Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?
Abstract
:1. Introduction
1.1. Challenges to Evaluation
1.2. Shortcomings of Commonly Used Evaluation Metrics
1.3. Biological Integrity Indices
1.4. The Opportunity to Look Back
2. Review of Habitat Heterogeneity Enhancement Restoration Evaluation Studies
2.1. Habitat Metrics
2.2. Biological Metrics
2.3. Controlling for Time, Space, and Variability
2.4. Relationship between Study Design and Biological Improvement
3. Discussion
3.1. Are Reach-Scale Diversity and Abundance Universal Indicators of Success?
3.2. Reference States and Best Practices
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BEHI | Bank Erosion Hazard Index |
B-IBI | Benthic Index of Biological Integrity |
EPA | US Environmental Protection Agency |
EPA-RBP | US Environmental Protection Agency Rapid Bioassessment Protocol |
EPT | Ephemeroptera, Plecoptera, and Trichoptera taxa |
PHABSIM | Physical Habitat Simulation Model |
QHEI | Ohio Qualitative Habitat Evaluation Index |
References
- National Research Council (U.S.), Committee on Restoration of Aquatic Ecosystems—Science, Technology, and Public Policy, Commission on Geosciences, Environment, and Resources. Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy; Haworth Press: Philadelphia, PA, USA, 1992. [Google Scholar]
- Kondolf, G.M.; Micheli, E.R. Evaluating stream restoration projects. Environ. Manag. 1995, 19, 1–15. [Google Scholar] [CrossRef]
- Kondolf, G.M. Five elements for effective evaluation of stream restoration. Restor. Ecol. 1995, 3, 133–136. [Google Scholar] [CrossRef]
- Kondolf, G.M. Learning from stream restoration projects. In Proceedings of the Fifth Biennial Watershed Management Conference, Ashland, OR, USA, 16–18 November 1994; Volume 3, pp. 133–136.
- Downs, P.W.; Kondolf, G.M. Post-project appraisals in adaptive management of river channel restoration. Environ. Manag. 2002, 29, 477–496. [Google Scholar] [CrossRef]
- Woolsey, S.; Capelli, F.; Gonser, T.O.M.; Hoehn, E.; Hostmann, M.; Junker, B.; Paetzold, A.; Roulier, C.; Schweizer, S.; Tiegs, S.D.; et al. A strategy to assess river restoration success. Freshw. Biol. 2007, 52, 752–769. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration: Ecological success in river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Rutherfurd, I.D.; Ladson, A.R.; Stewardson, M.J. Evaluating stream rehabilitation projects: Reasons not to, and approaches if you have to. Aust. J. Water Resour. 2004, 8, 57–68. [Google Scholar]
- US Army Corps of Engineers. Corps of Engineers Civil Works Direct Program Budget Development Guidance Fiscal Year 2016; US Army Corps of Engineers: Norfolk, VA, USA, 2014.
- Stakhiv, E. Improving Environmental Benefits Analysis in Ecosystem Restoration Planning; USACE, Institute for Water Resources: Alexandria, VA, USA, 2003.
- Environmental Advisory Board to the Chief of the US Army Corps of Engineers. Environmental Benefits and Performance Measures: Defining National Ecosystem Restoration and How to Measure Its Achievement; Environmental Advisory Board to the Chief of the US Army Corps of Engineers: Norfolk, VA, USA, 2006. [Google Scholar]
- Mckay, S.K.; Linkov, I.; Fischenich, J.C.; Miller, S.J.; Valverde, L.J. Ecosystem Restoration Objectives and Metrics; U.S. Army Engineer Research and Development Center (ERDC), Environmental Laboratory: Athens, GA, USA, 2012. [Google Scholar]
- Convertino, M.; Baker, K.M.; Vogel, J.T.; Lu, C.; Suedel, B.; Linkov, I. Multi-criteria decision analysis to select metrics for design and monitoring of sustainable ecosystem restorations. Ecol. Indic. 2013, 26, 76–86. [Google Scholar] [CrossRef]
- Stewart, G.B.; Bayliss, H.R.; Showler, D.A.; Sutherland, W.J.; Pullin, A.S. Effectiveness of engineered in-stream structure mitigation measures to increase salmonid abundance: A systematic review. Ecol. Appl. 2009, 19, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Krebs, C.J. The experimental paradigm and long-term population studies. Ibis 1991, 133, 3–8. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. river restoration efforts. Science (Washington) 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Miller, S.W.; Budy, P.; Schmidt, J.C. Quantifying Macroinvertebrate Responses to In-Stream Habitat Restoration: Applications of Meta-Analysis to River Restoration. Restor. Ecol. 2010, 18, 8–19. [Google Scholar] [CrossRef]
- Wohl, E.; Angermeier, P.L.; Bledsoe, B.; Kondolf, G.M.; MacDonnell, L.; Merritt, D.M.; Palmer, M.A.; Poff, N.L.; Tarboton, D. River restoration. Water Resour. Res. 2005, 41, W10301. [Google Scholar] [CrossRef]
- Reynoldson, T.B.; Norris, R.H.; Resh, V.H.; Day, K.E.; Rosenberg, D.M. The reference condition: A comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 1997, 833–852. [Google Scholar] [CrossRef]
- Biggs, J.; Corfield, A.; Grøn, P.; Hansen, H.O.; Walker, D.; Whitfield, M.; Williams, P. Restoration of the rivers Brede, Cole and Skerne: A joint Danish and British EU-LIFE demonstration project, V—Short-term impacts on the conservation value of aquatic macroinvertebrate and macrophyte assemblages. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 241–255. [Google Scholar] [CrossRef]
- Ebrahimnezhad, M.; Harper, D.M. The biological effectiveness of artificial riffles in river rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 1997, 7, 187–197. [Google Scholar] [CrossRef]
- Edwards, C.J.; Griswold, B.L.; Tubb, R.A.; Weber, E.C.; Woods, L.C. Mitigating effects of artificial riffles and pools on the fauna of a channelized warmwater stream. N. Am. J. Fish. Manag. 1984, 4, 194–203. [Google Scholar] [CrossRef]
- Friberg, N.; Kronvang, B.; Ole Hansen, H.; Svendsen, L.M. Long-term, habitat-specific response of a macroinvertebrate community to river restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 87–99. [Google Scholar] [CrossRef]
- Gerhard, M.; Reich, M. Restoration of Streams with Large Wood: Effects of Accumulated and Built-in Wood on Channel Morphology, Habitat Diversity and Aquatic Fauna. Int. Rev. Hydrobiol. 2000, 85, 123–137. [Google Scholar] [CrossRef]
- Gørtz, P. Effects of stream restoration on the macroinvertebrate community in the River Esrom, Denmark. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 115–130. [Google Scholar] [CrossRef]
- Harrison, S.S.C.; Pretty, J.L.; Shepherd, D.; Hildrew, A.G.; Smith, C.; Hey, R.D. The effect of instream rehabilitation structures on macroinvertebrates in lowland rivers. J. Appl. Ecol. 2004, 41, 1140–1154. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Lorenz, A.W. Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquat. Sci. 2008, 70, 292–303. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Lorenz, A.W.; Hering, D. Restoration effort, habitat mosaics, and macroinvertebrates—Does channel form determine community composition? Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 157–169. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Lorenz, A.; Hering, D. Hydromorphological parameters indicating differences between single-and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 1200–1216. [Google Scholar] [CrossRef]
- Jungwirth, M.; Moog, O.; Muhar, S. Effects of river bed restructuring on fish and benthos of a fifth order stream, Melk, Austria. Regul. Rivers Res. Manag. 1993, 8, 195–204. [Google Scholar] [CrossRef]
- Laasonen, P.; Muotka, T.; Kivijärvi, I. Recovery of macroinvertebrate communities from stream habitat restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 101–113. [Google Scholar] [CrossRef]
- Larson, M.G.; Booth, D.B.; Morley, S.A. Effectiveness of large woody debris in stream rehabilitation projects in urban basins. Ecol. Eng. 2001, 18, 211–226. [Google Scholar] [CrossRef]
- Lemly, A.D.; Hilderbrand, R.H. Influence of large woody debris on stream insect communities and benthic detritus. Hydrobiologia 2000, 421, 179–185. [Google Scholar] [CrossRef]
- Lepori, F.; Palm, D.; Brännäs, E.; Malmqvist, B. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol. Appl. 2005, 15, 2060–2071. [Google Scholar] [CrossRef]
- Lester, R.E.; Wright, W.; Jones-Lennon, M. Does adding wood to agricultural streams enhance biodiversity? An experimental approach. Mar. Freshw. Res. 2007, 58, 687–698. [Google Scholar] [CrossRef]
- Moerke, A.H.; Gerard, K.J.; Latimore, J.A.; Hellenthal, R.A.; Lamberti, G.A. Restoration of an Indiana, USA, stream: Bridging the gap between basic and applied lotic ecology. J. N. Am. Benthol. Soc. 2004, 23, 647–660. [Google Scholar] [CrossRef]
- Muotka, T.; Laasonen, P. Ecosystem recovery in restored headwater streams: The role of enhanced leaf retention. J. Appl. Ecol. 2002, 39, 145–156. [Google Scholar] [CrossRef]
- Muotka, T.; Paavola, R.; Haapala, A.; Novikmec, M.; Laasonen, P. Long-term recovery of stream habitat structure and benthic invertebrate communities from in-stream restoration. Biol. Conserv. 2002, 105, 243–253. [Google Scholar] [CrossRef]
- Nakano, D.; Nakamura, F. Responses of macroinvertebrate communities to river restoration in a channelized segment of the Shibetsu River, Northern Japan. River Res. Appl. 2006, 22, 681–689. [Google Scholar] [CrossRef]
- Negishi, J.N.; Richardson, J.S. Responses of organic matter and macroinvertebrates to placements of boulder clusters in a small stream of southwestern British Columbia, Canada. Can. J. Fish. Aquat. Sci. 2003, 60, 247–258. [Google Scholar] [CrossRef]
- Pedersen, M.L.; Friberg, N.; Skriver, J.; Baattrup-Pedersen, A.; Larsen, S.E. Restoration of Skjern River and its valley—Short-term effects on river habitats, macrophytes and macroinvertebrates. Ecol. Eng. 2007, 30, 145–156. [Google Scholar] [CrossRef]
- Purcell, A.H.; Friedrich, C.; Resh, V.H. An assessment of a small urban stream restoration project in northern California. Restor. Ecol. 2002, 10, 685–694. [Google Scholar] [CrossRef]
- Roni, P.; Bennett, T.; Morley, S.; Pess, G.R.; Hanson, K.; Slyke, D.V.; Olmstead, P. Rehabilitation of bedrock stream channels: The effects of boulder weir placement on aquatic habitat and biota. River Res. Appl. 2006, 22, 967–980. [Google Scholar] [CrossRef]
- Rosi-Marshall, E.J.; Moerke, A.H.; Lamberti, G.A. Ecological responses to trout habitat rehabilitation in a Northern Michigan stream. Environ. Manag. 2006, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Sarriquet, P.-E.; Bordenave, P.; Marmonier, P. Effects of bottom sediment restoration on interstitial habitat characteristics and benthic macroinvertebrate assemblages in a headwater stream. River Res. Appl. 2007, 23, 815–828. [Google Scholar] [CrossRef]
- Tullos, D.D.; Penrose, D.L.; Jennings, G.D.; Cope, W.G. Analysis of functional traits in reconfigured channels: Implications for the bioassessment and disturbance of river restoration. J. N. Am. Benthol. Soc. 2009, 28, 80–92. [Google Scholar] [CrossRef]
- Walther, D.A.; Whiles, M.R. Macroinvertebrate responses to constructed riffles in the Cache River, Illinois, USA. Environ. Manag. 2008, 41, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Laub, B.G.; Baker, D.W.; Bledsoe, B.P.; Palmer, M.A. Range of variability of channel complexity in urban, restored and forested reference streams. Freshw. Biol. 2012, 57, 1076–1095. [Google Scholar] [CrossRef]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers; United States Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999.
- Ohio Environmental Protection Agency, Division of Surface Water. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI); Ohio Environmental Protection Agency: Columbus, OH, USA, 2006.
- Rosgen, D.L. A practical method of computing streambank erosion rate. In Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001; Volume 2, pp. 9–15.
- Wolman, M.G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Kondolf, G.M. Application of the pebble count: Notes on purpose, method, and variants. J. Am. Water Resour. Assoc. 1997, 33, 79–87. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Li, S. The pebble count technique for quantifying surface bed material size in instream flow studies. Rivers 1992, 3, 80–87. [Google Scholar]
- Whitacre, H.W.; Roper, B.B.; Kershner, J.L. A Comparison of Protocols and Observer Precision for Measuring Physical Stream Attributes1; Wiley Online Library: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lisle, T.E.; Buffington, J.M.; Wilcock, P.R.; Bunte, K. Can rapid assessment protocols be used to judge sediment impairment in gravel-bed streams? A commentary. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 373–387. [Google Scholar] [CrossRef]
- Shields, F.D.; Lizotte, R.E.; Knight, S.S.; Cooper, C.M.; Wilcox, D. The stream channel incision syndrome and water quality. Ecol. Eng. 2010, 36, 78–90. [Google Scholar] [CrossRef]
- Bennett, S.J.; Simon, A.; Castro, J.M.; Atkinson, J.F.; Bronner, C.E.; Blersch, S.S.; Rabideau, A.J. The evolving science of stream restoration. In Stream Restoration in Dynamic Fluvial Systems; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 1–8. [Google Scholar]
- Buer, K.; Eaves, J.N. Middle Sacramento River Spawning Gravel Study; Department of Water Resources: Sacramento, CA, USA, 1984.
- Piégay, H.; Cuaz, M.; Javelle, E.; Mandier, P. Bank erosion management based on geomorphological, ecological and economic criteria on the Galaure River, France. Regul. Rivers Res. Manag. 1997, 13, 433–448. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank erosion as a desirable attribute of rivers. Bioscience 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Gardali, T.; Holmes, A.L.; Small, S.L.; Nur, N.; Geupel, G.R.; Golet, G.H. Abundance patterns of landbirds in restored and remnant riparian forests on the Sacramento River, California, USA. Restor. Ecol. 2006, 14, 391–403. [Google Scholar] [CrossRef]
- Golet, G.H.; Brown, D.L.; Carlson, M.; Gardali, T.; Henderson, A.; Holl, K.D.; Howell, C.A.; Holyoak, M.; Hunt, J.W.; Kondolf, G.M.; et al. Successes, failures and suggested future directions for ecosystem restoration of the middle Sacramento River, California. San Franc. Estuary Watershed Sci. 2013, 11. [Google Scholar] [CrossRef]
- Brudvig, L.A. The restoration of biodiversity: Where has research been and where does it need to go? Am. J. Bot. 2011, 98, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Jaen, M.C.; Mitchell Aide, T. Restoration success: How is it being measured? Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Bonada, N.; Prat, N.; Resh, V.H.; Statzner, B. Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annu. Rev. Entomol. 2006, 51, 495–523. [Google Scholar] [CrossRef] [PubMed]
- Resh, V.H. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 2008, 138, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Kerans, B.L.; Karr, J.R. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol. Appl. 1994, 4, 768–785. [Google Scholar] [CrossRef]
- Leps, M.; Sundermann, A.; Tonkin, J.D.; Lorenz, A.W.; Haase, P. Time is no healer: Increasing restoration age does not lead to improved benthic invertebrate communities in restored river reaches. Sci. Total Environ. 2016, 557–558, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Petts, G.E.; Amoros, C. The Fluvial Hydrosystem; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. The serial discontinuity concept of lotic ecosystems. Dyn. Lotic Ecosyst. 1983, 10, 29–42. [Google Scholar]
- Waters, M.R.; Haynes, C.V. Late Quaternary arroyo formation and climate change in the American Southwest. Geology 2001, 29, 399–402. [Google Scholar] [CrossRef]
- Montgomery, D.R. Process Domains and the River Continuum; Wiley Online Library: Hoboken, NJ, USA, 1999. [Google Scholar]
- Polvi, L.E.; Wohl, E.E.; Merritt, D.M. Geomorphic and process domain controls on riparian zones in the Colorado Front Range. Geomorphology 2011, 125, 504–516. [Google Scholar] [CrossRef]
- Wohl, E. Mountain Rivers Revisited; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 19. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. Theory of Island Biogeography. (MPB-1); Princeton University Press: Princeton, NJ, USA, 2015; Volume 1. [Google Scholar]
- Ricklefs, R.E.; Schluter, D. Species diversity: Regional and historical influences. In Species Diversity in Ecological Communities; University of Chicago Press: Chicago, IL, USA, 1993; pp. 350–363. [Google Scholar]
- Warfe, D.M.; Barmuta, L.A.; Wotherspoon, S. Quantifying habitat structure: Surface convolution and living space for species in complex environments. Oikos 2008, 117, 1764–1773. [Google Scholar] [CrossRef]
- Belll, S.; McCoy, E.D.; Mushinsky, H.R. Habitat Structure: The Physical Arrangement of Objects in Space; Springer Science & Business Media: Berlin, Germany, 2012; Volume 8. [Google Scholar]
- Feminella, J.W. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. N. Am. Benthol. Soc. 1996, 15, 651–669. [Google Scholar] [CrossRef]
- Jacobsen, D.; Milner, A.M.; Brown, L.E.; Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang. 2012, 2, 361–364. [Google Scholar] [CrossRef]
- Hernandez, O.; Merritt, R.W.; Wipfli, M.S. Benthic invertebrate community structure is influenced by forest succession after clearcut logging in southeastern Alaska. Hydrobiologia 2005, 533, 45–59. [Google Scholar] [CrossRef]
- Power, M.E.; Parker, M.S.; Wootton, J.T. Disturbance and food chain length in rivers. In Food Webs; Springer: New York, NY, USA, 1996; pp. 286–297. [Google Scholar]
- Flecker, A.S. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 1996, 77, 1845–1854. [Google Scholar] [CrossRef]
- Taylor, B.W.; Flecker, A.S.; Hall, R.O. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 2006, 313, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.P.; Greenwood, M.T.; Joyce, C.B. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Can. J. Fish. Aquat. Sci. 2001, 58, 824–840. [Google Scholar] [CrossRef]
- White, P.S.; Walker, J.L. Approximating nature’s variation: Selecting and using reference information in restoration ecology. Restor. Ecol. 1997, 5, 338–349. [Google Scholar] [CrossRef]
- Whittier, T.R.; Stoddard, J.L.; Larsen, D.P.; Herlihy, A.T. Selecting reference sites for stream biological assessments: Best professional judgment or objective criteria. J. N. Am. Benthol. Soc. 2007, 26, 349–360. [Google Scholar] [CrossRef]
- Gilvear, D.; Bryant, R. Analysis of Remotely sensed data for fluvial geomorphology and river science. In Tools in Fluvial Geomorphology, 2nd ed.; John Wiley & Sons: Chichester, UK, 2016; pp. 103–132. [Google Scholar]
- Reid, L.M.; Dunne, T.; Cederholm, C.J. Application of sediment budget studies to the evaluation of logging road impact. J. Hydrol. 1981, 20, 49–62. [Google Scholar]
- Keppeler, E.T. Sediment production in a coastal watershed: Legacy, land use, recovery, and rehabilitation. In Proceedings of the Coast Redwood Forests in a Changing California: A Symposium for Scientists and Managers, Santa Cruz, CA, USA, 21–23 June 2011; Gen. Tech. Rep. PSW-GTR-238. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Fresno, CA, USA, 2012, 2012; pp. 69–77. [Google Scholar]
- Rood, S.B.; Gourley, C.R.; Ammon, E.M.; Heki, L.G.; Klotz, J.R.; Morrison, M.L.; Mosley, D.; Scoppettone, G.G.; Swanson, S.; Wagner, P.L. Flows for floodplain forests: A successful riparian restoration. BioScience 2003, 53, 647–656. [Google Scholar] [CrossRef]
Study | Location | Habitat Metrics | Biological Metrics |
---|---|---|---|
Biggs et al. 1998 [21] | Brede river, Denmark; Cole river UK | Taxonomic richness, abundance/cover and species rarity (data available for the UK only). | |
Ebrahimnezhad & Harper 1997 [22] | Harper's Brook, England | D, V | Diversity and taxonomical differences among sites. |
Edwards et al. 1984 [23] | Olentangy River, OH, USA | Taxonomic richness, abundance, diversity, biomas. For fish (number, biomass, species). | |
Friberg et al. 1998 [24] | Jutland, Denmark | D, S, V | Taxonomic Richness, density, composition. Abundance of stone-dwelling species were analyzed to specific level. |
Gerhard & Reich 2000 [25] | Central Germany | D, F, L, S, V, W | Maximum and average number of species and density. |
Gortz 1998 [26] | River Esrom, Denmark | C, O, S, V | Saprobic index, Danish fauna index, invertebrate diversity, count of trout spawning reds. |
Harrison et al. 2004 [27] | Several locations in UK | D, S, V | Taxonomic richness, Shannon diversity (H′), total abundance and the abundances of individual taxa. |
Jähning & Lorenz, 2008/Jähning et al 2009/Jähning et al. 2008 [28,29,30] | Lahn, Eder, Nims and Bröl Streams in Germany. | B, D, S, V, W | Taxonomical richness, similarity on compsition among substrates and channel types (single or multiple). |
Jungwirth et al. 1993 [31] | Epipotamal and Melk Rivers, Austria | D, S, V | For macroinvertebrates number of species and drifting biomass. For fish number of species and diversity. |
Laasonen et al. 1998 [32] | Iijoki, Oulankajoki and Oulujoki in Finnland | D, S, V | Taxonomical richness, density and assemblage structure. Shredders density. |
Larson et al. 2001 [33] | Pudget Sound Tributaries, WA, USA | D, L, P, S | Index of Biological Integrity (IBI). |
Lemly and Hilderbrand 2000 [34] | Stony Creek, VA, USA | P | Taxonomical richness and functional feeding groups (FFG). |
Lepori et al. 2005 [35] | Ume River, Sweden | D, M, Q, S, V, W | Taxonomic richness, compostion, eveness of fish and macroinvertebrate. Taxonomical density for macroinvertebrates. |
Lester et al. 2007 [36] | Gippslandand, Australia | W | Number of families, abundance, number of EPT families, average SIGNAL2 sensitivity score, Shannon’s Evenness index (Shannon’s E), and FFG. |
Moerke et al. 2004 [37] | Juday Creek, IN, USA | C, G, L, S | Macroinvertebrate density and diversity. Benthic algae density. Fish richness and biomass. |
Muotka & Laasonen 2002 [38] | Northeastern Finland | D, M, O, S, V | Densities of macroinvertebrates and FFG. |
Muotka et al. 2002 [39] | Same as Laasonen et al 1998 | D, S, V | Densities of macroinvertebrates and FFG. |
Nakano and Nakamura 2006 [40] | Shibetsu River, Northern Japan | D, S, V, Y | Taxonomic richness, density and compostion. |
Negishi & Richardson 2003 [41] | Southwestern Brithish Columbia, Canada | D, S, V | Macroinvertebrate abundance, rarefacted richness and community compositon. |
Pedersen et al. 2007 [42] | Skjern River, Denmark | D, S, V, W | Macrohpyte number of species and coverage. Macroinvertebrates: richness, abundance, Shannon diversity, EPT and dominant species frequency. |
Purcell et al. 2002 [43] | S.F Bay, CA, USA | G | Taxonomic richness, family richness, total number of individuals, Family biotic index, EPT richness, % EPT individuals. |
Roni et al. 2006 [44] | Umpqua and Coquille basins, OR, USA | L, P, S | Total abundance, Taxonomical richness, relative abundance (proportion of total abundance) of FFG (shredders and collectors) orders EPT tax , and I-IBI. |
Rosi-Marshall et al. 2006 [45] | Cook's Run, MI, USA | D, G, O | Periphyton concentration and biomass.Macroinvertebrates: density, diversity and FFG composition. Fish: Trout abundance, % Age 1+Trout; % harvestable trout. |
Sarriquet et al. 2007 [46] | Tamoute River, France | H, Q, S | Composition, density, taxonomical richness. |
Tullos et al. 2009 [47] | North Carolina Piedmont, USA | E, G, O, P, S | Taxonomical and Trait composition, and Shannon Diversity. Species indicator analysis of restored and un restored sites. |
Walther & Whiles, 2008 [48] | Cache River, IL, USA | Taxonomical diversity, richness, eveness and similarity, composition of assemblages. FFG. |
Location | 14 (54%) of projects were in Europe. 10 (38%) were in North America, 1 (4%) in Australia, and 1 (4%) in Asia |
Pre-project monitoring | 16 (62%) had no pre-project monitoring. 9 (35%) monitored for one year and 1 (4%) monitored two years |
Post-project monitoring | 16 (62%) had one year of post-project monitoring. 5 (19%), 3 (12%), 1 (4%), 1(4%) sampled 2,3,4, and 5 years respectively |
Sampling frequency | 14 (54%) sampled once per year. 7 (27%), 4 (15%), and 1 (4%) sampled 2, 3, and 4 times per year respectively |
Habitat sampled | 5 (19%) sampled a single habitat exclusively, 10 (38%) sampled multiple habitats separately, 8 (31%) sampled multiple habitats in a pooled/random design, and 3 (12%) did not mention what habitats were sampled. |
Control Sites | 12 (46%) used 0 or 1 control sites, 8 (31%) used 2 or 3 control sites, and 6 (23%) used from 7 to 13 control sites. |
Reference Sites | 17 (65%) did not include a reference site, 3 (12%) used 1 reference, 6 (23%) used 2–5 reference sites |
Standard of success | 9 (35%) used a reference site as the standard of success for benthic macroinvertebrates. 17 (65%) compared restored to unrestored conditions (pre-restoration or control site)-typically assuming increased diversity, richness or B-IBI score is an improvement. |
Habitat/substrate assessment | 6 (23%) did not assess habitat/substrate. 8 (31%) usual visual assessments. 12 (46%) used quantitative measures to assess habitat. |
Construction influence assessed/discussed | 9 (35%) measured construction harm (through multiple measurements per year or multiple years, emphasizing the first year after construction and including pre-construction data or control sites. |
Reference site parameters presented? | Of the 9 studies using reference stream conditions as the measure of success, 5 studies (55%) did not present any watershed attributes of the reference sites (watershed area, stream gradient, width, depth, discharge). |
Land use assessed or discussed | 50% discussed the land use of the catchment while 50% did not. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubin, Z.; Kondolf, G.M.; Rios-Touma, B. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring? Water 2017, 9, 174. https://doi.org/10.3390/w9030174
Rubin Z, Kondolf GM, Rios-Touma B. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring? Water. 2017; 9(3):174. https://doi.org/10.3390/w9030174
Chicago/Turabian StyleRubin, Zan, G. Mathias Kondolf, and Blanca Rios-Touma. 2017. "Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?" Water 9, no. 3: 174. https://doi.org/10.3390/w9030174
APA StyleRubin, Z., Kondolf, G. M., & Rios-Touma, B. (2017). Evaluating Stream Restoration Projects: What Do We Learn from Monitoring? Water, 9(3), 174. https://doi.org/10.3390/w9030174