user behavioral diversity to more accurately reflect real-world charging patterns. Second, a closed-loop control architecture is designed, integrating charging load forecasting, dynamic energy storage regulation, and real-time power allocation. Finally, the DDPG algorithm is applied to enable intelligent dynamic power allocation, which effectively flattens peak–valley load disparities and minimizes user charging costs. The simulation results demonstrate that the proposed strategy significantly enhances distribution network performance and user satisfaction. Specifically, the strategy reduces peak load by 17.08% and achieves a total cost saving of USD 511.49 (17.08%). By considering real-world zones and diverse EV types, this strategy provides substantial engineering value for practical implementation in multi-zone charging systems.

19 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
World Electr. Veh. J. - ISSN 2032-6653