Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?
Abstract
:1. Introduction
2. Assessing the Vulnerability of Human and Natural Systems to Global Change
2.1. Land Productivity and the Influence of Climate and Water Constraints
2.2. Global Hydrological Models (GHMs)
3. Assessing Solutions for Mitigating and Adapting to Global Change
3.1. Agro-Economic Models
3.2. Energy-Economic Models
3.3. Hydro-Economic Models
3.4. Global Integrated Nexus Solution Frameworks
4. Limitations and Opportunities
4.1. Fine Resolution Representation of Water and Energy
4.2. Keeping Track of Energy and Land
4.3. Resource Redistribution
4.4. Enhanced Representation of Ecosystem Quality
4.5. Considering Regional Financial and Institutional Constraints
4.6. Capturing Multi-Sector Vulnerabilities and Adaptation Options
4.7. Scalable and Integrated Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valin, H.; Sands, R.D.; van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Bauer, N.; Calvin, K.; Emmerling, J.; Fricko, O.; Fujimori, S.; Hilaire, J.; Eom, J.; Krey, V.; Kriegler, E.; Mouratiadou, I.; et al. Shared Socio-Economic Pathways of the Energy Sector—Quantifying the Narratives. Glob. Environ. Chang. 2017, 42, 316–330. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under Shared Socio-economic Pathways—Part 1: Water use. Hydrol. Earth Syst. Sci. 2013, 17, 2375–2391. [Google Scholar] [CrossRef]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.T.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. In Proceedings of the Bonn 2011 Conference: The Water, Energy, and Food Security Nexus, Bonn, Nordrhein-Westfalen, Germany, 16–18 November 2011. [Google Scholar]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Cameron, C.; Pachauri, S.; Rao, N.D.; Mccollum, D.; Rogelj, J.; Riahi, K. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia. Nat. Energy 2016, 1, 15010. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, S.; Hasegawa, T.; Krey, V.; Riahi, K.; Bertram, C.; Bodirsky, B.L.; Bosetti, V.; Callen, J.; Després, J.; Doelman, J.; et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2019, 2, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.; Jiang, K.; Akimoto, K.; Babiker, M.; Blanford, G.; Fisher-Vanden, K.; Hourcade, J.C.; Krey, V.; Kriegler, E.; Loschel, A.; et al. Chapter 6—Assessing transformation pathways. In Climate Change 2014: Mitigation of Climate Change; IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Van Vuuren, D.P.; Kok, M.; Lucas, P.L.; Prins, A.G.; Alkemade, R.; Berg, M.V.D.; Bouwman, L.; Van Der Esch, S.; Jeuken, M.; Kram, T.; et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. Technol. Soc. Chang. 2015, 98, 303–323. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Havlík, P.; Frank, S.; Palazzo, A.; Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2019, 2, 826–833. [Google Scholar] [CrossRef]
- Parkinson, S.; Krey, V.; Huppmann, D.; Kahil, T.; Mccollum, D.; Fricko, O.; Byers, E.; Gidden, M.J.; Mayor, B.; Khan, Z.; et al. Balancing clean water-climate change mitigation trade-offs. Environ. Res. Lett. 2019, 14, 014009. [Google Scholar] [CrossRef]
- Krey, V. Global energy-climate scenarios and models: A review. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 363–383. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Schewe, J.; Gosling, S.N.; Reyer, C.; Zhao, F.; Ciais, P.; Elliott, J.; Francois, L.; Huber, V.; Lotze, H.K.; Seneviratne, S.I.; et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 2019, 10, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Elliott, J.; Kelly, D.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Folberth, C.; Hoek, S.; Izaurralde, R.C.; et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 2019, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Moinuddin, M. Sustainable Development Goals Interlinkages and Network Analysis: A Practical Tool for SDG Integration and Policy Coherence; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2017. [Google Scholar]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-Campen, H.; Müller, C.; Reichstein, M.; et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Chang. Boil. 2007, 13, 679–706. [Google Scholar] [CrossRef]
- Rost, S.; Gerten, D.; Bondeau, A.; Lucht, W.; Rohwer, J.; Schaphoff, S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008, 44, 09405. [Google Scholar] [CrossRef]
- Izaurralde, R.; Williams, J.; McGill, W.; Rosenberg, N.; Jakas, M.Q. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Deryng, D.; Sacks, W.J.; Barford, C.C.; Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Fischer, G.; van Velthuizen, H.; Shah, M.; Nachtergaele, F. Global Agro-Ecological Assessment for Agriculture in the 21st Century: Methodology and Results; International Institute for Applied Systems Analysis RR-02-02; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2002. [Google Scholar]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 2016, 11, 025002. [Google Scholar] [CrossRef]
- Bonsch, M.; Popp, A.; Biewald, A.; Rolinski, S.; Schmitz, C.; Weindl, I.; Stevanovic, M.; Högner, K.; Heinke, J.; Ostberg, S.; et al. Environmental flow provision: Implications for agricultural water and land-use at the global scale. Glob. Environ. Chang. 2015, 30, 113–132. [Google Scholar] [CrossRef]
- Fitton, N.; Alexander, P.; Arnell, N.; Bajzelj, B.; Calvin, K.; Doelman, J.; Gerber, J.; Havlik, P.; Hasegawa, T.; Herrero, M.; et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Chang. 2019, 58, 101944. [Google Scholar] [CrossRef]
- Müller, C.; Robertson, R.D. Projecting future crop productivity for global economic modeling. Agric. Econ. 2014, 45, 37–50. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Van Meijl, H.; Havlík, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.P.; Bodirsky, B.L.; Van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 2018, 13, 064021. [Google Scholar] [CrossRef] [Green Version]
- Rounsevell, M.D.A.; Arneth, A.; Alexander, P.; Brown, D.G.; De Noblet-Ducoudre, N.; Ellis, E.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; et al. Towards decision-based global land use models for improved understanding of the Earth system. Earth Syst. Dyn. 2014, 5, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Rabin, S.; Anthoni, P.; Henry, R.; Pugh, T.A.M.; Rounsevell, M.D.A.; Arneth, A. Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob. Chang. Boil. 2018, 24, 2791–2809. [Google Scholar] [CrossRef] [Green Version]
- Lotze-Campen, H.; Müller, C.; Bondeau, A.; Rost, S.; Popp, A.; Lucht, W. Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. Agric. Econ. 2008, 39, 325–338. [Google Scholar] [CrossRef]
- Havlik, P.; Schneider, U.A.; Schmid, E.; Böttcher, H.; Fritz, S.; Skalský, R.; Aoki, K.; De Cara, S.; Kindermann, G.; Kraxner, F.; et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 2011, 39, 5690–5702. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Pastor, A.; Biemans, H.; Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 2017, 8, 15900. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Thenkabail, P.; Gumma, M.; Teluguntla, P.; Poehnelt, J.; Congalton, R.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Flörke, M.; Kynast, E.; Bärlund, I.; Eisner, S.; Wimmer, F.; Alcamo, J. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Glob. Environ. Chang. 2013, 23, 144–156. [Google Scholar] [CrossRef]
- Schmied, H.M.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Doll, P. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 1583–1649. [Google Scholar] [CrossRef]
- Sutanudjaja, E.; van Beek, L.; Wanders, N.; Wada, Y.; Bosmans, J.H.; Drost, N.; Van Der Ent, R.J.; De Graaf, I.E.; Hoch, J.M.; De Jong, K.; et al. PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under Shared Socio-economic Pathways—Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 2013, 17, 2393–2413. [Google Scholar] [CrossRef]
- Vörösmarty, C.; Federer, C.; Schloss, A. Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol. 1998, 207, 147–169. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 2014, 18, 2859–2883. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Flörke, M.; Maerker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Bijl, D.L.; Bogaart, P.W.; Kram, T.; De Vries, B.J.; Van Vuuren, D.P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 2016, 55, 75–86. [Google Scholar] [CrossRef]
- Wada, Y.; De Graaf, I.E.M.; Van Beek, L.P.H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 2016, 8, 735–763. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Wisser, D.; Eisner, S.; Flörke, M.; Masaki, Y.; Portmann, F.T.; Stacke, T.; Tessler, Z.; Schewe, J.; Gerten, D.; et al. Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys. Res. Lett. 2013, 40, 4626–4632. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, M.T.H.; Wiberg, D.; LeDuc, S.; Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Chang. 2016, 6, 375–380. [Google Scholar] [CrossRef]
- Vörösmarty, C.J. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Rockstrom, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, 12. [Google Scholar] [CrossRef]
- Parkinson, S.C.; Johnson, N.; Rao, N.D.; Jones, B.; Van Vliet, M.T.; Fricko, O.; Djilali, N.; Riahi, K.; Flörke, M. Climate and human development impacts on municipal water demand: A spatially-explicit global modeling framework. Environ. Model. Softw. 2016, 85, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef]
- Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S.; et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 2018, 1, 486–494. [Google Scholar] [CrossRef]
- Zhou, Q.; Hanasaki, N.; Fujimori, S.; Masaki, Y.; Hijioka, Y. Economic consequences of global climate change and mitigation on future hydropower generation. Clim. Chang. 2017, 147, 77–90. [Google Scholar] [CrossRef]
- Turner, S.W.; Hejazi, M.; Kim, S.H.; Clarke, L.; Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 2017, 141, 2081–2090. [Google Scholar] [CrossRef]
- Falchetta, G.; Gernaat, D.E.; Hunt, J.; Sterl, S. Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review. J. Clean. Prod. 2019, 231, 1399–1417. [Google Scholar] [CrossRef] [Green Version]
- Fricko, O.; Parkinson, S.C.; Johnson, N.; Strubegger, M.; Van Vliet, M.T.H.; Riahi, K. Energy sector water use implications of a 2 °C climate policy. Environ. Res. Lett. 2016, 11, 034011. [Google Scholar] [CrossRef]
- Oki, T.; Agata, Y.; Kanae, S.; Saruhashi, T.; Yang, D.; Musiake, K. Global assessment of current water resources using total runoff integrating pathways. Hydrol. Sci. J. 2001, 46, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong, C.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.; et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Chang. 2014, 81, 205–226. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 104003. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Laizé, C.L.R.; Acreman, M.C.; Schneider, C.; Dunbar, M.J.; Houghton-Carr, H.A.; Flörke, M.; Hannah, D.M. Projected flow alteration and ecological risk for pan-european rivers. River Res. Appl. 2014, 30, 299–314. [Google Scholar] [CrossRef]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef] [Green Version]
- Pastor, A.V.; Palazzo, A.; Havlik, P.; Biemans, H.; Wada, Y.; Obersteiner, M.; Kabat, P.; Ludwig, F. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2019, 2, 499–507. [Google Scholar] [CrossRef]
- Bijl, D.L.; Biemans, H.; Bogaart, P.W.; Dekker, S.C.; Doelman, J.C.; Stehfest, E.; Vuuren, D.P.; Van Vuuren, D.P. A Global Analysis of Future Water Deficit Based on Different Allocation Mechanisms. Water Resour. Res. 2018, 54, 5803–5824. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.W.; Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Voß, A.; Alcamo, J.; Bärlund, I.; Voß, F.; Kynast, E.; Williams, R.; Malve, O. Continental scale modelling of in-stream river water quality: A report on methodology, test runs, and scenario application. Hydrol. Process. 2012, 26, 2370–2384. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Flörke, M.; Wada, Y. Quality matters for water scarcity. Nat. Geosci. 2017, 10, 800. [Google Scholar] [CrossRef]
- Strokal, M.; Spanier, J.E.; Kroeze, C.; Koelmans, A.A.; Flörke, M.; Franssen, W.; Hofstra, N.; Langan, S.; Tang, T.; Van Vliet, M.T.; et al. Global multi-pollutant modelling of water quality: Scientific challenges and future directions. Curr. Opin. Environ. Sustain. 2019, 36, 116–125. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Harrison, J.A.; Dumont, E.; Beusen, A.H.W.; Bouwman, A.F. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Reder, K.; Flörke, M.; Alcamo, J. Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ. Model. Softw. 2015, 63, 251–263. [Google Scholar] [CrossRef]
- Reder, K.; Barlund, I.; Voß, A.; Kynast, E.; Williams, R.; Malve, O.; Flörke, M. European scenario studies on future in-stream nutrient concentrations. Trans. ASABE 2013, 56, 1407–1417. [Google Scholar]
- Tang, T.; Strokal, M.; Van Vliet, M.T.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y. Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Curr. Opin. Environ. Sustain. 2019, 36, 39–48. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; Van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Havlik, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-use protection for climate change mitigation. Nat. Clim. Chang. 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Calvin, K.; Patel, P.; Clarke, L.; Asrar, G.; Bond-Lamberty, B.; Cui, R.Y.; Di Vittorio, A.; Dorheim, K.; Edmonds, J.; Hartin, C.; et al. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 2019, 12, 677–698. [Google Scholar] [CrossRef]
- Kim, S.H.; Hejazi, M.; Liu, L.; Calvin, K.; Clarke, L.; Edmonds, J.; Kyle, P.; Patel, P.; Wise, M.; Davies, E. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Chang. 2016, 136, 217–231. [Google Scholar] [CrossRef]
- Stehfest, E.; van Vuuren, D.P.; Kram, T.; Bouwman, L.; Alkemade, R.; Bakkenes, M.; Biemans, H.; Bouwman, A.; den Elzen, M.; Janse, J.; et al. Integrated Assessment of Global Environmental Change with IMAGE: Model Description and Policy Applications; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2014. [Google Scholar]
- Cai, X.; Rosegrant, M.W. Global Water Demand and Supply Projections. Water Int. 2002, 27, 159–169. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Msangi, S.; Sulser, T.B.; Zhu, T.; Cline, S.A. International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2008. [Google Scholar]
- Cohn, A.S.; Mosnier, A.; Havlík, P.; Valin, H.; Herrero, M.; Schmid, E.; O’Hare, M.; Obersteiner, M. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. USA 2014, 111, 7236–7241. [Google Scholar] [CrossRef] [Green Version]
- Hertel, T.W.; Lobell, D.B. Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions. Energy Econ. 2014, 46, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; van Meijl, H.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.; Havlik, P.; Heyhoe, E.; d’Croz, D.M.; Popp, A.; et al. Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 2014, 45, 69–84. [Google Scholar] [CrossRef]
- von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; et al. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP global economic model intercomparison. Agric. Econ. 2014, 45, 3–20. [Google Scholar] [CrossRef]
- Rao, N.; Poblete-Cazenave, M.; Bhalerao, R.; Davis, K.; Parkinson, S. Spatial analysis of energy use and GHG emissions from cereal production in India. Sci. Total Environ. 2019, 654, 841–849. [Google Scholar] [CrossRef] [PubMed]
- LeClere, D.; Havlik, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M. Climate change induced transformations of agricultural systems: Insights from a global model. Environ. Res. Lett. 2014, 9, 124018. [Google Scholar] [CrossRef]
- Schmitz, C.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A.; Lotze-Campen, H.; Lotze-Campen, H. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2016, 2, e1501452. [Google Scholar] [CrossRef]
- Jalava, M.; Guillaume, J.H.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet change and food loss reduction: What is their combined impact on global water use and scarcity? Earth’s Future 2016, 4, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; et al. Impacts of increased bioenergy demand on global food markets: An AgMIP economic model intercomparison. Agric. Econ. 2014, 45, 103–116. [Google Scholar] [CrossRef]
- Popp, A.; Dietrich, J.P.; Lotze-Campen, H.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.; Edenhofer, O. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 2011, 6, 034017. [Google Scholar] [CrossRef]
- Kraxner, F.; Nordström, E.-M.; Havlík, P.; Gusti, M.; Mosnier, A.; Frank, S.; Valin, H.; Fritz, S.; Fuss, S.; Kindermann, G.; et al. Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs. Biomass Bioenergy 2013, 57, 86–96. [Google Scholar] [CrossRef]
- Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C. Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technol. Soc. Chang. 2014, 81, 236–249. [Google Scholar] [CrossRef]
- Bonsch, M.; Humpenöder, F.; Popp, A.; Bodirsky, B.; Dietrich, J.P.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Weindl, I.; Gerten, D.; et al. Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy 2016, 8, 11–24. [Google Scholar] [CrossRef]
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; et al. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Jones, J.; Hatfield, J.; Ruane, A.; Boote, K.; Thorburn, P.; Antle, J.; Nelson, G.; Porter, C.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Wiebe, K.; Lotze-Campen, H.; Sands, R.; Tabeau, A.; van der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Mason-D’Croz, D.; et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 2015, 10, 085010. [Google Scholar] [CrossRef]
- Valin, H.; Havlik, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M. Agricultural productivity and greenhouse gas emissions: Trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 2013, 8, 035019. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.; et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Chang. 2019, 9, 66–73. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.D.; Bird, F.A.; Tuomisto, H.L.; Green, R.; Harris, F.B.; Joy, E.J.M.; Chalabi, Z.; Allen, E.; Haines, A.; Dangour, A.D. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. USA 2018, 115, 6804–6809. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.; Weyant, J. Bioenergy in energy transformation and climate management. Clim. Chang. 2014, 123, 477–493. [Google Scholar] [CrossRef]
- Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.; Humpenöder, F.; Lotze-Campen, H.; et al. The value of bioenergy in low stabilization scenarios: An assessment using REMIND-MAgPIE. Clim. Chang. 2014, 123, 705–718. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Wise, M. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 2013, 20, 389–407. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Biewald, A.; Pehl, M.; Bonsch, M.; Baumstark, L.; Klein, D.; Popp, A.; Luderer, G.; Kriegler, E. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 2016, 64, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Meller, L.; van Vuuren, D.; Cabeza, M. Quantifying biodiversity impacts of climate change and bioenergy: The role of integrated global scenarios. Reg. Environ. Chang. 2015, 15, 961–971. [Google Scholar] [CrossRef]
- Alkemade, R.; Van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B.T. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef] [Green Version]
- IEA. Water for Energy—Is Energy Becoming a Thirstier Resource (Excerpt from the World Energy Outlook 2012), World Energy Outlook 2012; International Energy Agency (IEA): Paris, France, 2012; p. 33. [Google Scholar]
- International Institute for Applied Systems Analysis (2015) SSP Database (Shared Socioeconomic Pathways)—Version 1.0. Available online: https://tntcat.iiasa.ac.at/SspDb (accessed on 24 August 2018).
- Webster, M.; Donohoo, P.; Palmintier, B. Water–CO2 trade-offs in electricity generation planning. Nat. Clim. Chang. 2013, 3, 1029–1032. [Google Scholar] [CrossRef]
- Dubreuil, A.; Assoumou, E.; Bouckaert, S.; Selosse, S.; Maïzi, N. Water modeling in an energy optimization framework—The water-scarce middle east context. Appl. Energy 2013, 101, 268–279. [Google Scholar] [CrossRef]
- Davies, E.G.; Kyle, P.; Edmonds, J.A. An integrated assessment of global and regional water demands for electricity generation to 2095. Adv. Water Resour. 2013, 52, 296–313. [Google Scholar] [CrossRef]
- Kyle, P.; Davies, E.G.; Dooley, J.J.; Smith, S.J.; Clarke, L.E.; Edmonds, J.A.; Hejazi, M. Corrigendum to “Influence of climate change mitigation technology on global demands of water for electricity generation”. Int. J. Greenh. Gas Control. 2013, 17, 549–552. [Google Scholar] [CrossRef]
- Popp, A.; Rose, S.K.; Calvin, K.; Van Vuuren, D.P.; Dietrich, J.P.; Wise, M.; Stehfest, E.; Humpenöder, F.; Kyle, P.; Van Vliet, J.; et al. Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Chang. 2014, 123, 495–509. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Voisin, N.; Liu, L.; Bramer, L.M.; Fortin, D.C.; Hathaway, J.E.; Huang, M.; Kyle, P.; Leung, L.R.; Li, H.-Y.; et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl. Acad. Sci. USA 2015, 112, 10635–10640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.W.; Hejazi, M.; Calvin, K.; Kyle, P.; Kim, S. A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Sci. Total Environ. 2019, 673, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Walker, R.V.; Beck, M.; Hall, J.; Dawson, R.; Heidrich, O. The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism. J. Environ. Manag. 2014, 141, 104–115. [Google Scholar] [CrossRef]
- Stillwell, A.S.; Webber, M.E. Geographic, Technologic, And Economic Analysis of Using Reclaimed Water for Thermoelectric Power Plant Cooling. Environ. Sci. Technol. 2014, 48, 4588–4595. [Google Scholar] [CrossRef]
- Brook, B.W.; Sodhi, N.S.; Bradshaw, C.J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Nilsson, C.; Thompson, W.G.; Goldstein, S.L. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Alamanos, A.; Latinopoulos, D.; Papaioannou, G.; Mylopoulos, N. Integrated hydro-economic modeling for sustainable water resources management in data-scarce areas. Water Resour. Manag. 2019, 33, 2775–2790. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Young, R.; Haveman, R. Economics of Water Resources: A Survey. In Handbook of Natural Resource and Energy Economics, 2nd ed.; Kneese, A., Sweenly, J., Eds.; Elsevier Science Publishers: Oxford, UK, 2017; pp. 465–529. [Google Scholar]
- Robinson, S.; Mason-D’Croz, D.; Zhu, T. The IMPACT Model: A Global Simulation Modelling System for Analysis of Water-Economy Links in Climate Change Scenarios; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- Kahil, T.; Parkinson, S.; Satoh, Y.; Greve, P.; Burek, P.; Veldkamp, T.I.E.; Burtscher, R.; Byers, E.; Djilali, N.; Fischer, G.; et al. A Continental-Scale Hydroeconomic Model for Integrating Water-Energy-Land Nexus Solutions. Water Resour. Res. 2018, 54, 7511–7533. [Google Scholar] [CrossRef]
- Fujimori, S.; Hanasaki, N.; Masui, T. Projections of industrial water withdrawal under shared socioeconomic pathways and climate mitigation scenarios. Sustain. Sci. 2017, 12, 275–292. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Masui, T. AIM/CGE V2.0: Basic Feature of the Model. In Post-2020 Climate Action; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 305–328. [Google Scholar]
- Taheripour, F.; Hertel, T.; Liu, J. Introducing Water by River Basin into the GTAP-BIO Model: GTAP-BIO-W; GTAP Working Paper 77; Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University: Washington DC, USA, 2013. [Google Scholar]
- Strzepek, K.; Schlosser, A.; Gueneau, A.; Gao, X.; Blanc, É.; Fant, C.; Rasheed, B.; Jacoby, H.D. Modeling water resource systems within the framework of the MIT Integrated Global System Model: IGSM-WRS. J. Adv. Model. Earth Syst. 2013, 5, 638–653. [Google Scholar] [CrossRef]
- Davies, E.G.; Simonovic, S.P. ANEMI: A new model for integrated assessment of global change. Interdiscip. Environ. Rev. 2010, 11, 127. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Taheripour, F.; Hertel, T.W.; Liu, J. The role of irrigation in determining the global land use impacts of biofuels. Energy Sustain. Soc. 2013, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hertel, T.W.; Taheripour, F.; Zhu, T.; Ringler, C. International trade buffers the impact of future irrigation shortfalls. Glob. Environ. Chang. 2014, 29, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Babiker, M.H.; Reilly, J.M.; Mayer, M.; Eckaus, R.S.; Sue Wing, I.; Hyman, R.C. The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Revisions, Sensitivities, and Comparisons of Results; MIT JPSPGC Report 71; MIT: Cambridge, MA, USA, 2001. [Google Scholar]
- Chen, Y.-H.H.; Paltsev, S.; Reilly, J.M.; Morris, J.F.; Babiker, M.H. Long-term economic modeling for climate change assessment. Econ. Model. 2016, 52, 867–883. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, S.; Su, X.; Liu, J.-Y.; Hasegawa, T.; Takahashi, K.; Masui, T.; Takimi, M. Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus 2016, 5, 1620. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, S.; Hasegawa, T.; Masui, T.; Takahashi, K.; Herran, D.S.; Dai, H.; Hijioka, Y.; Kainuma, M. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 268–283. [Google Scholar] [CrossRef]
- Fujimori, S.; Masui, T.; Matsuoka, Y. Development of a global computable general equilibrium model coupled with detailed energy end-use technology. Appl. Energy 2014, 128, 296–306. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Masui, T.; Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 2014, 6, 685–699. [Google Scholar] [CrossRef]
- Reilly, J.; Melillo, J.; Cai, Y.; Kicklighter, D.; Gurgel, A.; Paltsev, S.; Cronin, T.; Sokolov, A.; Schlosser, A. Using Land to Mitigate Climate Change: Hitting the Target, Recognizing the Trade-offs. Environ. Sci. Technol. 2012, 46, 5672–5679. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K.; Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 2017, 580, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, C.A.; Strzepek, K.; Gao, X.; Gueneau, A.; Fant, C.; Paltsev, S.; Rasheed, B.; Smith-Greico, T.; Blanc, É.; Jacoby, H.D.; et al. The Future of Global Water Stress: An Integrated Assessment; MIT Joint Program on the Science and Policy of Global Change, Report No. 254; MIT: Cambridge, CA, USA, 2014. [Google Scholar]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; et al. Chapter 3: Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK, 2018. [Google Scholar]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, K.; Kriegler, E.; et al. Chapter 2: Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In Global Warming of 1.5 °C an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK, 2018. [Google Scholar]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef]
- Bijl, D.L.; Bogaart, P.W.; Dekker, S.C.; van Vuuren, D.P. Unpacking the Nexus: Different Spatial Scales for Water, Food, and Energy. Glob. Environ. Chang. 2017, 48, 22–31. [Google Scholar] [CrossRef]
- Wise, M.; Calvin, K. GCAM 3.0 Agriculture and Land Use: Technical Description of Modeling Approach; Pacific Northwest National Laboratory PNNL-20971; Pacific Northwest National Laboratory: Richland, WA, USA, 2011.
- Collins, W.D.; Craig, A.P.; Truesdale, J.E.; Di Vittorio, A.V.; Jones, A.D.; Bond-Lamberty, B.; Calvin, K.V.; Edmonds, J.A.; Kim, S.H.; Thomson, A.M.; et al. The integrated Earth system model version 1: Formulation and functionality. Geosci. Model Dev. 2015, 8, 2203–2219. [Google Scholar] [CrossRef]
- Eftelioglu, E.; Jiang, Z.; Ali, R.; Shekhar, S. Spatial computing perspective on food energy and water nexus. J. Environ. Stud. Sci. 2016, 6, 62–76. [Google Scholar] [CrossRef]
- Gleason, C.J.; Wada, Y.; Wang, J. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. J. Adv. Model. Earth Syst. 2018, 10, 2–17. [Google Scholar] [CrossRef]
- Jordaan, S.M.; Keith, D.W.; Stelfox, B. Quantifying land use of oil sands production: A life cycle perspective. Environ. Res. Lett. 2009, 4, 024004. [Google Scholar] [CrossRef]
- Liu, L.; Parkinson, S.; Gidden, M.; Byers, E.; Satoh, Y.; Riahi, K.; Forman, B.; Byers, E.A. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environ. Res. Lett. 2018, 13, 044026. [Google Scholar] [CrossRef]
- Macknick, J.; Cohen, S.; Newmark, R.; Martinez, A.; Sullivan, P.; Tidwell, V. Water Constraints in an Electric Sector Capacity Expansion Model; Technical Report, NREL/TP-6A20-64270; National Renewable Energy Laboratory: Golden, CO, USA, 2015.
- Parkinson, S.C.; Djilali, N.; Krey, V.; Fricko, O.; Johnson, N.; Khan, Z.; Sedraoui, K.; Almasoud, A.H. Impacts of Groundwater Constraints on Saudi Arabia’s Low-Carbon Electricity Supply Strategy. Environ. Sci. Technol. 2016, 50, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Mao, J.; Bielicki, J.M. Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources. Energy Environ. Sci. 2019, 12, 3164–3181. [Google Scholar] [CrossRef] [Green Version]
- Conway, D.; Dalin, C.; Landman, W.A.; Osborn, T.J. Hydropower plans in eastern and southern Africa increase risk of concurrent climate-related electricity supply disruption. Nat. Energy 2017, 2, 946–953. [Google Scholar] [CrossRef]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016; p. 162. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Hussein, Z.; Hertel, T.; Golub, A. Climate change mitigation policies and poverty in developing countries. Environ. Res. Lett. 2013, 8, 035009. [Google Scholar] [CrossRef]
- Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A. Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecol. Econ. 2016, 122, 12–24. [Google Scholar] [CrossRef]
- Byers, E.; Gidden, M.; Leclère, D.; Balkovic, J.; Burek, P.; Ebi, K.L.; Greve, P.; Grey, D.; Havlík, P.; Hillers, A.; et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 2018, 13, 055012. [Google Scholar] [CrossRef] [Green Version]
- Piontek, F.; Müller, C.; Pugh, T.A.M.; Clark, D.B.; Deryng, D.; Elliott, J.; Colón González, F.d.J.; Flörke, M.; Folberth, C.; Franssen, W.; et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl. Acad. Sci. USA 2014, 111, 3233–3238. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, K.A.; Janetos, A.C. The regional nature of global challenges: A need and strategy for integrated regional modeling. Clim. Chang. 2013, 118, 565–577. [Google Scholar] [CrossRef]
- Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Chang. 2014, 4, 550–557. [Google Scholar] [CrossRef]
- Beven, K.; Lamb, R. The uncertainty cascade in model fusion. Geol. Soc. 2017, 408, 255–266. [Google Scholar] [CrossRef]
- Krey, V.; Riahi, K. Risk Hedging Strategies Under Energy System and Climate Policy Uncertainties. In Robustness Analysis in Decision Aiding, Optimization, and Analytics; Springer Science and Business Media LLC: Berlin, Germany, 2013; Volume 199, pp. 435–474. [Google Scholar]
- Ermolieva, T.Y.; Ermoliev, Y.M.; Havlik, P.; Mosnier, A.; LeClere, D.; Kraksner, F.; Khabarov, N.; Obersteiner, M. Systems Analysis of Robust Strategic Decisions to Plan Secure Food, Energy, and Water Provision Based on the Stochastic Globiom Model. Cybern. Syst. Anal. 2015, 51, 125–133. [Google Scholar] [CrossRef]
- Budescu, D.V.; Por, H.H.; Broomell, S.B. Effective communication of uncertainty in the IPCC reports. Clim. Chang. 2012, 113, 181–200. [Google Scholar] [CrossRef]
- McCollum, D.L.; Krey, V.; Riahi, K.; Kolp, P.; Grübler, A.; Makowski, M.; Nakicenovic, N. Climate policies can help resolve energy security and air pollution challenges. Clim. Chang. 2013, 119, 479–494. [Google Scholar] [CrossRef]
- Lamontagne, J.R.; Reed, P.M.; Link, R.; Calvin, K.V.; Clarke, L.E.; Edmonds, J.A. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios. Earth’s Future 2018, 6, 488–504. [Google Scholar] [CrossRef]
Model | References | Water-Energy | Land-Energy | Water-Land | Ecosystem Impacts | Other Linked Models |
---|---|---|---|---|---|---|
GCAM | [63,82,122,156,158,159] | (+) Tracking of water demands for irrigated bioenergy and electric power generation with alternative cooling technology options (+) Simplified representations of water demands for energy industries (e.g., water demands for primary energy production (mining and drilling) scale with production) (-) Energy demand associated with water sourcing, delivery and treatment is not included (-) Water demands for transport fuel production not included (-) Coarse resolution of the energy sector impedes representation of localized water constraints | (+) Land-use and energy modules are fully coupled so that bioenergy competes directly with other land-based mitigation strategies (+) Biomass options include non-woody bioenergy crops, traditional biomass, and short-rotation tree plantations (+) Land allocation for biomass production competes with land for other purposes. (+) AFOLU emissions and sinks are represented with endogenous trade-offs between energy and land-based mitigation (-) Biomass from forest residues and managed natural forests not represented (except traditional biomass) (-) Land requirements of energy sector besides biomass not included (-) No energy price feedbacks on land use decisions | (+) Water demands for all major crop types are estimated in each AEZ and region (+) Availability of water at basin-scale affects irrigated land allocation (+) Agricultural trade affects regional water use and land allocation (+) Non-renewable groundwater explicitly modeled (-) Relatively coarse resolution (235 river basins) (-) Future infrastructure assumptions (irrigation efficiency, reservoir storage) are exogenous | (+) Environmental flow requirements (EFRs) are represented at basin-scale (+) Implications of land pressures for loss of forests and other unmanaged land (-) Implications of future resource management for terrestrial/aquatic ecosystem quality not explicitly modeled | (+) Downscaled water demands from GCAM have been soft-linked with fine resolution models of runoff, river routing, and water management to assess water scarcity (+) GCAM has been soft-linked with an electricity operation model (PROMOD) to assess electricity grid resilience to hydro-climatological change (+) GCAM has been hard-linked to the Community Earth System Model (CESM) to construct the integrated Earth system model (iESM) to assess the coupled human-climate system. |
IMAGE | [11,46,83,113] | (+) Tracking of water demands for irrigated bioenergy and electric power generation with alternative cooling technology options (+) Hydropower potential based on the hydrological module of LPJmL (-) Energy demand associated with water sourcing, delivery and treatment is not included (-) Water demands for energy extraction and transport fuel production not included (-) Coarse resolution of the energy sector impedes representation of localized water constraints | (+) Land-use and energy models are soft-linked to ensure that biomass cultivation costs are considered in energy sector (bioenergy supply curves are provided to energy model and bioenergy demands are fed back to land-use models; no iteration) (+) Biomass options include non-woody bioenergy crops, traditional biomass, and short-rotation tree plantations (-) Biomass from forest residues and managed natural forests not represented (except traditional biomass) (-) Land requirements of energy sector besides biomass not included (-) In most applications, sustainability criteria prohibit biomass cultivation on land needed for food production (i.e., food first policy) (-) AFOLU emissions and sinks are tracked, but mitigation trade-offs between bioenergy and other land uses not considered jointly (-) No energy price feedbacks on land use decisions | (+) Water demands for all major crop types are estimated on 0.5° grid (+) Availability of water at grid-scale affects crop yields and thus land allocation (+) Agricultural trade affects regional water use and land allocation (-) Future infrastructure assumptions (irrigated area and efficiency) are exogenous (-) No direct competition for water among sectors (-): Blue water availability does not include non-renewable groundwater | (+) Implications of land pressures for risks of erosion and soil degradation, and loss of forests and other unmanaged land (+) Biodiversity impacts can be explored with linkage to GLOBIO (-) GLOBIO biodiversity impacts tracked ex-post, but do not constrain supply decisions | (+) LPJml provides crop yields, irrigation water requirements, and water availability as inputs to IMAGE (+) Outputs from IMAGE are used by GLOBIO to examine biodiversity impacts (+) Downscaled electricity production has been provided as inputs to WaterGAP to estimate energy-related water demands |
MESSAGE-GLOBIOM | [13,36,153] | (+) Tracking of water demands for energy extraction, transport fuel production, and electric power generation with alternative cooling technology options (+) Energy demand associated with water sourcing, delivery and treatment is included (-) Coarse resolution of the energy sector impedes representation of localized water constraints | (+) Land-use and energy models are soft-linked to capture mitigation trade-offs between energy and land sectors (biomass supply functions and AFOLU marginal abatement cost curves at different bioenergy and carbon prices are provided to the energy model; carbon prices and bioenergy demand are fed back to the land-use model; no iteration) (+) Biomass options include non-woody bioenergy crops, traditional biomass, short-rotation tree plantations, forest residues, and wood and by-products from forestry (+) Land allocation for biomass production competes with land for other purposes, but biomass demands come from energy model (+) AFOLU emissions and sinks are represented with trade-offs between energy and land-based mitigation emulated via soft-link (-) Land requirements of energy sector besides biomass not included (-) No energy price feedbacks on land use decisions | (+) Water demands for all major crop types are estimated on 0.5° grid (+) Availability of water at grid-scale affects crop yields and thus land allocation (+) Agricultural trade affects regional water use and land allocation (+): Irrigated area and irrigation technologies are endogenously determined (+) Competition for water among sectors | (+) Environmental flow requirements are represented (+) Tracking of thermal pollution from electricity generation (+) Implications of land pressures for loss of forests and other unmanaged land (-) Implications of future resource management for terrestrial/aquatic ecosystem quality not explicitly modeled | (+) EPIC provides spatially-explicit crop yields and irrigation water requirements, as well as environmental parameters related to carbon, nitrogen, and water cycling, to GLOBIOM for several land management systems (+) LPJml provides water availability and non-agricultural water demands to GLOBIOM (+) RUMINANT provides biophysically consistent information to GLOBIOM about feed requirements, livestock sector outputs, and related non-CO2 emissions |
REMIND-MAgPIE | [2,3,96,111] | (+): Tracking of water demands for electric power generation with alternative cooling technology options (-): Energy demand associated with water sourcing, delivery and treatment is not included (-) Coarse resolution of the energy sector impedes representation of localized water constraints | (+): Land-use and energy models are soft-linked to capture mitigation potentials in the land sector (biomass supply curves and AFOLU emissions provided to energy model; GHG prices and bioenergy demand fed back to agro-economic model; models iterate until bioenergy and emissions markets equilibrate) (+) Biomass options include non-woody bioenergy crops, traditional biomass, and short-rotation tree plantations (+) Land allocation for biomass production competes with land for other purposes, including food and mitigation (+): AFOLU emissions and sinks are represented with trade-offs between energy and land-based mitigation emulated via soft-link (-) Land requirements of energy sector besides biomass not included (-): Biomass from managed natural forests not represented (except traditional biomass) (-): No energy price feedbacks on land use decisions | (+) Water demands for all major crop types are estimated on 0.5° grid (+) Availability of water at grid-scale affects rainfed and irrigated crop yields and thus land allocation (+) Agricultural trade affects regional water use and land allocation (+): Irrigated area can be endogenously expanded by investing in new irrigation infrastructure (-) No direct competition for water among sectors (-): Blue water availability does not include non-renewable groundwater | (+) Environmental flow requirements (EFRs) are represented (+) Implications of land pressures for loss of forests and other unmanaged land (+) Nitrogen losses are tracked (-) Implications of future resource management for terrestrial/aquatic ecosystem quality not explicitly modeled | (+) LPJmL provides spatially-explicit crop and pasture yields, carbon stocks, water flows and and irrigation water requirements as inputs to MAgPIE |
AIM/CGE | [42,147,149,151] | (+) Simplified representations of water demands for energy industries (e.g., water demands for primary energy production (mining and drilling) scale with production) (+) Tracking of water demands for electric power generation (+) Hydropower potential based on the hydrological module of H08 (-) Energy demand associated with water sourcing, delivery and treatment is not included (-) Water demands for energy extraction and transport fuel production not included (-) Coarse resolution of the energy sector impedes representation of localized water constraints | (+) Land-use and energy modules are fully coupled so that bioenergy competes directly with other land-based mitigation strategies (+) Land allocation for biomass production competes with land for other purposes. (+) AFOLU emissions and sinks are represented with endogenous trade-offs between energy and land-based mitigation (+) Energy price feedbacks on land use decisions (-) Biomass from forest residues and managed natural forests not represented (except traditional biomass) (-) Land requirements of energy sector besides biomass not included | (+) Water demands for all major crop types are estimated on 0.5° grid (+) Availability of water at grid-scale affects crop yields and thus land allocation (-) Agricultural trade is not influenced by regional water constraints (-) Future infrastructure assumptions (irrigated area and efficiency) are exogenous (-) No direct competition for water among sectors (-): Blue water availability does not include non-renewable groundwater | (+) Tracking of thermal pollution from electricity generation (+) Implications of land pressures for loss of forests and other unmanaged land (+) Biodiversity impacts can be explored with linkage to AIM/Biodiversity (-) Implications of future resource management for terrestrial/aquatic ecosystem quality not explicitly modeled | (+) GGCs (CYGMA and LPJmL) provide crop yields as inputs to AIM (+) Hydrological model H08 can provide water scarcity index with inputs from AIM/CGE |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, N.; Burek, P.; Byers, E.; Falchetta, G.; Flörke, M.; Fujimori, S.; Havlik, P.; Hejazi, M.; Hunt, J.; Krey, V.; et al. Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge? Water 2019, 11, 2223. https://doi.org/10.3390/w11112223
Johnson N, Burek P, Byers E, Falchetta G, Flörke M, Fujimori S, Havlik P, Hejazi M, Hunt J, Krey V, et al. Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge? Water. 2019; 11(11):2223. https://doi.org/10.3390/w11112223
Chicago/Turabian StyleJohnson, Nils, Peter Burek, Edward Byers, Giacomo Falchetta, Martina Flörke, Shinichiro Fujimori, Petr Havlik, Mohamad Hejazi, Julian Hunt, Volker Krey, and et al. 2019. "Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?" Water 11, no. 11: 2223. https://doi.org/10.3390/w11112223
APA StyleJohnson, N., Burek, P., Byers, E., Falchetta, G., Flörke, M., Fujimori, S., Havlik, P., Hejazi, M., Hunt, J., Krey, V., Langan, S., Nakicenovic, N., Palazzo, A., Popp, A., Riahi, K., van Dijk, M., van Vliet, M. T. H., van Vuuren, D. P., Wada, Y., ... Parkinson, S. (2019). Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge? Water, 11(11), 2223. https://doi.org/10.3390/w11112223