Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

38 pages, 454 KiB  
Review
Biosorption of Water Pollutants by Fungal Pellets
by Adriana Jazmín Legorreta-Castañeda, Carlos Alexander Lucho-Constantino, Rosa Icela Beltrán-Hernández, Claudia Coronel-Olivares and Gabriela A. Vázquez-Rodríguez
Water 2020, 12(4), 1155; https://doi.org/10.3390/w12041155 - 17 Apr 2020
Cited by 58 | Viewed by 8051
Abstract
Fungal biosorption is an environmental biotechnology based on the ability of the fungal cell wall to concentrate harmful water pollutants. Among its advantages are its simplicity, high efficiency, flexibility of operation, and low cost. The biosorptive performance of fungal pellets is getting growing [...] Read more.
Fungal biosorption is an environmental biotechnology based on the ability of the fungal cell wall to concentrate harmful water pollutants. Among its advantages are its simplicity, high efficiency, flexibility of operation, and low cost. The biosorptive performance of fungal pellets is getting growing attention since they offer process advantages over the culture of disperse mycelia, such as an enhanced biomass separation, and a high resilience in severe environmental conditions. In this review, biosorption capacity of fungal pellets towards heavy metals, dyes, phenolic compounds, humic substances, pesticides, and pharmaceuticals was reviewed. Available data about the adsorption capacity of pellets, their removal efficiency, and the operational conditions used were collected and synthesized. The studies relying on biodegradation were discarded to present only the possibilities of fungal pellets for removing these concern pollutants through biosorption. It was found that the biosorption of complex mixtures of pollutants on fungal pellets is scarcely studied, as well as the interfering effect of anions commonly found in water and wastewater. Furthermore, there is a lack of research with real wastewater and at pilot and large scale. These topics need to be further explored to take full advantage of fungal pellets on improving the quality of aquatic systems. Full article
(This article belongs to the Special Issue Microbial Action in Wastewater and Sludge)
Show Figures

Graphical abstract

23 pages, 377 KiB  
Review
Use of Ultrasound as an Advanced Oxidation Process for the Degradation of Emerging Pollutants in Water
by Ana L. Camargo-Perea, Ainhoa Rubio-Clemente and Gustavo A. Peñuela
Water 2020, 12(4), 1068; https://doi.org/10.3390/w12041068 - 09 Apr 2020
Cited by 65 | Viewed by 4800
Abstract
Emerging pollutants are compounds of increased environmental importance and, as such there is interest among researchers in the evaluation of their presence, continuity and elimination in different environmental matrices. The present work reviews the available scientific data on the degradation of emerging pollutants, [...] Read more.
Emerging pollutants are compounds of increased environmental importance and, as such there is interest among researchers in the evaluation of their presence, continuity and elimination in different environmental matrices. The present work reviews the available scientific data on the degradation of emerging pollutants, mainly pharmaceuticals, through ultrasound, as an advanced oxidation process (AOP). This study analyzes the influence of several parameters, such as the nature of the pollutant, the ultrasonic frequency, the electrical power, the pH, the constituents of the matrix and the temperature of the solution on the efficiency of this AOP through researches previously reported in the literature. Additionally, it informs on the application of the referred process alone and/or in combination with other AOPs focusing on the treatment of domestic and industrial wastewaters containing emerging pollutants, mainly pharmaceuticals, as well as on the economic costs associated with and the future perspectives that make ultrasound a possible candidate to solve the problem of water pollution by these emerging pollutants.. Full article
19 pages, 1853 KiB  
Review
Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities
by Claudia Agudelo-Vera, Stefania Avvedimento, Joby Boxall, Enrico Creaco, Henk de Kater, Armando Di Nardo, Aleksandar Djukic, Isabel Douterelo, Katherine E. Fish, Pedro L. Iglesias Rey, Nenad Jacimovic, Heinz E. Jacobs, Zoran Kapelan, Javier Martinez Solano, Carolina Montoya Pachongo, Olivier Piller, Claudia Quintiliani, Jan Ručka, Ladislav Tuhovčák and Mirjam Blokker
Water 2020, 12(4), 1049; https://doi.org/10.3390/w12041049 - 07 Apr 2020
Cited by 60 | Viewed by 11730
Abstract
Water temperature is often monitored at water sources and treatment works; however, there is limited monitoring of the water temperature in the drinking water distribution system (DWDS), despite a known impact on physical, chemical and microbial reactions which impact water quality. A key [...] Read more.
Water temperature is often monitored at water sources and treatment works; however, there is limited monitoring of the water temperature in the drinking water distribution system (DWDS), despite a known impact on physical, chemical and microbial reactions which impact water quality. A key parameter influencing drinking water temperature is soil temperature, which is influenced by the urban heat island effects. This paper provides critique and comprehensive summary of the current knowledge, policies and challenges regarding drinking water temperature research and presents the findings from a survey of international stakeholders. Knowledge gaps as well as challenges and opportunities for monitoring and research are identified. The conclusion of the study is that temperature in the DWDS is an emerging concern in various countries regardless of the water source and treatment, climate conditions, or network characteristics such as topology, pipe material or diameter. More research is needed, especially to determine (i) the effect of higher temperatures, (ii) a legislative limit on temperature and (iii) measures to comply with this limit. Full article
(This article belongs to the Special Issue Water Quality in Drinking Water Distribution Systems)
Show Figures

Figure 1

30 pages, 17371 KiB  
Review
Recent Trends in Removal Pharmaceuticals and Personal Care Products by Electrochemical Oxidation and Combined Systems
by Khanh Chau Dao, Chih-Chi Yang, Ku-Fan Chen and Yung-Pin Tsai
Water 2020, 12(4), 1043; https://doi.org/10.3390/w12041043 - 07 Apr 2020
Cited by 37 | Viewed by 5743
Abstract
Due to various potential toxicological threats to living organisms even at low concentrations, pharmaceuticals and personal care products in natural water are seen as an emerging environmental issue. The low efficiency of removal of pharmaceuticals and personal care products by conventional wastewater treatment [...] Read more.
Due to various potential toxicological threats to living organisms even at low concentrations, pharmaceuticals and personal care products in natural water are seen as an emerging environmental issue. The low efficiency of removal of pharmaceuticals and personal care products by conventional wastewater treatment plants calls for more efficient technology. Research on advanced oxidation processes has recently become a hot topic as it has been shown that these technologies can effectively oxidize most organic contaminants to inorganic carbon through mineralization. Among the advanced oxidation processes, the electrochemical advanced oxidation processes and, in general, electrochemical oxidation or anodic oxidation have shown good prospects at the lab-scale for the elimination of contamination caused by the presence of residual pharmaceuticals and personal care products in aqueous systems. This paper reviewed the effectiveness of electrochemical oxidation in removing pharmaceuticals and personal care products from liquid solutions, alone or in combination with other treatment processes, in the last 10 years. Reactor designs and configurations, electrode materials, operational factors (initial concentration, supporting electrolytes, current density, temperature, pH, stirring rate, electrode spacing, and fluid velocity) were also investigated. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Water and Wastewater Treatment)
Show Figures

Figure 1

29 pages, 4186 KiB  
Review
Water Network Partitioning into District Metered Areas: A State-Of-The-Art Review
by Xuan Khoa Bui, Malvin S. Marlim and Doosun Kang
Water 2020, 12(4), 1002; https://doi.org/10.3390/w12041002 - 01 Apr 2020
Cited by 49 | Viewed by 12094
Abstract
A water distribution network (WDN) is an indispensable element of civil infrastructure that provides fresh water for domestic use, industrial development, and fire-fighting. However, in a large and complex network, operation and management (O&M) can be challenging. As a technical initiative to improve [...] Read more.
A water distribution network (WDN) is an indispensable element of civil infrastructure that provides fresh water for domestic use, industrial development, and fire-fighting. However, in a large and complex network, operation and management (O&M) can be challenging. As a technical initiative to improve O&M efficiency, the paradigm of “divide and conquer” can divide an original WDN into multiple subnetworks. Each subnetwork is controlled by boundary pipes installed with gate valves or flow meters that control the water volume entering and leaving what are known as district metered areas (DMAs). Many approaches to creating DMAs are formulated as two-phase procedures, clustering and sectorizing, and are called water network partitioning (WNP) in general. To assess the benefits and drawbacks of DMAs in a WDN, we provide a comprehensive review of various state-of-the-art approaches, which can be broadly classified as: (1) Clustering algorithms, which focus on defining the optimal configuration of DMAs; and (2) sectorization procedures, which physically decompose the network by selecting pipes for installing flow meters or gate valves. We also provide an overview of emerging problems that need to be studied. Full article
(This article belongs to the Special Issue Smart Urban Water Networks)
Show Figures

Figure 1

58 pages, 1781 KiB  
Review
Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review
by Farshid Shoushtarian and Masoud Negahban-Azar
Water 2020, 12(4), 971; https://doi.org/10.3390/w12040971 - 29 Mar 2020
Cited by 105 | Viewed by 16915
Abstract
Water reuse is gaining momentum as a beneficial practice to address the water crisis, especially in the agricultural sector as the largest water consumer worldwide. With recent advancements in wastewater treatment technologies, it is possible to produce almost any water quality. However, the [...] Read more.
Water reuse is gaining momentum as a beneficial practice to address the water crisis, especially in the agricultural sector as the largest water consumer worldwide. With recent advancements in wastewater treatment technologies, it is possible to produce almost any water quality. However, the main human and environmental concerns are still to determine what constituents must be removed and to what extent. The main objectives of this study were to compile, evaluate, and compare the current agricultural water reuse regulations and guidelines worldwide, and identify the gaps. In total, 70 regulations and guidelines, including Environmental Protection Agency (EPA), International Organization for Standardization (ISO), Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO), the United States (state by state), European Commission, Canada (all provinces), Australia, Mexico, Iran, Egypt, Tunisia, Jordan, Palestine, Oman, China, Kuwait, Israel, Saudi Arabia, France, Cyprus, Spain, Greece, Portugal, and Italy were investigated in this study. These regulations and guidelines were examined to compile a comprehensive database, including all of the water quality monitoring parameters, and necessary treatment processes. In summary, results showed that the regulations and guidelines are mainly human-health centered, insufficient regarding some of the potentially dangerous pollutants such as emerging constituents, and with large discrepancies when compared with each other. In addition, some of the important water quality parameters such as some of the pathogens, heavy metals, and salinity are only included in a small group of regulations and guidelines investigated in this study. Finally, specific treatment processes have been only mentioned in some of the regulations and guidelines, and with high levels of discrepancy. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

31 pages, 5735 KiB  
Review
CFD Modeling of Effluent Discharges: A Review of Past Numerical Studies
by Abdolmajid Mohammadian, Hossein Kheirkhah Gildeh and Ioan Nistor
Water 2020, 12(3), 856; https://doi.org/10.3390/w12030856 - 18 Mar 2020
Cited by 19 | Viewed by 4546
Abstract
Effluent discharge mixing and dispersion have been studied for many decades. Studies began with experimental investigations of geometrical and concentration characteristics of the jets in the near-field zone. More robust experiments were performed using Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) systems [...] Read more.
Effluent discharge mixing and dispersion have been studied for many decades. Studies began with experimental investigations of geometrical and concentration characteristics of the jets in the near-field zone. More robust experiments were performed using Laser-Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) systems starting in the 20th century, which led to more accurate measurement and analysis of jet behavior. The advancement of computing systems over the past two decades has led to the development of various numerical methods, which have been implemented in Computational Fluid Dynamics (CFD) codes to predict fluid motion and characteristics. Numerical modeling of mixing and dispersion is increasingly preferred over laboratory experiments of effluent discharges in both academia and industry. More computational resources and efficient numerical schemes have helped increase the popularity of using CFD models in jet and plume modeling. Numerous models have been developed over time, each with different capabilities to facilitate the investigation of all aspects of effluent discharges. Among these, Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) are at present the most popular CFD models employing effluent discharge modeling. This paper reviews state-of-the-art numerical modeling studies for different types and configurations of discharges, including positively and negatively buoyant discharges, which have mostly been completed over the past two decades. The numerical results of these studies are summarized and critically discussed in this review. Various aspects related to the impact of turbulence models, such as k-ε and Launder-Reece-Rodi (LRR) models, are reviewed herein. RANS and LES models are reviewed, and implications for the simulation of jet and plume mixing are discussed to develop a reference for future researchers performing numerical investigations on jet mixing and dispersion. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 1607 KiB  
Review
Influences of Land-Use Dynamics and Surface Water Systems Interactions on Water-Related Infectious Diseases—A Systematic Review
by Joshua Ntajal, Timo Falkenberg, Thomas Kistemann and Mariele Evers
Water 2020, 12(3), 631; https://doi.org/10.3390/w12030631 - 26 Feb 2020
Cited by 4 | Viewed by 4948
Abstract
Human interactions with surface water systems, through land-use dynamics, can influence the transmission of infectious water-related diseases. As a result, the aim of our study was to explore and examine the state of scientific evidence on the influences of these interactions on water-related [...] Read more.
Human interactions with surface water systems, through land-use dynamics, can influence the transmission of infectious water-related diseases. As a result, the aim of our study was to explore and examine the state of scientific evidence on the influences of these interactions on water-related infectious disease outcomes from a global perspective. A systematic review was conducted, using 54 peer-reviewed research articles published between 1995 and August 2019. The study revealed that there has been an increase in the number of publications since 2009; however, few of these publications (n = 6) made explicit linkages to the topic. It was found that urban and agricultural land-use changes had relatively high adverse impacts on water quality, due to high concentrations of fecal matter, heavy metals, and nutrients in surface water systems. Water systems were found as the common “vehicle” for infectious disease transmission, which in turn had linkages to sanitation and hygiene conditions. The study found explicit linkages between human–surface water interaction patterns and the transmission of water-based disease. However, weak and complex linkages were found between land-use change and the transmission of water-borne disease, due to multiple pathways and the dynamics of the other determinants of the disease. Therefore, further research studies, using interdisciplinary and transdisciplinary approaches to investigate and enhance a deeper understanding of these complexities and linkages among land use, surface water quality, and water-related infectious diseases, is crucial in developing integrated measures for sustainable water quality monitoring and diseases prevention. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

29 pages, 1851 KiB  
Review
Recent Advances in Real-Time Pluvial Flash Flood Forecasting
by Andre D. L. Zanchetta and Paulin Coulibaly
Water 2020, 12(2), 570; https://doi.org/10.3390/w12020570 - 19 Feb 2020
Cited by 57 | Viewed by 8699
Abstract
Recent years have witnessed considerable developments in multiple fields with the potential to enhance our capability of forecasting pluvial flash floods, one of the most costly environmental hazards in terms of both property damage and loss of life. This work provides a summary [...] Read more.
Recent years have witnessed considerable developments in multiple fields with the potential to enhance our capability of forecasting pluvial flash floods, one of the most costly environmental hazards in terms of both property damage and loss of life. This work provides a summary and description of recent advances related to insights on atmospheric conditions that precede extreme rainfall events, to the development of monitoring systems of relevant hydrometeorological parameters, and to the operational adoption of weather and hydrological models towards the prediction of flash floods. With the exponential increase of available data and computational power, most of the efforts are being directed towards the improvement of multi-source data blending and assimilation techniques, as well as assembling approaches for uncertainty estimation. For urban environments, in which the need for high-resolution simulations demands computationally expensive systems, query-based approaches have been explored for the timely retrieval of pre-simulated flood inundation forecasts. Within the concept of the Internet of Things, the extensive deployment of low-cost sensors opens opportunities from the perspective of denser monitoring capabilities. However, different environmental conditions and uneven distribution of data and resources usually leads to the adoption of site-specific solutions for flash flood forecasting in the context of early warning systems. Full article
(This article belongs to the Special Issue Advances in Flash Flood Forecasting)
Show Figures

Figure 1

33 pages, 2256 KiB  
Review
It Is Not Easy Being Green: Recognizing Unintended Consequences of Green Stormwater Infrastructure
by Vinicius J. Taguchi, Peter T. Weiss, John S. Gulliver, Mira R. Klein, Raymond M. Hozalski, Lawrence A. Baker, Jacques C. Finlay, Bonnie L. Keeler and John L. Nieber
Water 2020, 12(2), 522; https://doi.org/10.3390/w12020522 - 13 Feb 2020
Cited by 67 | Viewed by 16560
Abstract
Green infrastructure designed to address urban drainage and water quality issues is often deployed without full knowledge of potential unintended social, ecological, and human health consequences. Though understood in their respective fields of study, these diverse impacts are seldom discussed together in a [...] Read more.
Green infrastructure designed to address urban drainage and water quality issues is often deployed without full knowledge of potential unintended social, ecological, and human health consequences. Though understood in their respective fields of study, these diverse impacts are seldom discussed together in a format understood by a broader audience. This paper takes a first step in addressing that gap by exploring tradeoffs associated with green infrastructure practices that manage urban stormwater including urban trees, stormwater ponds, filtration, infiltration, rain gardens, and green roofs. Each green infrastructure practice type performs best under specific conditions and when targeting specific goals, but regular inspections, maintenance, and monitoring are necessary for any green stormwater infrastructure (GSI) practice to succeed. We review how each of the above practices is intended to function and how they could malfunction in order to improve how green stormwater infrastructure is designed, constructed, monitored, and maintained. Our proposed decision-making framework, using both biophysical (biological and physical) science and social science, could lead to GSI projects that are effective, cost efficient, and just. Full article
Show Figures

Figure 1

30 pages, 1778 KiB  
Review
Role of Nanomaterials in the Treatment of Wastewater: A Review
by Asim Ali Yaqoob, Tabassum Parveen, Khalid Umar and Mohamad Nasir Mohamad Ibrahim
Water 2020, 12(2), 495; https://doi.org/10.3390/w12020495 - 12 Feb 2020
Cited by 434 | Viewed by 40662
Abstract
Water is an essential part of life and its availability is important for all living creatures. On the other side, the world is suffering from a major problem of drinking water. There are several gases, microorganisms and other toxins (chemicals and heavy metals) [...] Read more.
Water is an essential part of life and its availability is important for all living creatures. On the other side, the world is suffering from a major problem of drinking water. There are several gases, microorganisms and other toxins (chemicals and heavy metals) added into water during rain, flowing water, etc. which is responsible for water pollution. This review article describes various applications of nanomaterial in removing different types of impurities from polluted water. There are various kinds of nanomaterials, which carried huge potential to treat polluted water (containing metal toxin substance, different organic and inorganic impurities) very effectively due to their unique properties like greater surface area, able to work at low concentration, etc. The nanostructured catalytic membranes, nanosorbents and nanophotocatalyst based approaches to remove pollutants from wastewater are eco-friendly and efficient, but they require more energy, more investment in order to purify the wastewater. There are many challenges and issues of wastewater treatment. Some precautions are also required to keep away from ecological and health issues. New modern equipment for wastewater treatment should be flexible, low cost and efficient for the commercialization purpose. Full article
(This article belongs to the Special Issue Water Treatment with New Nanomaterials)
Show Figures

Figure 1

14 pages, 1273 KiB  
Review
An Engineering Perspective of Water Sharing Issues in Pakistan
by Muhammad Atiq Ur Rehman Tariq, Nick van de Giesen, Shahmir Janjua, Muhammad Laiq Ur Rahman Shahid and Rashid Farooq
Water 2020, 12(2), 477; https://doi.org/10.3390/w12020477 - 11 Feb 2020
Cited by 21 | Viewed by 11925
Abstract
Water sharing within the states/provinces of a country and cross-border is unavoidable. Conflicts between the sharing entities might turn more severe due to additional dependency on water, growing population, and reduced availability as a result of climate change at many locations. Pakistan, being [...] Read more.
Water sharing within the states/provinces of a country and cross-border is unavoidable. Conflicts between the sharing entities might turn more severe due to additional dependency on water, growing population, and reduced availability as a result of climate change at many locations. Pakistan, being an agricultural country, is severely water stressed and heading toward a worsening situation in the near future. Pakistan is heading toward water scarcity as water availability in the Indus basin is becoming critical. Being a downstream riparian of India and Afghanistan in the Indus basin, water availability depends on the releases of water from both countries. The Indus Water Treaty is governing the water distribution rights between India and Pakistan. However, there exists no proper agreement between Pakistan and Afghanistan and the construction of new dams on the Kabul River is another threat to water availability to Pakistan. Correct implementation of the Indus Water Treaty with India is required, together with an effective agreement with Afghanistan about the water sharing. In addition to water shortage, poor management of water resources, inequitable sharing of water, lack of a systematic approach, old-fashioned irrigation practices, and growing agricultural products with large water footprints are all exacerbating the problem. The water shortage is now increasingly countered by the use of groundwater. This sudden high extraction of groundwater is causing depletion of the groundwater table and groundwater quality issues. This water shortage is exacerbating the provincial conflicts over water, such as those between Punjab and Sindh provinces. At one end, a uniform nationwide water allocation policy is required. At the same time, modern irrigation techniques and low-water-footprint agricultural products should be promoted. A fair water-pricing mechanism of surface water and groundwater could be an effective measure, whereas a strict policy on groundwater usage is equally important. Political will and determination to address the water issues are required. The solutions must be based on transparency and equity, by using engineering approaches, combined with comprehensive social support. To develop a comprehensive water strategy, a dedicated technopolitical institute to strengthen the capabilities of nationwide expertise and address the issues on a regular basis is required to overcome the complex and multidimensional water-related problems of the country. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

25 pages, 2815 KiB  
Review
Rethinking the Framework of Smart Water System: A Review
by Jiada Li, Xiafei Yang and Robert Sitzenfrei
Water 2020, 12(2), 412; https://doi.org/10.3390/w12020412 - 04 Feb 2020
Cited by 73 | Viewed by 11486
Abstract
Throughout the past years, governments, industries, and researchers have shown increasing interest in incorporating smart techniques, including sensor monitoring, real-time data transmitting, and real-time controlling into water systems. However, the design and construction of such a smart water system are still not quite [...] Read more.
Throughout the past years, governments, industries, and researchers have shown increasing interest in incorporating smart techniques, including sensor monitoring, real-time data transmitting, and real-time controlling into water systems. However, the design and construction of such a smart water system are still not quite standardized for massive applications due to the lack of consensus on the framework. The major challenge impeding wide application of the smart water network is the unavailability of a systematic framework to guide real-world design and deployment. To address this challenge, this review study aims to facilitate more extensive adoption of the smart water system, to increase effectiveness and efficiency in real-world water system contexts. A total of 32 literature pieces including 1 international forum, 17 peer-reviewed papers, 10 reports, and 4 presentations that are directly related to frameworks of smart water system have been reviewed. A new and comprehensive smart water framework, including definition and architecture, was proposed in this review paper. Two conceptual metrics (smartness and cyber wellness) were defined to evaluate the performance of smart water systems. Additionally, three pieces of future research suggestions were discussed, calling for broader collaboration in the community of researchers, engineers, and industrial and governmental sectors to promote smart water system applications. Full article
(This article belongs to the Special Issue Smart Urban Water Networks)
Show Figures

Figure 1

26 pages, 2401 KiB  
Review
The Science behind Scour at Bridge Foundations: A Review
by Alonso Pizarro, Salvatore Manfreda and Enrico Tubaldi
Water 2020, 12(2), 374; https://doi.org/10.3390/w12020374 - 30 Jan 2020
Cited by 90 | Viewed by 9634
Abstract
Foundation scour is among the main causes of bridge collapse worldwide, resulting in significant direct and indirect losses. A vast amount of research has been carried out during the last decades on the physics and modelling of this phenomenon. The purpose of this [...] Read more.
Foundation scour is among the main causes of bridge collapse worldwide, resulting in significant direct and indirect losses. A vast amount of research has been carried out during the last decades on the physics and modelling of this phenomenon. The purpose of this paper is, therefore, to provide an up-to-date, comprehensive, and holistic literature review of the problem of scour at bridge foundations, with a focus on the following topics: (i) sediment particle motion; (ii) physical modelling and controlling dimensionless scour parameters; (iii) scour estimates encompassing empirical models, numerical frameworks, data-driven methods, and non-deterministic approaches; (iv) bridge scour monitoring including successful examples of case studies; (v) current approach for assessment and design of bridges against scour; and, (vi) research needs and future avenues. Full article
(This article belongs to the Special Issue Bridge Hydraulics: Current State of the Knowledge and Perspectives)
Show Figures

Figure 1

26 pages, 2419 KiB  
Review
Machine Learning and Data Analytic Techniques in Digital Water Metering: A Review
by Md Shamsur Rahim, Khoi Anh Nguyen, Rodney Anthony Stewart, Damien Giurco and Michael Blumenstein
Water 2020, 12(1), 294; https://doi.org/10.3390/w12010294 - 19 Jan 2020
Cited by 47 | Viewed by 9984
Abstract
Digital or intelligent water meters are being rolled out globally as a crucial component in improving urban water management. This is because of their ability to frequently send water consumption information electronically and later utilise the information to generate insights or provide feedback [...] Read more.
Digital or intelligent water meters are being rolled out globally as a crucial component in improving urban water management. This is because of their ability to frequently send water consumption information electronically and later utilise the information to generate insights or provide feedback to consumers. Recent advances in machine learning (ML) and data analytic (DA) technologies have provided the opportunity to more effectively utilise the vast amount of data generated by these meters. Several studies have been conducted to promote water conservation by analysing the data generated by digital meters and providing feedback to consumers and water utilities. The purpose of this review was to inform scholars and practitioners about the contributions and limitations of ML and DA techniques by critically analysing the relevant literature. We categorised studies into five main themes: (1) water demand forecasting; (2) socioeconomic analysis; (3) behaviour analysis; (4) water event categorisation; and (5) water-use feedback. The review identified significant research gaps in terms of the adoption of advanced ML and DA techniques, which could potentially lead to water savings and more efficient demand management. We concluded that further investigations are required into highly personalised feedback systems, such as recommender systems, to promote water-conscious behaviour. In addition, advanced data management solutions, effective user profiles, and the clustering of consumers based on their profiles require more attention to promote water-conscious behaviours. Full article
Show Figures

Figure 1

85 pages, 16959 KiB  
Review
Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation
by Marco Cantonati, Sandra Poikane, Catherine M. Pringle, Lawrence E. Stevens, Eren Turak, Jani Heino, John S. Richardson, Rossano Bolpagni, Alex Borrini, Núria Cid, Martina Čtvrtlíková, Diana M. P. Galassi, Michal Hájek, Ian Hawes, Zlatko Levkov, Luigi Naselli-Flores, Abdullah A. Saber, Mattia Di Cicco, Barbara Fiasca, Paul B. Hamilton, Jan Kubečka, Stefano Segadelli and Petr Znachoradd Show full author list remove Hide full author list
Water 2020, 12(1), 260; https://doi.org/10.3390/w12010260 - 16 Jan 2020
Cited by 123 | Viewed by 40446
Abstract
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and [...] Read more.
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime—periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems). Full article
Show Figures

Figure 1

34 pages, 2584 KiB  
Review
Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications
by Simon N. Topp, Tamlin M. Pavelsky, Daniel Jensen, Marc Simard and Matthew R. V. Ross
Water 2020, 12(1), 169; https://doi.org/10.3390/w12010169 - 07 Jan 2020
Cited by 167 | Viewed by 15713
Abstract
Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland [...] Read more.
Remote sensing approaches to measuring inland water quality date back nearly 50 years to the beginning of the satellite era. Over this time span, hundreds of peer-reviewed publications have demonstrated promising remote sensing models to estimate biological, chemical, and physical properties of inland waterbodies. Until recently, most of these publications focused largely on algorithm development as opposed to implementation of those algorithms to address specific science questions. This slow evolution contrasts with terrestrial and oceanic remote sensing, where methods development in the 1970s led to publications focused on understanding spatially expansive, complex processes as early as the mid-1980s. This review explores the progression of inland water quality remote sensing from methodological development to scientific applications. We use bibliometric analysis to assess overall patterns in the field and subsequently examine 236 key papers to identify trends in research focus and scale. The results highlight an initial 30 year period where the majority of publications focused on model development and validation followed by a spike in publications, beginning in the early-2000s, applying remote sensing models to analyze spatiotemporal trends, drivers, and impacts of changing water quality on ecosystems and human populations. Recent and emerging resources, including improved data availability and enhanced processing platforms, are enabling researchers to address challenging science questions and model spatiotemporally explicit patterns in water quality. Examination of the literature shows that the past 10–15 years has brought about a focal shift within the field, where researchers are using improved computing resources, datasets, and operational remote sensing algorithms to better understand complex inland water systems. Future satellite missions promise to continue these improvements by providing observational continuity with spatial/spectral resolutions ideal for inland waters. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 1886 KiB  
Review
Stable Isotopes of Water and Nitrate for the Identification of Groundwater Flowpaths: A Review
by Hyejung Jung, Dong-Chan Koh, Yun S. Kim, Sung-Wook Jeen and Jeonghoon Lee
Water 2020, 12(1), 138; https://doi.org/10.3390/w12010138 - 01 Jan 2020
Cited by 39 | Viewed by 13456
Abstract
Nitrate contamination in stream water and groundwater is a serious environmental problem that arises in areas of high agricultural activities or high population density. It is therefore important to identify the source and flowpath of nitrate in water bodies. In recent decades, the [...] Read more.
Nitrate contamination in stream water and groundwater is a serious environmental problem that arises in areas of high agricultural activities or high population density. It is therefore important to identify the source and flowpath of nitrate in water bodies. In recent decades, the dual isotope analysis (δ15N and δ18O) of nitrate has been widely applied to track contamination sources by taking advantage of the difference in nitrogen and oxygen isotope ratios for different sources. However, transformation processes of nitrogen compounds can change the isotopic composition of nitrate due to the various redox processes in the environment, which often makes it difficult to identify contaminant sources. To compensate for this, the stable water isotope of the H2O itself can be used to interpret the complex hydrological and hydrochemical processes for the movement of nitrate contaminants. Therefore, the present study aims at understanding the fundamental background of stable water and nitrate isotope analysis, including isotope fractionation, analytical methods such as nitrate concentration from samples, instrumentation, and the typical ranges of δ15N and δ18O from various nitrate sources. In addition, we discuss hydrograph separation using the oxygen and hydrogen isotopes of water in combination with the nitrogen and oxygen isotopes of nitrate to understand the relative contributions of precipitation and groundwater to stream water. This study will assist in understanding the groundwater flowpaths as well as tracking the sources of nitrate contamination using the stable isotope analysis in combination with nitrate and water. Full article
(This article belongs to the Special Issue Use of Water Stable Isotopes in Hydrological Process)
Show Figures

Figure 1

30 pages, 466 KiB  
Review
Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses
by Sunja Cho, Cicilia Kambey and Van Khanh Nguyen
Water 2020, 12(1), 20; https://doi.org/10.3390/w12010020 - 19 Dec 2019
Cited by 109 | Viewed by 10294
Abstract
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and [...] Read more.
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
32 pages, 12206 KiB  
Review
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters
by James Kessler, Diane Dawley, Daniel Crow, Ramin Garmany and Philippe T. Georgel
Water 2019, 11(12), 2615; https://doi.org/10.3390/w11122615 - 11 Dec 2019
Cited by 9 | Viewed by 4462
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from [...] Read more.
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage. Full article
Show Figures

Figure 1

14 pages, 4645 KiB  
Review
A Comparison of Irrigation-Water Containment Methods and Management Strategies Between Two Ornamental Production Systems to Minimize Water Security Threats
by Andrew G. Ristvey, Bruk E. Belayneh and John D. Lea-Cox
Water 2019, 11(12), 2558; https://doi.org/10.3390/w11122558 - 03 Dec 2019
Cited by 14 | Viewed by 3733
Abstract
Water security in ornamental plant production systems is vital for maintaining profitability. Expensive, complicated, or potentially dangerous treatment systems, together with skilled labor, is often necessary to ensure water quality and plant health. Two contrasting commercial ornamental crop production systems in a mesic [...] Read more.
Water security in ornamental plant production systems is vital for maintaining profitability. Expensive, complicated, or potentially dangerous treatment systems, together with skilled labor, is often necessary to ensure water quality and plant health. Two contrasting commercial ornamental crop production systems in a mesic region are compared, providing insight into the various strategies employed using irrigation-water containment and treatment systems. The first is a greenhouse/outdoor container operation which grows annual ornamental plants throughout the year using irrigation booms, drip emitters, and/or ebb and flow systems depending on the crop, container size, and/or stage of growth. The operation contains and recycles 50–75% of applied water through a system of underground cisterns, using a recycling reservoir and a newly constructed 0.25 ha slow-sand filtration (SSF) unit. Groundwater provides additional water when needed. Water quantity is not a problem in this operation, but disease and water quality issues, including agrochemicals, are of potential concern. The second is a perennial-plant nursery which propagates cuttings and produces field-grown trees and containerized plants. It has a series of containment/recycling reservoirs that capture rainwater and irrigation return water, together with wells of limited output. Water quantity is a more important issue for this nursery, but poor water quality has had some negative economic effects. Irrigation return water is filtered and sanitized with chlorine gas before being applied to plants via overhead and micro-irrigation systems. The agrochemical paclobutrazol was monitored for one year in the first operation and plant pathogens were qualified and quantified over two seasons for both production systems. The two operations employ very different water treatment systems based on their access to water, growing methods, land topography, and capital investment. Each operation has experienced different water quantity and quality vulnerabilities, and has addressed these threats using a variety of technologies and management techniques to reduce their impacts. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Show Figures

Figure 1

22 pages, 1010 KiB  
Review
Role of Design and Operational Factors in the Removal of Pharmaceuticals by Constructed Wetlands
by Huma Ilyas and Eric D. van Hullebusch
Water 2019, 11(11), 2356; https://doi.org/10.3390/w11112356 - 10 Nov 2019
Cited by 46 | Viewed by 4660
Abstract
This study evaluates the role of design, operational, and physicochemical parameters of constructed wetlands (CWs) in the removal of pharmaceuticals (PhCs). The correlation analysis demonstrates that the performance of CWs is governed by several design and operational factors (area, depth, hydraulic loading rate, [...] Read more.
This study evaluates the role of design, operational, and physicochemical parameters of constructed wetlands (CWs) in the removal of pharmaceuticals (PhCs). The correlation analysis demonstrates that the performance of CWs is governed by several design and operational factors (area, depth, hydraulic loading rate, organic loading rate, and hydraulic retention time), and physicochemical parameters (dissolved oxygen, temperature, and pH); the removal efficiency of about 50% of the examined PhCs showed a significant correlation with two or more factors. Plants contributed significantly in the removal of some of the PhCs by direct uptake and by enhancing the process of aerobic biodegradation. The use of substrate material of high adsorption capacity, rich in organic matter, and with high surface area enhanced the removal of PhCs by adsorption/sorption processes, which are the major removal mechanisms of some PhCs (codeine, clarithromycin, erythromycin, ofloxacin, oxytetracycline, carbamazepine, and atenolol) in CWs. Although the removal of almost all of the studied PhCs showed seasonal differences, statistical significance was established in the removal of naproxen, salicylic acid, caffeine, and sulfadiazine. The effective PhCs removal requires the integrated design of CWs ensuring the occurrence of biodegradation along with other processes, as well as enabling optimal values of design and operational factors, and physicochemical parameters. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

32 pages, 621 KiB  
Review
Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?
by Nils Johnson, Peter Burek, Edward Byers, Giacomo Falchetta, Martina Flörke, Shinichiro Fujimori, Petr Havlik, Mohamad Hejazi, Julian Hunt, Volker Krey, Simon Langan, Nebojsa Nakicenovic, Amanda Palazzo, Alexander Popp, Keywan Riahi, Michiel van Dijk, Michelle T.H. van Vliet, Detlef P. van Vuuren, Yoshihide Wada, David Wiberg, Barbara Willaarts, Caroline Zimm and Simon Parkinsonadd Show full author list remove Hide full author list
Water 2019, 11(11), 2223; https://doi.org/10.3390/w11112223 - 25 Oct 2019
Cited by 25 | Viewed by 6693
Abstract
Increasing human demands for water, energy, food and materials, are expected to accentuate resource supply challenges over the coming decades. Experience suggests that long-term strategies for a single sector could yield both trade-offs and synergies for other sectors. Thus, long-term transition pathways for [...] Read more.
Increasing human demands for water, energy, food and materials, are expected to accentuate resource supply challenges over the coming decades. Experience suggests that long-term strategies for a single sector could yield both trade-offs and synergies for other sectors. Thus, long-term transition pathways for linked resource systems should be informed using nexus approaches. Global integrated assessment models can represent the synergies and trade-offs inherent in the exploitation of water, energy and land (WEL) resources, including the impacts of international trade and climate policies. In this study, we review the current state-of-the-science in global integrated assessment modeling with an emphasis on how models have incorporated integrated WEL solutions. A large-scale assessment of the relevant literature was performed using online databases and structured keyword search queries. The results point to the following main opportunities for future research and model development: (1) improving the temporal and spatial resolution of economic models for the energy and water sectors; (2) balancing energy and land requirements across sectors; (3) integrated representation of the role of distribution infrastructure in alleviating resource challenges; (4) modeling of solution impacts on downstream environmental quality; (5) improved representation of the implementation challenges stemming from regional financial and institutional capacity; (6) enabling dynamic multi-sectoral vulnerability and adaptation needs assessment; and (7) the development of fully-coupled assessment frameworks based on consistent, scalable, and regionally-transferable platforms. Improved database management and computational power are needed to address many of these modeling challenges at a global-scale. Full article
(This article belongs to the Special Issue Integrated Assessment of the Water–Energy–Land Nexus)
Show Figures

Figure 1

36 pages, 1210 KiB  
Review
The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review
by Andreia Silva, Cristina Delerue-Matos, Sónia A. Figueiredo and Olga M. Freitas
Water 2019, 11(8), 1555; https://doi.org/10.3390/w11081555 - 27 Jul 2019
Cited by 102 | Viewed by 14473
Abstract
The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry. Conventional wastewater treatment plants (WWTPs) are not designed to remove pharmaceuticals (and their metabolites) from domestic wastewaters. The treatability of pharmaceutical compounds [...] Read more.
The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry. Conventional wastewater treatment plants (WWTPs) are not designed to remove pharmaceuticals (and their metabolites) from domestic wastewaters. The treatability of pharmaceutical compounds in WWTPs varies considerably depending on the type of compound since their biodegradability can differ significantly. As a consequence, they may reach the aquatic environment, directly or by leaching of the sludge produced by these facilities. Currently, the technologies under research for the removal of pharmaceuticals, namely membrane technologies and advanced oxidation processes, have high operation costs related to energy and chemical consumption. When chemical reactions are involved, other aspects to consider include the formation of harmful reaction by-products and the management of the toxic sludge produced. Research is needed in order to develop economic and sustainable treatment processes, such as bioremediation and biosorption. The use of low-cost materials, such as biological matrices (e.g., algae and fungi), has advantages such as low capital investment, easy operation, low operation costs, and the non-formation of degradation by-products. An extensive review of existing research on this subject is presented. Full article
Show Figures

Figure 1

20 pages, 1433 KiB  
Review
Risk-Yuck Factor Nexus in Reclaimed Wastewater for Irrigation: Comparing Farmers’ Attitudes and Public Perception
by Sandra Ricart, Antonio M. Rico and Anna Ribas
Water 2019, 11(2), 187; https://doi.org/10.3390/w11020187 - 22 Jan 2019
Cited by 34 | Viewed by 5574
Abstract
The successes and failures of water reuse schemes are shaped by complex interrelationships between technological, economic, and socio-political factors. However, it has long been recognized that the main challenges to more effective water management are largely social rather than technical. This article reviews [...] Read more.
The successes and failures of water reuse schemes are shaped by complex interrelationships between technological, economic, and socio-political factors. However, it has long been recognized that the main challenges to more effective water management are largely social rather than technical. This article reviews the recent literature (2007–2017) to analyze driving factors associated with farmers’ concerns and public perception of reclaimed wastewater for irrigation. The aim of the paper is to synthetize how both environmental and health risks and the yuck factor could be addressed in order to promote mutual understanding between farmers and the public. Results show: (1) how farmers and the public perceive environmental and health risks in a similar way, (2) how the yuck factor is more noticeable for the public than farmers, and (3) how constructed wetlands, reclaimed water exchange consortiums, product certification, and direct site visits to water reuse infrastructure could be promoted in order to foster understanding between farmers and the public. The article concludes by providing key research questions for managers and public authorities relating to how to focus on the study of technical and social issues related to water reuse. Full article
(This article belongs to the Special Issue Wastewater Treatment: Review, Key Challenges, and New Perspectives)
Show Figures

Figure 1

20 pages, 3317 KiB  
Review
Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review
by Sonia Guerra-Rodríguez, Encarnación Rodríguez, Devendra Narain Singh and Jorge Rodríguez-Chueca
Water 2018, 10(12), 1828; https://doi.org/10.3390/w10121828 - 11 Dec 2018
Cited by 224 | Viewed by 14278
Abstract
High oxidation potential as well as other advantages over other tertiary wastewater treatments have led in recent years to a focus on the development of advanced oxidation processes based on sulfate radicals (SR-AOPs). These radicals can be generated from peroxymonosulfate (PMS) and persulfate [...] Read more.
High oxidation potential as well as other advantages over other tertiary wastewater treatments have led in recent years to a focus on the development of advanced oxidation processes based on sulfate radicals (SR-AOPs). These radicals can be generated from peroxymonosulfate (PMS) and persulfate (PS) through various activation methods such as catalytic, radiation or thermal activation. This review manuscript aims to provide a state-of-the-art overview of the different methods for PS and PMS activaton, as well as the different applications of this technology in the field of water and wastewater treatment. Although its most widespread application is the elimination of micropollutants, its use for the disinfection of wastewater is gaining increasing interest. In addition, the possibility of combining this technology with ultrafiltration membranes to improve the water quality and lifespan of the membranes has also been discussed. Finally, a brief economic analysis of this technology has been undertaken and the different attempts made to implement it at full-scale have been summarized. As a result, this review tries to be useful for all those people working in that area. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

40 pages, 3187 KiB  
Review
Flood Prediction Using Machine Learning Models: Literature Review
by Amir Mosavi, Pinar Ozturk and Kwok-wing Chau
Water 2018, 10(11), 1536; https://doi.org/10.3390/w10111536 - 27 Oct 2018
Cited by 820 | Viewed by 78973
Abstract
Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction of the property damage associated [...] Read more.
Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction of the property damage associated with floods. To mimic the complex mathematical expressions of physical processes of floods, during the past two decades, machine learning (ML) methods contributed highly in the advancement of prediction systems providing better performance and cost-effective solutions. Due to the vast benefits and potential of ML, its popularity dramatically increased among hydrologists. Researchers through introducing novel ML methods and hybridizing of the existing ones aim at discovering more accurate and efficient prediction models. The main contribution of this paper is to demonstrate the state of the art of ML models in flood prediction and to give insight into the most suitable models. In this paper, the literature where ML models were benchmarked through a qualitative analysis of robustness, accuracy, effectiveness, and speed are particularly investigated to provide an extensive overview on the various ML algorithms used in the field. The performance comparison of ML models presents an in-depth understanding of the different techniques within the framework of a comprehensive evaluation and discussion. As a result, this paper introduces the most promising prediction methods for both long-term and short-term floods. Furthermore, the major trends in improving the quality of the flood prediction models are investigated. Among them, hybridization, data decomposition, algorithm ensemble, and model optimization are reported as the most effective strategies for the improvement of ML methods. This survey can be used as a guideline for hydrologists as well as climate scientists in choosing the proper ML method according to the prediction task. Full article
(This article belongs to the Special Issue Flood Forecasting Using Machine Learning Methods)
Show Figures

Figure 1

20 pages, 3992 KiB  
Review
Explaining Water Pricing through a Water Security Lens
by Paula Cecilia Soto Rios, Tariq A. Deen, Nidhi Nagabhatla and Gustavo Ayala
Water 2018, 10(9), 1173; https://doi.org/10.3390/w10091173 - 01 Sep 2018
Cited by 34 | Viewed by 23847
Abstract
Can water security serve as a platform for developing a long-term solution to ongoing water crises? Many regions around the world are experiencing severe water problems, including water scarcity, water-borne diseases, water-related natural hazards, and water conflicts. These issues are expected to increase [...] Read more.
Can water security serve as a platform for developing a long-term solution to ongoing water crises? Many regions around the world are experiencing severe water problems, including water scarcity, water-borne diseases, water-related natural hazards, and water conflicts. These issues are expected to increase and intensify in the future. Both developed and developing economies face a water supply and demand imbalance that will potentially influence their water pricing structures. Institutions and policies that govern the pricing of this natural capital remain crucial for driving food production and providing services. The complex and multifaceted issues of sustainable water management call for a standard set of tools that can capture and create desired water security scenarios. Water pricing is an important contributing factor for achieving these scenarios. In this paper, we analyze how water pricing can be used as a tool to enact the water security agenda. This paper addresses these issues from three facets: (1) Economic aspects—the multiple processes through which water is conceptualized and priced; (2) analysis of water pricing considering its effect in water consumption; and (3) arguments for assessing the potential of water pricing as a tool to appraise water security. Full article
Show Figures

Figure 1

30 pages, 2437 KiB  
Review
Artificial Aquatic Ecosystems
by Chelsea C. Clifford and James B. Heffernan
Water 2018, 10(8), 1096; https://doi.org/10.3390/w10081096 - 17 Aug 2018
Cited by 41 | Viewed by 13401
Abstract
As humans increasingly alter the surface geomorphology of the Earth, a multitude of artificial aquatic systems have appeared, both deliberately and accidentally. Human modifications to the hydroscape range from alteration of existing waterbodies to construction of new ones. The extent of these systems [...] Read more.
As humans increasingly alter the surface geomorphology of the Earth, a multitude of artificial aquatic systems have appeared, both deliberately and accidentally. Human modifications to the hydroscape range from alteration of existing waterbodies to construction of new ones. The extent of these systems makes them important and dynamic components of modern landscapes, but their condition and provisioning of ecosystem services by these systems are underexplored, and likely underestimated. Instead of accepting that artificial ecosystems have intrinsically low values, environmental scientists should determine what combination of factors, including setting, planning and construction, subsequent management and policy, and time, impact the condition of these systems. Scientists, social scientists, and policymakers should more thoroughly evaluate whether current study and management of artificial aquatic systems is based on the actual ecological condition of these systems, or judged differently, due to artificiality, and consider resultant possible changes in goals for these systems. The emerging recognition and study of artificial aquatic systems presents an exciting and important opportunity for science and society. Full article
(This article belongs to the Special Issue 10th Anniversary of Water)
Show Figures

Figure 1

17 pages, 5506 KiB  
Review
Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis
by Juan F. Velasco-Muñoz, José A. Aznar-Sánchez, Luis J. Belmonte-Ureña and María J. López-Serrano
Water 2018, 10(4), 377; https://doi.org/10.3390/w10040377 - 25 Mar 2018
Cited by 87 | Viewed by 10929
Abstract
Water use efficiency in agriculture (WUEA) has become a priority given increasing limitations on hydric resources. As a result, this area of research has increased in importance, becoming one of the most prolific lines of study. The main aim of this study was [...] Read more.
Water use efficiency in agriculture (WUEA) has become a priority given increasing limitations on hydric resources. As a result, this area of research has increased in importance, becoming one of the most prolific lines of study. The main aim of this study was to present a review of worldwide WUEA research over the last 30 years. A bibliometric analysis was developed based on the Scopus database. The sample included 6063 articles. The variables analyzed were: articles per year, category, journal, country, institution, author, and keyword. The results indicate that a remarkable growth in the number of articles published per year is occurring. The main category is environmental science and the main journal Agricultural Water Management. The countries with the highest number of articles were China, the United States of America, and India. The institution that published the most articles was the Chinese Academy of Sciences and the authors from China also were the most productive. The most frequently used keywords were irrigation, crop yield, water supply, and crops. The findings of this study can assist researchers in this field by providing an overview of worldwide research. Full article
(This article belongs to the Special Issue Advances in Agriculture Water Efficiency)
Show Figures

Figure 1

103 pages, 2594 KiB  
Review
Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design
by Helena Mala-Jetmarova, Nargiz Sultanova and Dragan Savic
Water 2018, 10(3), 307; https://doi.org/10.3390/w10030307 - 13 Mar 2018
Cited by 108 | Viewed by 14206
Abstract
Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner [...] Read more.
Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details. Full article
Show Figures

Figure 1

25 pages, 2708 KiB  
Review
A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology
by Yadu Pokhrel, Mateo Burbano, Jacob Roush, Hyunwoo Kang, Venkataramana Sridhar and David W. Hyndman
Water 2018, 10(3), 266; https://doi.org/10.3390/w10030266 - 03 Mar 2018
Cited by 164 | Viewed by 19359
Abstract
The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and [...] Read more.
The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF) nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development. This review provides a framework for future research in the Mekong, including studies that integrate hydrological, agricultural, and ecological modeling systems. Full article
(This article belongs to the Special Issue Water-Energy-Food Nexus in Asia, with Focus on the Mekong Region)
Show Figures

Figure 1

237 KiB  
Review
Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?
by Zan Rubin, G. Mathias Kondolf and Blanca Rios-Touma
Water 2017, 9(3), 174; https://doi.org/10.3390/w9030174 - 28 Feb 2017
Cited by 60 | Viewed by 10519
Abstract
Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies [...] Read more.
Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46%) explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35%) used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change. Full article

Other

14 pages, 1464 KiB  
Concept Paper
Macroplastic Storage and Remobilization in Rivers
by Maciej Liro, Tim van Emmerik, Bartłomiej Wyżga, Justyna Liro and Paweł Mikuś
Water 2020, 12(7), 2055; https://doi.org/10.3390/w12072055 - 20 Jul 2020
Cited by 89 | Viewed by 8960
Abstract
The paper presents a conceptual model of the route of macroplastic debris (>5 mm) through a fluvial system, which can support future works on the overlooked processes of macroplastic storage and remobilization in rivers. We divided the macroplastic route into (1) input, (2) [...] Read more.
The paper presents a conceptual model of the route of macroplastic debris (>5 mm) through a fluvial system, which can support future works on the overlooked processes of macroplastic storage and remobilization in rivers. We divided the macroplastic route into (1) input, (2) transport, (3) storage, (4) remobilization and (5) output phases. Phase 1 is mainly controlled by humans, phases 2–4 by fluvial processes, and phase 5 by both types of controls. We hypothesize that the natural characteristics of fluvial systems and their modification by dam reservoirs and flood embankments construction are key controls on macroplastic storage and remobilization in rivers. The zone of macroplastic storage can be defined as a river floodplain inundated since the beginning of widespread disposal of plastic waste to the environment in the 1960s and the remobilization zone as a part of the storage zone influenced by floodwaters and bank erosion. The amount of macroplastic in both zones can be estimated using data on the abundance of surface- and subsurface-stored macroplastic and the lateral and vertical extent of the zones. Our model creates the framework for estimation of how much plastic has accumulated in rivers and will be present in future riverscapes. Full article
Show Figures

Graphical abstract

9 pages, 674 KiB  
Commentary
Making the Case for a Female-Friendly Toilet
by Margaret L. Schmitt, David Clatworthy, Tom Ogello and Marni Sommer
Water 2018, 10(9), 1193; https://doi.org/10.3390/w10091193 - 05 Sep 2018
Cited by 35 | Viewed by 19226
Abstract
Inadequate access to a private, comfortable, and well-located toilet remains a critical challenge for many girls and women around the world. This issue is especially acute for girls and women living in densely populated urban slums, displacement camps, and informal settlements, often resulting [...] Read more.
Inadequate access to a private, comfortable, and well-located toilet remains a critical challenge for many girls and women around the world. This issue is especially acute for girls and women living in densely populated urban slums, displacement camps, and informal settlements, often resulting in anxiety, embarrassment, discomfort, and gender-based violence. The unique sanitation needs of girls and women are rarely accounted for during the design and construction of toilet facilities, including needs related to their physiology, reproductive health processes, prevalent social norms, and their heightened vulnerability to violence. It is critical that a new norm be developed regarding the design of female-friendly toilets which better enables girls and women to feel confident, safe, and dignified while managing their daily sanitation needs. This includes adopting specific design measures which account for their menstrual hygiene, personal safety, and dignity-related needs. Ultimately, an enhanced dialogue must take place among designers, policy makers, water, sanitation, and hygiene (WASH) practitioners, and other relevant actors, in addition to the target female users themselves, about how to adapt toilets in a range of development and emergency contexts and operations to better address these critical needs of girls and women. Full article
(This article belongs to the Special Issue Water, Sanitation, and Hygiene in Humanitarian Contexts)
Show Figures

Figure 1

Back to TopTop