Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation
Abstract
:1. Introduction
2. Ground Water and Groundwater-Dependent Ecosystems (GDEs)
2.1. Ground Water and Groundwater-Dependent Ecosystems
2.2. Springs
3. Running Waters
3.1. Headwaters
3.1.1. Spring-Fed Streams (Crenal)
3.1.2. Glacial Streams (Kryal)
3.2. Streams (Rhithral)
3.3. Large Rivers (Potamal)
4. Lakes
4.1. Ancient and Large Lakes
4.2. High-Mountain Lakes
4.3. Oxbow Lakes
5. Man-Made Freshwater Habitats
5.1. Reservoirs
5.2. Urban (Artificial) Freshwater Habitats
6. Mires (Peatlands): Fens and Bogs
7. Small Standing-Water Ecosystems
8. Cold-Climate Freshwater Habitats (Boreal, Arctic, Antarctic)
8.1. Boreal and Arctic Freshwater Habitats
8.2. Antarctic Freshwater Habitats
9. Mediterranean Freshwater Habitats
9.1. Streams and Rivers
9.2. Ponds
9.3. Near-Natural Lakes (L. Kinneret)
9.4. Reservoirs
10. Tropical Freshwater Habitats
11. Arid-Climate Freshwater Habitats
12. Freshwater Biodiversity Observation Network (FWBON)
13. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sala, O.E.; Stuart Chapin, F., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef][Green Version]
- Parker, B.R.; Vinebrooke, R.D.; Schindler, D.W. Recent climate extremes alter alpine lake ecosystems. Proc. Natl. Acad. Sci. USA 2008, 105, 12927–12931. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Graaf, I.E.; Gleeson, T.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental flow limits toglobal groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Balian, E.V.; Segers, H.; Lévèque, C.; Martens, K. The Freshwater Animal Diversity Assessment: An overview of the results. Hydrobiologia 2008, 595, 627–637. [Google Scholar] [CrossRef]
- Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Frassanito, R.; Cantonati, M.; Tardìo, M.; Mancini, I.; Guella, G. On-line identification of secondary metabolites in freshwater microalgae and cyanobacteria by combined liquid chromatography-photodiode array detection-mass spectrometric techniques. J. Chromatogr. A 2005, 1082, 33–42. [Google Scholar] [CrossRef]
- Boon, P.J.; Pringle, C.M. Assessing the Conservation Value of Fresh Waters; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521848855. [Google Scholar]
- International Union for Conservation of Nature. IUCN Red List of Ecosystems Guidebook: Categories, Criteria and How to Apply Them. Version 1; Ecosystems Red List Thematic Group, Commission on EcosystemManagement (CEM) and Global Ecosystem Management Programme (GEMP); International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2016; ISBN 978-2-8317-1787-6. [Google Scholar]
- International Union for Conservation of Nature. IUCN Red List Categories and Criteria: Version 3.1; Species Survival Commission, World Conservation Union; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2001; ISBN 2-8317-0633-5. [Google Scholar]
- Jenkins, M. Prospects for Biodiversity. Science 2003, 302, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Heilpern, S. Biodiversity: Include freshwater species. Nature 2015, 518, 167. [Google Scholar] [CrossRef][Green Version]
- Darwall, W.; Bremerich, V.; De Wever, A.; Dell, A.I.; Freyhof, J.; Gessner, M.O.; Grossart, H.P.; Harrison, I.; Irvine, K.; Jänig, S.C.; et al. The Alliance for Freshwater Life: A global call to unite efforts forfreshwater biodiversity science and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 1015–1022. [Google Scholar] [CrossRef]
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Kveˇt, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef][Green Version]
- Davidson, N.C.; Finlayson, C.M. Extent, regional distribution and changes in area of different classes of wetland. Mar. Freshw. Res. 2018, 69, 1525–1533. [Google Scholar] [CrossRef][Green Version]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 936–941. [Google Scholar] [CrossRef]
- Keddy, P.A.; Fraser, L.H.; Solomeshch, A.I.; Junk, W.J.; Campbell, D.R.; Arroyo, M.T.K.; Alho, C.J.R. Wet and Wonderful: The World’s Largest Wetlands Are Conservation Priorities. BioScience 2009, 59, 39–51. [Google Scholar] [CrossRef][Green Version]
- Wright, S.J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 2002, 130, 1–14. [Google Scholar] [CrossRef]
- Brown, J.H. Why are there so many species in the tropics? J. Biogeogr. 2014, 41, 8–22. [Google Scholar] [CrossRef][Green Version]
- Fine, P.V.A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Syst. 2015, 46, 369–392. [Google Scholar] [CrossRef][Green Version]
- Heino, J. A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 2011, 56, 1703–1722. [Google Scholar] [CrossRef]
- Revenga, C.; Kura, Y. Status and Trends of Biodiversity of Inland Water Ecosystems; Technical Series no. 11; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2003; ISBN 92-807-2398-7. [Google Scholar]
- Dudgeon, D. (Ed.) Tropical Stream Ecology; Academic Press: London, UK, 2008; ISBN 978-0-12-088449-0. [Google Scholar]
- Collen, B.; Whitton, F.; Dyer, E.E.; Baillie, J.E.M.; Cumberlidge, N.; Darwall, W.R.T.; Pollock, C.; Richman, N.I.; Soulsby, M.; Böhm, M. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 2014, 23, 40–51. [Google Scholar] [CrossRef][Green Version]
- Albert, J.S.; Petry, P.; Reis, R.E. Major Biogeographic and Phylogenetic Patterns. In Historical Biogeography of Neotropical Freshwater Fishes; Albert, J.S., Reis, R.E., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 21–57. [Google Scholar] [CrossRef]
- Junk, W.J.; Soares, M.G.M.; Bayley, P.B. Freshwater fishes of the Amazon River basin: Their biodiversity, fisheries, and habitats. Aquat. Ecosyst. Health Manag. 2007, 10, 153–173. [Google Scholar] [CrossRef]
- Albert, J.S.; Carvalho, T.P. Neogene Assembly of Modern Faunas. In Historical Biogeography of Neotropical Freshwater Fishes; Albert, J.S., Reis, R.E., Eds.; University of California Press: Berkeley, CA, USA, 2011; pp. 119–136. [Google Scholar] [CrossRef]
- Albert, J.S.; Carvalho, T.P.; Petry, P.; Holder, M.A.; Maxime, E.L.; Espino, J.; Corahua, I.; Quispe, R.; Rengifo, B.; Ortega, H.; et al. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness. Animals 2011, 1, 205–241. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Morse, J.C. Biodiversity of aquatic insects. In Insect Biodiversity: Science and Society; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Chichester, UK, 2009; pp. 165–184. ISBN 978-1-118-94557-5. [Google Scholar]
- Crow, G.E. Species diversity in aquatic angiosperms: Latitudinal patterns. Aquat. Bot. 1993, 44, 229–258. [Google Scholar] [CrossRef]
- Chambers, P.A.; Lacoul, P.; Murphy, K.J.; Thomaz, S.M. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 2007, 595, 9–26. [Google Scholar] [CrossRef]
- Luize, B.G.; Magalhães, J.L.L.; Queiroz, H.; Lopes, M.A.; Venticinque, E.M.; Leão de Moraes Novo, E.M.; Silva, T.S.F. The tree species pool of Amazonian wetland forests: Which species can assemble in periodically waterlogged habitats? PLoS ONE 2018, 13, e0198130. [Google Scholar] [CrossRef][Green Version]
- Hillebrand, H.; Azovsky, A.I. Body size determines the strength of the latitudinal diversity gradient. Ecography 2001, 24, 251–256. [Google Scholar] [CrossRef]
- Passy, S.I. A distinct latitudinal gradient of diatom diversity is linked to resource supply. Ecology 2010, 91, 36–41. [Google Scholar] [CrossRef][Green Version]
- Soininen, J.; Jamoneau, A.; Rosebery, J.; Passy, S.I. Global patterns and drivers of species and trait composition in diatoms. Glob. Ecol. Biogeogr. 2016, 25, 940–950. [Google Scholar] [CrossRef]
- Jyrkänkallio-Mikkola, J.; Siljander, M.; Heikinheimo, V.; Pellikka, P.; Soininen, J. Tropical stream diatom communities—The importance of headwater streams for regional diversity. Ecol. Indic. 2018, 95, 183–193. [Google Scholar] [CrossRef]
- Vyverman, W.; Verleyen, E.; Sabbe, K.; Vanhoutte, K.; Sterken, M.; Hodgson, D.A.; Mann, D.G.; Juggins, S.; Vijver, B.V.; Jones, V.; et al. Historical processes constrain patterns in global diatom diversity. Ecology 2007, 88, 1924–1931. [Google Scholar] [CrossRef]
- Benito, X.; Fritz, S.C.; Steinitz-Kannan, M.; Tapia, P.M.; Kelly, M.A.; Lowell, T.V. Geo-climatic factors drive diatom community distribution in tropical South American freshwaters. J. Ecol. 2018, 106, 1660–1672. [Google Scholar] [CrossRef]
- Taxböck, L.; Linder, H.P.; Cantonati, M. To what extent are Swiss springs refugial habitats for sensitive and endangered diatom taxa? Water 2017, 9, 967. [Google Scholar] [CrossRef][Green Version]
- Zelnik, I.; Balanč, T.; Toman, M.J. Diversity and Structure of the Tychoplankton Diatom Community in the Limnocrene Spring Zelenci (Slovenia) in Relation to Environmental Factors. Water 2018, 10, 361. [Google Scholar] [CrossRef][Green Version]
- Lai, G.G.; Burato, S.; Padedda, B.M.; Zorza, R.; Pizzul, E.; Delgado, C.; Lugliè, A.; Cantonati, M. Diatom biodiversity in karst springs of Mediterranean geographic areas with contrasting characteristics: Islands vs mainland. Water 2019, 11, 2602. [Google Scholar] [CrossRef][Green Version]
- Rossini, R.; Fensham, R.; Walter, G. Species-specific environmental matching and patch geometry affect occupancy and persistence of threatened snails in Australian desert springs. Water. under review.
- Stevens, L.; Jenness, J.; Ledbetter, J.D. Geography, Ecology, and Human Impacts on Springs and Springs-dependent Species in the Colorado River Basin, Southwestern North America. Water 2020, 12. in press. [Google Scholar]
- Taxböck, L.; Karger, D.N.; Kessler, M.; Spitale, D.; Cantonati, M. Diatom species richness increases with elevation and habitat complexity in Swiss near-natural springs along elevational gradients. Water 2020, 12. in press. [Google Scholar]
- Richardson, J.S. Biological Diversity in Headwater Streams. Water 2019, 11, 366. [Google Scholar] [CrossRef][Green Version]
- Segadelli, S.; Grazzini, F.; Adorni, M.; De Nardo, M.T.; Fornasiero, A.; Chelli, A.; Cantonati, M. Towards predicting and understanding extreme-precipitation effects on freshwater biodiversity and ecosystems in small catchments: A case study from the northern Apennines (Italy). Water 2019, 12, 79. [Google Scholar] [CrossRef][Green Version]
- Füreder, L.; Niedrist, G.H. Glacial stream ecology: Structural and functional assets. Water 2020, 12. in press. [Google Scholar]
- Turak, E.; Bush, A.; DelaCruz, J.; Powell, M. Freshwater Reptile Persistence and Conservation in Cities: Insights From Species Occurrence Records. Water 2020, 12. in press. [Google Scholar]
- Marazzi, L.; Gaiser, E.; Eppinga, M.; Zhai, L.; Sah, J.; Castañeda-Moya, E.; Angelini, C. Why Do We Need to Document and Conserve Foundation Species in Freshwater Wetlands? Water 2019, 11, 265. [Google Scholar] [CrossRef][Green Version]
- Bolpagni, R.; Poikane, S.; Laini, A.; Bagella, S.; Bartoli, M.; Cantonati, M. Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges. Water 2019, 11, 402. [Google Scholar] [CrossRef][Green Version]
- Seeteram, N.A.; Hyera, P.T.; Kaaya, L.T.; Lalika, M.C.S.; Anderson, E.P. Conserving rivers and their biodiversity in Tanzania. Water 2019, 11, 2612. [Google Scholar] [CrossRef][Green Version]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef][Green Version]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberge, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Steube, C.; Richter, S.; Griebler, C. First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol. J. 2009, 17, 23–35. [Google Scholar] [CrossRef]
- Miller, M.P.; Buto, S.G.; Susong, D.D.; Rumsey, C.A. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour. Res. 2016, 52, 3547–3562. [Google Scholar] [CrossRef]
- Organization for Economic Co-operation and Development—OECD. Groundwater Allocation: Managing Growing Pressures on Quantity and Quality, OECD Studies on Water; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). 2019. Available online: https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-2 (accessed on 21 November 2019).
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Karakaya, N.; Kupfersberger, H.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Galassi, D.M.P. Agricultural impacts on Mediterranean alluvial aquifers: Do invertebrates respond? Fund. Appl. Limnol. 2013, 182, 271–281. [Google Scholar] [CrossRef]
- Richter, B.D.; Postel, S.; Revenga, C.; Scudder, T.; Lehner, B.; Churchill, A.; Chow, M. Lost in development’s shadow: The downstream human consequences of dams. Water Alter. 2010, 3, 14–42. [Google Scholar] [CrossRef]
- Malard, F.; Tockner, K.; Dole-Olivier, M.-J.; Ward, J.V. A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshw. Biol. 2002, 47, 621–640. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cifoni, M.; Lombardo, P.; Fiasca, B.; Galassi, D.M.P. Ammonium threshold values for groundwater quality in the EU may not protect groundwater fauna: Evidence from an alluvial aquifer in Italy. Hydrobiologia 2015, 743, 139–150. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cifoni, M.; Fiasca, B.; Di Cioccio, A.; Galassi, D.M.P. Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. Sci. Total Environ. 2018, 644, 161–172. [Google Scholar] [CrossRef]
- Di Marzio, W.D.; Cifoni, M.; Sáenz, M.E.; Galassi, D.M.P.; Di Lorenzo, T. The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater bodies. Ecotoxicol. Environ. Saf. 2018, 149, 72–79. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. Emerg. Contam. 2019, 5, 157–167. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Marzio, W.D.; Sáenz, M.E.; Baratti, M.; Dedonno, A.A.; Iannucci, A.; Cannicci, S.; Messana, G.; Galassi, D.M.P. Sensitivity of hypogean and epigean freshwater copepods to agricultural pollutants. Environ. Sci. Pollut. Res. 2014, 21, 4643–4655. [Google Scholar] [CrossRef]
- Eamus, D.; Froend, R. Groundwater-dependent ecosystems: The where, what and why of GDEs. Aust. J. Bot. 2006, 54, 91–96. [Google Scholar] [CrossRef]
- Environmental Protection Authority—EPA. Guidance for the Assessment of Environmental Factors (In Accordance with the Environmental Protection Act 1986): Consideration of Subterranean Fauna in Groundwater and Caves During Environmental Impact Assessment in Western Australia; Environmental Protection Authority: Perth, Australia, 2004; p. 98.
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef][Green Version]
- Postigo, C.; Barceló, D. Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation. Sci. Total Environ. 2015, 504, 32–47. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Di Lorenzo, T.; Di Cicco, M.; Di Censo, D.; Galante, A.; Boscaro, F.; Messana, G.; Galassi, D.M.P. Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environ. Pollut. 2019, 255. [Google Scholar] [CrossRef] [PubMed]
- Meffe, R.; Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Jurado, A.; Walther, M.; Diaz-Cruz, S.M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 2019, 663, 258–296. [Google Scholar] [CrossRef] [PubMed]
- Di Marzio, W.D.; Castaldo, D.; Di Lorenzo, T.; Di Cioccio, A.; Sáenz, M.E.; Galassi, D.M.P. Developmental endpoints of chronic exposure to suspected endocrine-disrupting chemicals on benthic and hyporheic freshwater copepods. Ecotoxicol. Environ. Saf. 2013, 96, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Griebler, C.; Avramov, M. Groundwater ecosystem services—A review. Freshw. Sci. 2014, 34, 355–367. [Google Scholar] [CrossRef][Green Version]
- Galassi, D.M.P.; Lombardo, P.; Fiasca, B.; Di Cioccio, A.; Di Lorenzo, T.; Petitta, M.; Di Carlo, P. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 2014, 4, 6273. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Galassi, D.M.P. Effect of temperature rising on the stygobiotic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 2017, 9, 951. [Google Scholar] [CrossRef][Green Version]
- Issartel, J.; Hervant, F.; Voituron, Y.; Renault, D.; Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. 2005, 141, 1–7. [Google Scholar] [CrossRef]
- Colson-Proch, C.; Morales, A.; Hervant, F.; Konecny, L.; Moulin, C.; Douady, C.J. First cellular approach of the effects of global warming on groundwater organisms: A study of the HSP70 gene expression. Cell Stress Chaperon. 2010, 15, 259–270. [Google Scholar] [CrossRef][Green Version]
- Di Lorenzo, T.; Di Marzio, W.D.; Spigoli, D.; Baratti, M.; Messana, G.; Cannicci, S.; Galassi, D.M.P. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 2015, 71, 426–435. [Google Scholar] [CrossRef]
- Kefford, B.J.; Palmer, C.G.; Pakhomova, L.; Nugegoda, D. Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water Sa 2004, 30, 499–507. [Google Scholar] [CrossRef][Green Version]
- Cantonati, M.; Stevens, L.E.; Segadelli, S.; Springer, A.E.; Goldscheider, N.; Celico, F.; Filippini, M.; Ogata, K.; Gargini, A. Ecohydrogeology: The interdisciplinary convergence needed to improve the study of springs and other groundwater-dependent habitats, biota, and ecosystems. Ecol. Indic. 2020, 110, 105803. [Google Scholar] [CrossRef]
- Tomlinson, M.; Boulton, A.J. Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review. Mar. Freshw. Res. 2010, 61, 936–949. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef][Green Version]
- Stubbington, R.; Wood, P.J.; Boulton, A.J. Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrol. Proc. 2009, 23, 2253–2263. [Google Scholar] [CrossRef][Green Version]
- Griebler, C.; Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 2009, 54, 649–677. [Google Scholar] [CrossRef]
- Mammola, S.; Cardoso, P.; Culver, D.C.; Deharveng, L.; Ferreira, R.L.; Fišer, C.; Galassi, D.M.P.; Griebler, C.; Halse, S.; Humphreys, W.F.; et al. Scientists’ Warning on the Conservation of Subterranean Ecosystems. BioScience 2019, 69, 641–650. [Google Scholar] [CrossRef][Green Version]
- Humphreys, W.F. Rising from Down Under: Developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebr. Syst. 2008, 22, 85–101. [Google Scholar] [CrossRef]
- Gibert, J.; Culver, D.C. Assessing and conserving groundwater biodiversity: An introduction. Freshw. Biol. 2009, 54, 639–648. [Google Scholar] [CrossRef]
- Gibert, J.; Deharveng, L. Subterranean Ecosystems: A Truncated Functional Biodiversity. BioScience 2002, 52, 473–481. [Google Scholar] [CrossRef]
- Galassi, D.M.P.; Huys, R.; Reid, J.W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 2009, 54, 691–708. [Google Scholar] [CrossRef][Green Version]
- Fattorini, S.; Fiasca, B.; Di Lorenzo, T.; Di Cicco, M.; Galassi, D.M.P. A new protocol for assessing the conservation priority of groundwater dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. under review.
- Galassi, D.M.P.; Fiasca, B.; Di Lorenzo, T.; Montanari, A.; Porfirio, S.; Fattorini, S. Groundwater biodiversity in a chemoautotrophic cave ecosystem: How geochemistry regulates microcrustacean community structure. Aquat. Ecol. 2017, 51, 75–90. [Google Scholar] [CrossRef]
- Malard, F.; Boutin, C.; Camacho, A.I.; Ferreira, D.; Michel, G.; Sket, B.; Stoch, F. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw. Biol. 2009, 54, 756–776. [Google Scholar] [CrossRef]
- Stoch, F.; Galassi, D.M.P. Stygobiotic crustacean species richness: A question of numbers, a matter of scale. Hydrobiologia 2010, 653, 217–234. [Google Scholar] [CrossRef]
- Gibert, J.; Culver, D. Diversity patterns in Europe. In Encyclopedia of Caves; Culver, D., White, W.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 196–201. ISBN 9780128141243. [Google Scholar]
- Boulton, A.J.; Fenwick, G.D.; Hancock, P.J.; Harvey, M.S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 2008, 22, 103–116. [Google Scholar] [CrossRef]
- Batubara, B.; Batelaan, O.; Quevauviller, P. Science-policy interfacing on the issue of groundwater and groundwater-dependent ecosystems in Europe: Implications for research and policy. WIREs Water 2014, 1, 561–571. [Google Scholar] [CrossRef]
- Tomlinson, M.; Boulton, A.J.; Hancock, P.J.; Cook, P.G. Deliberate omission or unfortunate oversight: Should stygofaunal surveys be included in routine groundwater monitoring programs? Hydrogeol. J. 2007, 15, 1317–1320. [Google Scholar] [CrossRef][Green Version]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V. The seven impediments in invertebrate conservation and how to overcome them. Biol. Cons. 2011, 144, 2647–2655. [Google Scholar] [CrossRef][Green Version]
- Ficetola, G.F.; Canedoli, C.; Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 2019, 33, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Deharveng, L.; Stoch, F.; Gibert, J.; Bedos, A.; Galassi, D.M.P.; Zagmajster, M.; Brancelj, A.; Camacho, A.; Fiers, F.; Martin, P.; et al. Groundwater biodiversity in Europe. Freshw. Biol. 2009, 54, 709–726. [Google Scholar] [CrossRef]
- BioFreshProject. Available online: http://project.freshwaterbiodiversity.eu/ (accessed on 21 November 2019).
- Zagmajster, M.; Eme, D.; Fišer, C.; Galassi, D.M.P.; Marmonier, P.; Stoch, F.; Cornu, J.-F.; Malard, F. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 2014, 23, 1135–1145. [Google Scholar] [CrossRef]
- Galassi, D.M.P.; Dole-Olivier, M.-J.; De Laurentiis, P. Phylogeny and biogeography of the genus Pseudectinosoma, and description of P. janineae sp. n. (Crustacea: Copepoda, Ectinosomatidae). Zool. Scr. 1999, 28, 289–303. [Google Scholar] [CrossRef]
- Council of the European Communities. Council Directive92⁄43⁄EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities 1992, 35, 7–50. [Google Scholar]
- Michel, G.; Malard, F.; Deharveng, L.; Di Lorenzo, T.; Sket, B.; De Boyer, C. Reserve selection for conserving groundwater biodiversity. Freshw. Biol. 2009, 54, 861–876. [Google Scholar] [CrossRef]
- Strona, G.; Fattorini, S.; Fiasca, B.; Di Lorenzo, T.; Di Cicco, M.; Lorenzetti, W.; Boccacci, F.; Galassi, D.M.P. AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. Water 2019, 11, 2574. [Google Scholar] [CrossRef][Green Version]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Linke, S.; Turak, E.; Asmyhr, M.G.; Hose, G. 3D conservation planning: Including aquifer protection in freshwater plans refines priorities without much additional effort. Aquat. Conserv. Mar. Freshw. Ecosys. 2019, 29, 1063–1072. [Google Scholar] [CrossRef][Green Version]
- Cantonati, M.; Komárek, J.; Montejano, G. Cyanobacteria in ambient springs. Biodivers. Conserv. 2015, 24, 865–888. [Google Scholar] [CrossRef]
- Johnson, R.H.; DeWit, E.; Wirt, L.; Manning, A.H. Using geochemistry to identirfy the source of groundwater to Montezuma Well, a natural springs in central Arizona, USA: Part 2. Envir. Earth Sci. 2012, 67, 1837–1853. [Google Scholar] [CrossRef]
- Glazier, D.S. Springs. In Reference Module in Earth Systems and Environmental Sciences; Elias, S., Ed.; Elsevier: Waltham, MA, USA, 2014; pp. 1–78. ISBN 978-0-12-409548-9. [Google Scholar]
- Stevens, L.E.; Johnson, R.R.; Estes, C. The watershed continuum: A conceptual stream riparian ecosystem model. In Riparian Research and Management: Past, Present, and Future; General Technical Report RMRS-GTR-303; Johnson, R.R., Carothers, S.W., Finch, D.M., Kingsley, K.J., Stanley, J.R.T., Eds.; U.S. Department of Agriculture; Forest Service: Washington, DC, USA; Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; Volume 2, in press. [Google Scholar]
- Springer, A.E.; Stevens, L.E.; Anderson, E.E.; Parnell, R.A.; Kreamer, D.K.; Levin, L.; Flora, S.P. A comprehensive springs classification system: Integrating geomorphic, hydrogeochemical, and ecological criteria. In Aridland Springs in North America: Ecology and Conservation; Stevens, L.E., Meretsky, V.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 2008; pp. 49–75. ISBN 978-0-8165-2645-1. [Google Scholar]
- Spitale, D.; Leira, M.; Angeli, N.; Cantonati, M. Environmental classification of springs of the Italian Alps and its consistency across multiple taxonomic groups. Freshw. Sci. 2012, 31, 563–574. [Google Scholar] [CrossRef]
- Springer, A.E.; Stevens, L.E. Spheres of discharge of springs. Hydrogeol. J. 2009, 17, 83–93. [Google Scholar] [CrossRef]
- Stevens, L.E.; Schenk, E.R.; Springer, A.E. Springs ecosystem classification. Ecol. Appl. in press.
- Stevens, L.E.; Ledbetter, J.D.; Springer, A.E.; Campbell, C.; Misztal, L.; Joyce, M.; Hardwick, G. Arizona Springs Rehabilitation Handbook; Spring Stewardship Institute: Flagstaff, AZ, USA; Sky Island Alliance: Tucson, AZ, USA, 2016. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef][Green Version]
- Springer, A.E.; Stevens, L.E.; Ledbetter, J.D.; Schaller, E.M.; Gill, K.; Rood, S.B. Ecohydrology and stewardship of Alberta springs ecosystems. Ecohydrology 2015, 8. [Google Scholar] [CrossRef]
- Sinclair, D.A. Springs Geomorphology Influences on Physical and Vegetation Ecosystem Characteristics, Grand Canyon Ecoregion, USA. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, 2018. [Google Scholar]
- Cantonati, M.; Lange-Bertalot, H. Diatom biodiversity of springs in the Berchtesgaden National Park (northern Alps, Germany), with the ecological and morphological characterization of two species new to science. Diatom Res. 2010, 25, 251–280. [Google Scholar] [CrossRef]
- Cantonati, M.; Lange-Bertalot, H.; Scalfi, A.; Angeli, N. Cymbella tridentina sp. nov. (Bacillariophyta), a crenophilous diatom from carbonate springs of the Alps. J. N. Am. Benthol. Soc. 2010, 29, 775–788. [Google Scholar] [CrossRef]
- Cantonati, M.; Füreder, L.; Gerecke, R.; Jüttner, I.; Cox, E.J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 2012, 31, 463–480. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef][Green Version]
- Huston, M. A general hypothesis of species diversity. Am. Nat. 1979, 113, 81–101. [Google Scholar] [CrossRef]
- Huston, M.A. Biology Diversity: The Coexistence of Species on Changing Landscapes; Cambridge University Press: Cambridge, UK, 1994; ISBN 0-521-36930-4. [Google Scholar]
- Kodric-Brown, A.; Brown, L.H. Native fishes, exotic mammals, and the conservation of desert springs. Front. Ecol. Environ. 2007, 10, 549–553. [Google Scholar] [CrossRef]
- Odum, H.T. Trophic Structure and Productivity of Silver Springs, Florida. Ecol. Monogr. 1957, 27, 55–112. [Google Scholar] [CrossRef]
- Blinn, D.W. The extreme environment, trophic structure, and ecosystem dynamics of a large fishless desert spring: Montezuma Well, Arizona. In Aridland Springs in North America: Ecology and Conservation; Stevens, L.E., Meretsky, V.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 2008; ISBN 978-0-8165-2645-1. [Google Scholar]
- Williams, D.D.; Danks, H.V. Arthropods of springs, with particular reference to Canada. Mem. Entomol. Soc. Can. 1991, 203–217. [Google Scholar] [CrossRef][Green Version]
- Erman, N.A. Factors determining biodiversity in Sierra Nevada cold spring systems. In The History of Water: Eastern Sierra Nevada, Owens Valley, White-Inyo Mountains; Hall, C.A., Jr., Doyle-Jones, V., Widawski, B., Eds.; University of California White Mountains Research Station: Los Angeles, CA, USA, 1992; pp. 119–127. ISBN 978-1879851047. [Google Scholar]
- Botosaneanu, L. Studies in Crenobiology: The Biology of Springs and Springbrooks; Backhuys: Leiden, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Ponder, W.F. Endemic aquatic macroinvertebrates of artesian springs of the Great Artesian Basin—Progress and future directions. Rec. South Aust. Mus. Monogr. Ser. 2004, 7, 101–110. [Google Scholar]
- Fensham, R.J.; Silcock, J.L.; Kerezsy, A.; Ponder, W. Four desert waters: Setting arid zone wetland conservation priorities. Biol. Conserv. 2011, 144, 2459–2467. [Google Scholar] [CrossRef]
- Unmack, P.J. Australian Desert Fishes Descriptions. 2003. Available online: Desertfishes.org/Australia/index.html (accessed on 5 October 2019).
- Unmack, P.J.; Minckley, W.L. The demise of desert springs. In Aridland Springs in North America: Ecology and Conservation; Stevens, L.E., Meretsky, V.J., Eds.; University of Arizona Press: Tucson, AZ, USA, 2008; pp. 11–34. ISBN 978-0-8165-2645-1. [Google Scholar]
- Martens, A.; Richter, O.; Suhling, F. The relevance of perennial springs for regional biodiversity and conservation. In Biodiversity in Southern Africa 2: Patterns and Processes at Regional Scale; Schmiedel, U., Jürgens, N., Eds.; Klaus Hess Publishers: Göttingen, Germany; Windhoek, Namibia, 2010; pp. 70–74. ISBN 978-3-933117-46-5. [Google Scholar]
- Cuthbert, M.O.; Ashley, G.M. A spring forward for hominin evolution in East Africa. PLoS ONE 2014, 9, e107358. [Google Scholar] [CrossRef][Green Version]
- Cantonati, M.; Rott, E.; Spitale, D.; Angeli, N.; Komárek, J. Are benthic algae related to spring types? Freshw. Sci. 2012, 31, 481–498. [Google Scholar] [CrossRef]
- Cantonati, M.; Lange-Bertalot, H. Achnanthidium dolomiticum sp. nov. (Bacillariophyta) from oligotrophic mountain springs and lakes fed by dolomite aquifers. J. Phycol. 2006, 42, 1184–1188. [Google Scholar] [CrossRef]
- Cantonati, M.; Lange-Bertalot, H.; Angeli, N. Neidiomorpha gen. nov. (Bacillariophyta): A new freshwater diatom genus separated from Neidium Pfitzer. Bot. Stud. 2010, 51, 195–202. [Google Scholar]
- Rott, E.; Hotzy, R.; Cantonati, M.; Sanders, D. Calcification types of Oocardium stratum Nägeli and microhabitat conditions in springs of the Alps. Freshw. Sci. 2012, 31, 610–624. [Google Scholar] [CrossRef]
- Cantonati, M.; Segadelli, S.; Ogata, K.; Tran, H.; Sanders, D.; Gerecke, R.; Rott, E.; Filippini, M.; Gargini, A.; Celico, F. A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation. Sci. Total Environ. 2016, 568, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Angeli, N.; Cantonati, M.; Spitale, D.; Lange-Bertalot, H. A comparison between diatom assemblages in two groups of carbonate, low-altitude springs with different levels of anthropogenic disturbances. Fottea 2010, 10, 115–128. [Google Scholar] [CrossRef][Green Version]
- Cantonati, M.; Ortler, K. Using spring biota of pristine mountain areas for long term monitoring. IAHS Publ. 1998, 248, 379–385. [Google Scholar]
- Ashley, G.M.; de Wet, C.B.; Barboni, D.; Magill, C.R. Subtle signatures of seeps: Record of groundwater in a dryland, DK, Olduvai Gorge, Tanzania. Depos. Rec. 2016, 2, 4–21. [Google Scholar] [CrossRef][Green Version]
- Haynes, C.V., Jr. Quaternary cauldron springs as paleoecological archives. In Aridland Springs in North America: Ecology and Conservation; Stevens, L.E., Ed.; University of Arizona Press: Tucson, AZ, USA, 2008. [Google Scholar]
- Kreamer, D.K.; Stevens, L.E.; Ledbetter, J.D. Groundwater dependent ecosystems—Science, challenges, and policy directions. In Groundwater; Adelana, S.M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; ISBN 978-1-63321-759-1. [Google Scholar]
- Boschen, R.E.; Rowden, A.A.; Clark, M.R.; Gardner, J.P.A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 2013, 84, 54–67. [Google Scholar] [CrossRef][Green Version]
- De Granade, R.; Stevens, L.E. Desert Oases: Aridland Springs as Diverse Biocultural Ecosystems. In Encyclopedia of the World’s Biomes; Elsevier: Amsterdam, The Netherlands, 2020. (in press) [Google Scholar]
- Gomi, T.; Sidle, R.; Richardson, J.S. Headwater and channel network -understanding processes and downstream linkages of headwater systems. BioScience 2002, 52, 905–916. [Google Scholar] [CrossRef][Green Version]
- Strahler, A.N. Quantitative Geomorphology of Drainage Basins and Channel Networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill: New York, NY, USA, 1954; ISBN 978-0071835091. [Google Scholar]
- Pitcher, L.H.; Smith, L.C. Supraglacial streams and rivers. Annu. Rev. Earth Planet. Sci. 2019, 47, 421–452. [Google Scholar] [CrossRef][Green Version]
- Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial ecosystems. Ecol. Monogr. 2008, 78, 41–67. [Google Scholar] [CrossRef]
- Ward, J.V. Ecology of alpine streams. Freshw. Biol. 1994, 32, 277–294. [Google Scholar] [CrossRef]
- Brittain, J.E.; Milner, A.M. Ecology of glacier-fed rivers: Current status and concepts. Freshw. Biol. 2001, 46, 1571–1578. [Google Scholar] [CrossRef][Green Version]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Jacobsen, D.; Milner, A.M.; Brown, L.E.; Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang. 2012, 2, 361–364. [Google Scholar] [CrossRef]
- Cantonati, M.; Corradini, G.; Jüttner, I.; Cox, E.J. Diatom assemblages in high mountain streams of the Alps and the Himalaya. Nova Hedwig. 2001, 123, 37–62. [Google Scholar]
- Gesierich, D.; Rott, E. Is diatom richness responding to catchment glaciation? J. Limnol. 2012, 71, 72–83. [Google Scholar] [CrossRef][Green Version]
- Brown, L.E.; Khamis, K.; Wilkes, M.; Blaen, P.; Brittain, J.E.; Carrivick, J.L.; Fell, S.; Friberg, N.; Füreder, L.; Gislason, G.M.; et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2018, 2, 325–333. [Google Scholar] [CrossRef]
- Niedrist, G.H.; Cantonati, M.; Füreder, L. Environmental harshness mediates the quality of periphyton and chironomid body mass in alpine streams. Freshw. Sci. 2018, 37, 519–533. [Google Scholar] [CrossRef]
- Vannote, R.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Frissell, C.A.; Liss, W.J.; Warren, C.E.; Hurley, M.D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 1986, 10, 199–214. [Google Scholar] [CrossRef]
- Hayes, J.W.; Goodwin, E.O.; Shearer, K.A.; Hicks, D.M. Relationship between background invertebrate drift concentration and flow over natural flow recession and prediction with a drift transport model. Can. J. Fish. Aquat. Sci. 2019, 76, 871–885. [Google Scholar] [CrossRef]
- Nilsson, C.; Brown, R.L.; Jansson, R.; Merritt, D.M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 2010, 85, 837–858. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.R.; Newbold, J.D.; Lin, L. Nutrient Spiraling and Transport in Streams: The Importance of In-Stream Biological Processes to Nutrient Dynamics in Streams. In Stream Ecosystems in a Changing Environment; Jones, J.B.E., Stanley, E., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2016; pp. 181–199. ISBN 9780124058903. [Google Scholar]
- Wallace, J.B.; Merritt, R.W. Filter-feeding ecology of aquatic insects. Annu. Rev. Entomol. 1980, 25, 103–132. [Google Scholar] [CrossRef][Green Version]
- Naman, S.M.; Rosenfeld, J.S.; Richardson, J.S. Causes and consequences of invertebrate drift in running waters: From individuals to populations and trophic fluxes. Can. J. Fish. Aquat. Sci 2016, 73, 1292–1305. [Google Scholar] [CrossRef][Green Version]
- Ward, J.V.; Stanford, J.A. The serial discontinuity concept—Extending the model to floodplain rivers. Regul. Rivers Res. Manag. 1995, 10, 159–168. [Google Scholar] [CrossRef]
- Richardson, J.S.; Mackay, R.J. Lake outlets and the distribution of filter feeders: An assessment of hypotheses. Oikos 1991, 62, 370–380. [Google Scholar] [CrossRef]
- Willis, T.V.; Magnuson, J.J. Patterns in fish species composition across the interface between streams and lakes. Can. J. Fish. Aquat. Sci. 2000, 57, 1042–1052. [Google Scholar] [CrossRef]
- Wotton, R.S.; Malmqvist, B.; Leonardsson, K. Expanding traditional views on suspension feeders—Quantifying their role as ecosystem engineers. Oikos 2003, 101, 441–443. [Google Scholar] [CrossRef]
- Dunn, R.R.; Colwell, R.K.; Nilsson, C. The river domain: Why are there more species halfway up the river? Ecography 2006, 29, 251–259. [Google Scholar] [CrossRef]
- Heino, J.; Paavola, R.; Virtanen, R.; Muotka, T. Searching for biodiversity indicators in running waters: Do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodivers. Conserv. 2005, 14, 415–428. [Google Scholar] [CrossRef]
- Vander Vorste, R.; McElmurray, P.; Bell, S.; Eliason, K.M.; Brown, B.L. Does stream size really explain biodiversity patterns in lotic systems? A call for mechanistic explanations. Diversity 2017, 9, 26. [Google Scholar] [CrossRef][Green Version]
- Berg, R.; Gaumert, T.; Kämmereit, M.; Klinger, H.; Lemcke, R.; Leuner, E.; Wolter, C.; Dußling, U. The German river typology with respect to fish-faunistic reference conditions. In Handbuch Angewandte Limnologie; Steinberg, C., Calmano, W., Klapper, H., Wilken, R.D., Eds.; Ecomed-Verlag: Landsberg, Germany, 2004; pp. 12–17. ISBN 3-609-75820-1. [Google Scholar]
- Hynes, H.B.N. Keynote Address. In Proceedings of the International Large River Symposium, Honey Harbour, ON, Canada, 14–21 September 1986; Dodge, D.P., Ed.; pp. 5–10. [Google Scholar]
- Church, M. Channel stability: Morphodynamics and the morphology of rivers. In Rivers—Physical, Fluvial and Environmental Processes; Rowiński, P., Radecki-Pawlik, A., Eds.; Springer International: Cham, Switzerland, 2015; pp. 281–321. ISBN 978-3-319-17719-9. [Google Scholar]
- Chetelat, J.; Pick, F.R.; Hamilton, P.B. Potamoplankton size structure and taxonomic composition: Influence of river size and nutrient concentrations. Limnol. Oceanogr. 2006, 51, 681–689. [Google Scholar] [CrossRef][Green Version]
- Pracheil, B.M.; McIntyre, P.B.; Lyons, J.D. Enhancing conservation of large-river biodiversity by accounting for tributaries. Front. Ecol. Environ. 2013, 11, 124–128. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Bremerich, V.; David, J.N.W.; Hogan, Z.; Kalinkat, G.; Tockner, K.; Jähnig, S.C. The global decline of freshwater megafauna. Glob. Chang. Biol. 2019, 25, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- Schletterer, M.; Kuzovlev, V.V.; Zhenikov, Y.N.; Tuhtan, J.A.; Haidvogl, G.; Friedrich, T.; Górski, K.; Füreder, L. Fish fauna and fisheries of large European rivers: Examples from the Volga and the Danube. Hydrobiologia 2018, 814, 45–60. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef][Green Version]
- Pringle, C.M.; Freeman, M.; Freeman, B. Regional effects of hydrologic alterations on riverine macrobiota in the New World: Tropical-temperate comparisons. BioScience 2000, 50, 807–823. [Google Scholar] [CrossRef][Green Version]
- Pringle, C.M. Interacting effects of altered hydrology and contaminant: Emerging ecological patterns of global concern. In Achieving Sustainable Freshwater Systems: A Web of Connections; Holland, M., Blood, E., Shaffer, L., Eds.; Island Press: Washington, DC, USA, 2003; pp. 85–107. [Google Scholar]
- Olden, J.D. Challenges and opportunities for fish conservation in dam-impacted waters. In Conservation of Freshwater Fishes; Closs, G., Krkosek, M., Olden, J., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 107–148. [Google Scholar] [CrossRef]
- Pringle, C.M.; Withrington, D. Freshwater conservation in action: Contrasting approaches in the US and UK. Chapter 2. In Assessing the Conservation Value of Fresh Waters; Boon, P.J., Pringle, C.M., Eds.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0521613224. [Google Scholar]
- Herendorf, C.E. Distribution of the world’s large lakes. In Large Lakes: Ecological Structure and Function; Tilzer, M.M., Serruya, C., Eds.; Springer: Cham, Switzerland, 1990; pp. 3–38. ISBN 978-3-642-84077-7. [Google Scholar]
- Vadeboncoeur, Y.; McIntyre, P.B.; Vander Zanden, M.J. Borders of biodiversity: Life at the edge of the world’s large lakes. BioScience 2011, 61, 526–537. [Google Scholar] [CrossRef]
- Gratton, P.; Allegrucci, G.; Sbordoni, V.; Gandolfi, A. The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region: A multilocus Bayesian approach. Evol. Mol. Phylogenet. Evol. 2014, 79, 292–304. [Google Scholar] [CrossRef]
- Kociolek, J.P.; Stoermer, E.F. Oligotrophy: The forgotten end of an ecological spectrum. Acta Bot. Croat. 2009, 68, 465–472. [Google Scholar]
- Stoermer, E.F. Diatoms associated with bryophyte communities growing at extreme depths in Lake Michigan. Proc. Iowa Acad. Sci. 1981, 88, 91–95. [Google Scholar]
- Hampton, S.E.; McGowan, S.; Ozersky, T.; Virdis, S.G.P.; Vu, T.T.; Spanbauer, T.L.; Kraemer, B.M.; Swann, G.; Mackay, A.W.; Powers, S.M.; et al. Recent ecological change in ancient lakes. Limnol. Oceanogr. 2018, 63, 2277–2304. [Google Scholar] [CrossRef][Green Version]
- Martens, K. Speciation in ancient lakes. Trends Ecol. Evol. 1997, 12, 177–182. [Google Scholar] [CrossRef]
- Nekola, J.C. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 1999, 80, 2459–2473. [Google Scholar] [CrossRef]
- Boxshall, G.A.; Jaume, D. Making Waves: The Repeated Colonization Fresh Water by Copepod Crustaceans. Adv. Ecol. Res. 2000, 31, 61–79. [Google Scholar] [CrossRef]
- Cristescu, M.E.; Adamowicz, S.J.; Vaillant, J.J.; Haffner, G.D. Ancient lakes revisited: From the ecology to the genetics of speciation. Mol. Ecol. 2010, 19, 4837–4851. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.L. Speciation in ancient lakes. Q. Rev. Biol. 1950, 25, 30–176. [Google Scholar] [CrossRef]
- Martens, K.; Coulter, G.; Goddeeris, B. Speciation in ancient lakes—40 years after Brooks. Ergebn. Limnol. 1994, 44, 75–96. [Google Scholar]
- Mackay, W.; Edlund, M.B.; Khursevich, G. Diatoms in ancient lakes. In The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Smol, J.P., Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 209–228. ISBN 0521509963. [Google Scholar]
- Cohen, A.S.; Stone, J.R.; Beuning, K.R.; Park, L.E.; Reinthal, P.N.; Dettman, D.; Scholz, C.A.; Johnson, T.C.; King, J.W.; Talbot, M.R.; et al. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proc. Natl. Acad. Sci. USA 2007, 104, 16422–16427. [Google Scholar] [CrossRef][Green Version]
- Johnson, T.C.; Scholz, C.A.; Talbot, M.R.; Kelts, K.; Ricketts, R.D.; Ngobi, G.; Beuning, K.; Ssemmanda, I.I.; McGill, J.W. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 1996, 273, 1091–1093. [Google Scholar] [CrossRef]
- Fritz, S.C.; Baker, P.A.; Tapia, P.; Spanbauer, T.; Westover, K. Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 317–318, 93–103. [Google Scholar] [CrossRef][Green Version]
- Hamilton, P.B.; Lavoie, I.; Poulin, M. Spatial, seasonal and inter-annual variability in environmental characteristics and phytoplankton standing stock of the temperate lowland Rideau river, Ontario, Canada. River Res. Appl. 2012, 28, 1551–1566. [Google Scholar] [CrossRef]
- Goulden, C.E.; Tumurtogoo, O.; Karabanov, E.; Mongontsetseg, A. The geological history and geography of Lake Hövsgöl. In The Geology, Biodiversity and Ecology of Lake Hövsgöl (Mongolia); Goulden, C.E., Sitnikova, T., Gelhaus, J., Boldgiv, B., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2006; pp. 1–19. ISBN 90-5782-162-1. [Google Scholar]
- Sabo, E.; Roy, D.; Hamilton, P.B.; Hehanussa, P.E.; McNeely, R.; Haffner, G.D. The plankton community of Lake Matano: Factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia. Hydrobiologia 2008, 615, 225–235. [Google Scholar] [CrossRef]
- Crowe, S.A.; Jones, C.A.; Katsev, S.; Magen, C.; O’Neill, A.H.; Sturm, A.; Canfield, D.E.; Haffner, G.D.; Mucci, A.; Sundby, B.; et al. Photoferrotrophs thrive in an Archean Ocean analogue. Proc. Natl. Acad. Sci. USA 2008, 105, 15938–15943. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Granina, L. The chemical budget of Lake Baikal: A review. Limnol. Oceanogr. 1997, 42, 373–378. [Google Scholar] [CrossRef]
- Talling, J.F.; Talling, I.B. The chemical composition of African lake waters. Intern. Rev. Gesamten Hydrobiol. Hydrogr. 1965, 50, 421–463. [Google Scholar] [CrossRef]
- Greenwood, P.H. What is a species flock? In Evolution of Fish Species Flocks; Echelle, A.A., Kornfield, I., Eds.; University of Maine Press: Orono, ME, USA, 1984; pp. 13–20. ISBN 0891010572. [Google Scholar]
- Michel, E. Phylogeny of a Gastropod Species Flock: Exploring Speciation in Lake Tanganyika in a Molecular Framework. Adv. Ecol. Res. 2000, 31, 275–302. [Google Scholar] [CrossRef]
- Turner, G.G. The Nature of Species in Ancient Lakes: Perspectives from the Fishes of Lake Malawi. Adv. Ecol. Res. 2000, 31, 39–60. [Google Scholar] [CrossRef]
- Stelbrink, B.; Jovanovska, E.; Levkov, Z.; Ognjanova-Rumenova, O.; Wilke, T.; Albrecht, C. Diatoms do radiate: Evidence for a freshwater species flock. J. Evol. Biol. 2018, 31, 1969–1975. [Google Scholar] [CrossRef]
- Snoeks, J. How well known is the ichthyodiversity of the large East African lakes? Adv. Ecol. Res. 2000, 31, 17–38. [Google Scholar] [CrossRef]
- Shtarkman, Y.M.; Koçer, Z.A.; Edgar, R.; Veerapaneni, R.S.; D’Elia, T.; Morris, P.F.; Rogers, S.O. Subglacial Lake Vostok (Antarctica) Accretion Ice Contains a Diverse Set of Sequences from Aquatic, Marine and Sediment-Inhabiting Bacteria and Eukarya. PLoS ONE 2013, 8, e67221. [Google Scholar] [CrossRef][Green Version]
- Doran, P.T.; Fritsen, C.H.; McKay, C.P.; Priscu, J.C.; Adams, E.E. Formation and character of an ancient 19-m ice cover and underlying trapped brine in an ‘‘ice-sealed’’ east Antarctic lake. Proc. Natl. Acad. Sci. USA 2003, 100, 26–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Christner, B.C.; Skidmore, M.L.; Priscu, J.C.; Tranter, M.; Foreman, M. Bacteria in subglacial environments. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Schinner, F., Marx, J.-C., Gerday, C., Eds.; Springer Verlag: Berlin, Germany, 2008; pp. 51–71. ISBN 978-3-540-74335-4. [Google Scholar]
- Bramburger, A.J.; Haffner, G.D.; Hamilton, P.B.; Hinz, F.; Hehanussa, P.E. An examination of species within the genus Surirella from the Malili Lakes, Sulawesi Island, Indonesia, with descriptions of 11 new taxa. Diatom Res. 2006, 21, 1–56. [Google Scholar] [CrossRef]
- Kozhova, O.M.; Izmest’eva, L.R. Lake Baikal. Evolution and Biodiversity; Backhuys: Leiden, The Netherlands, 1998; pp. 1–447. ISBN 90-5782-001-3. [Google Scholar]
- Strong, E.E.; Gargominy, O.; Ponder, W.F.; Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 2008, 595, 149–166. [Google Scholar] [CrossRef]
- Takhev, V.V. Trends in the Evolution of Baikal Amphipods and Evolutionary Parallels with some Marine Malcostracan Faunas. Adv. Ecol. Res. 2000, 31, 197–220. [Google Scholar] [CrossRef]
- Schön, I.; Pieri, V.; Sherbakov, D.Y.; Martens, K. Cryptic diversity and speciation in endemic Cytherissa (Ostracoda, Crustacea) from Lake Baikal. Hydrobiologia 2017, 800, 61–79. [Google Scholar] [CrossRef]
- Stoch, F.; Arteau, M.; Brancelj, A.; Galassi, D.M.P.; Malard, F. Biodiversity indicators in European groundwaters: Towards a predictive model of stygobiotic species richness. Freshw. Biol. 2009, 54, 745–755. [Google Scholar] [CrossRef]
- Meixner, K.J.; Luter, C.; Eckert, C.; Itskovich, V.; Janussen, D.; von Rintelen, T.; Bohne, A.V.; Meixner, J.M.; Hess, W.R. Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Mol. Phylogenet. Evol. 2007, 35, 875–886. [Google Scholar] [CrossRef]
- Matveyev, A.N.; Samusenok, V.P. The fishes and fishery in Lake Baikal. Aquat. Ecosyst. Health 2015, 18, 134–148. [Google Scholar] [CrossRef]
- Kontula, T.; Kirilchik, S.V.; Väinölä, R. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Mol. Phylogenet. Evol. 2003, 27, 143–155. [Google Scholar] [CrossRef]
- Herder, F.; Schwarzer, J.; Pfaender, J.; Hadiaty, R.K.; Schliewen, U.K. Preliminary checklist of sailfin silversides (Teleostei: Telmatherinidae) in the Malili Lakes of Sulawesi (Indonesia), with a synopsis of systematics and threats. Verb. Ges. Icthyol. 2006, 5, 139–163. [Google Scholar]
- Roy, D.; Paterson, G.; Hamilton, P.B.; Heath, D.D.; Haffner, G.D. Resource-based adaptive divergence in the freshwater fish Telmatherina from Lake Matano, Indonesia. Mol. Ecol. 2007, 16, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Salzburger, W.; Van Bocxlaer, B.; Cohen, A.S. Ecology and evolution of the African great lakes and their faunas. Annu. Rev. Ecol. Evol. Syst. 2014, 445, 519–545. [Google Scholar] [CrossRef]
- Fryer, G.; Iles, T.D. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution; Oliver & Boyd: Edinburgh, UK, 1972; pp. 1–641. ISBN 0050023470. [Google Scholar]
- Salzburger, W.; Meyer, A. The species flocks of East African cichlid fishes: Recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 2004, 91, 277–290. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jovanovska, E.; Cvetkoska, A.; Hauffe, T.; Levkov, Z.; Wagner, B.; Sulpizio, R.; Francke, A.; Albrecht, C.; Wilke, T. Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene. Biogeosciences 2016, 13, 1149–1161. [Google Scholar] [CrossRef][Green Version]
- Pavlov, A.; Levkov, Z.; Williams, D.M.; Edlund, M.B. Observations on Hippodonta (Bacillariophyceae) in selected ancient lakes. Phytotaxa 2013, 90, 1–53. [Google Scholar] [CrossRef]
- Schmieder, K. European lake shores in danger concepts for a sustainable development. Limnologica 2004, 34, 3–14. [Google Scholar] [CrossRef][Green Version]
- Schindler, D.E.; Scheurell, M. Habitat coupling in lake ecosystems. Oikos 2002, 98, 177–189. [Google Scholar] [CrossRef][Green Version]
- Beeton, A.M. Large freshwater lakes: Present state, trends and future. Environ. Conserv. 2002, 29, 21–38. [Google Scholar] [CrossRef]
- Albrecht, C.; Wilke, T. Ancient Lake Ohrid: Biodiversity and evolution. Hydrobiologia 2008, 615, 103–140. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Ishikawa, K.; Sakai, Y.; Ishikawa, T.; Ichise, S.; Yamamoto, Y.; Kuo, T.C.; Park, H.D.; Yamamura, N.; Kumagai, M. Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat. Sci. 2010, 72, 467–483. [Google Scholar] [CrossRef]
- Ochumba, P.B.O.; Kibaara, D.I. Observations on blue-green algal blooms in the open waters of Lake Victoria, Kenya. Afr. J. Ecol. 1989, 27, 23–34. [Google Scholar] [CrossRef]
- Hecky, R.E. The eutrophication of Lake Victoria. Verh. Int. Ver. Theor. Angew. Limnol. 1993, 25, 39–48. [Google Scholar] [CrossRef]
- Lazzaro, X.; Gamarra Peralta, C. Fucionamiento limnológico y fotobiologia del Lago Titicaca. In Línea Base De Conocimientos Sobre Los Recursos Hidrológicos e Hidrobiológicos en El Sistema TDPS Con Enfoque en La Cuenca Del Lago Titicaca; Pouilly, M., Lazzaro, X., Point, D., Aguirre, M., Eds.; IRD—UICN: Quito, Ecuador, 2014; pp. 155–217. ISBN 9789997441843. [Google Scholar]
- Kobanova, G.I.; Takhteev, V.V.; Rusanovskaya, O.O.; Timofeyev, M.A. Lake Baikal Ecosystem Faces the Threat of Eutrophication. Acta Oecol. Int. J. Ecol. 2016, 6058082. [Google Scholar] [CrossRef]
- Cohen, A.S.; Gergurich, E.L.; Kraemer, B.M.; McGlue, M.M.; McIntyre, P.B.; Russell, J.M.; Simmons, J.D.; Swarzenski, P.W. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 9563–9568. [Google Scholar] [CrossRef][Green Version]
- Everett, G.V. The rainbow trout Salmo gairdneri (Rich.) fishery of Lake Titicaca. J. Fish Biol. 1973, 5, 429–440. [Google Scholar] [CrossRef]
- Parenti, L.R. A taxonomic revision of the Andean Killifish Genus Orestias (Cyprinodontiformes, Cyprinodontidae). Bull. Am. Mus. Nat. Hist. 1984, 178, 107–214. [Google Scholar]
- Barel, C.D.N.; Dorit, R.; Greenwood, P.H.; Fryer, G.; Hughes, N.; Jackson, P.B.N.; Kawanabe, H.; Lowe-McConnell, R.H.; Nagoshi, M.; Ribbink, A.J.; et al. Destruction of fisheries in Africa’s lakes. Nature 1985, 315, 19–20. [Google Scholar] [CrossRef]
- Herder, F.; Nolte, A.W.; Pfaender, J.; Schwarzer, J.; Hadiaty, R.K.; Schliewen, U.K. Adaptive radiation and hybridization in Wallace’s dreamponds: Evidence from sailfin silversides in the Malili lakes of Sulawesi. Proc. R. Soc. B 2006, 273, 2209–2217. [Google Scholar] [CrossRef]
- Yin, X.; Nicholson, S.E. The water balance of Lake Victoria. Hydrol. Sci. J. 1998, 43, 789–811. [Google Scholar] [CrossRef]
- Pearce, F. Uganda pulls plug on Lake Victoria. N. Sci. 2006, 2538, 12. [Google Scholar]
- Hassan, A.A.; Jin, S. Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Glob. Planet. Chang. 2014, 117, 79–90. [Google Scholar] [CrossRef]
- Peter, H.; Sommaruga, R. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic. Inland Waters 2017, 7, 45–54. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tiberti, R.; Buscaglia, F.; Callieri, C.; Rogora, M.; Tartari, G.; Sommaruga, R. Food web complexity of high-mountain lakes is largely affected by glacial retreat. Ecosystems 2019. [Google Scholar] [CrossRef]
- Catalan, J.; Rondón, J.C.D. Perspective for an integrated understanding of tropical and temperate high-mountain lakes. J. Limnol. 2016, 75, 215–234. [Google Scholar] [CrossRef][Green Version]
- Tiberti, R.; Buscaglia, F.; Armodi, M.; Callieri, C.; Ribelli, F.; Rogora, M.; Tartari, G.; Bocca, M. Mountain lakes of Mont Avic Natural Park: Ecological features and conservation issues. J. Limnol. 2019. [Google Scholar] [CrossRef]
- Hayford, B.L.; Caires, A.M.; Chandra, S. A Tale of Three Lakes: A Comparison of Biodiversity between Lake Tahoe and Crater Lake, USA, and Lake Hövsgöl, Mongolia. Mt. Views 2016, 10, 37–42. [Google Scholar]
- Tolotti, M.; Thies, H.; Cantonati, M.; Tait, D. Flagellate algae (Cryptophyceae, Chrysophyceae, Dinophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: Diversity, distribution and driving variables. Hydrobiologia 2003, 502, 331–348. [Google Scholar] [CrossRef]
- Kammerlander, B.; Breiner, H.W.; Filker, S.; Sommaruga, R.; Sonntag, B.; Stoeck, T. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef][Green Version]
- Carrillo, P.; Medina-Sánchez, J.M.; Villar-Argaiz, M.; Delgado-Molina, J.A.; Bullejos, F.J. Complex interactions in microbial food webs: Stoichiometric and functional approaches. Limnetica 2006, 25, 189–204. [Google Scholar] [CrossRef]
- Cantonati, M.; Guella, G.; Komárek, J.; Spitale, D. Depth-distribution of epilithic cyanobacteria and pigments in a mountain lake characterized by marked water-level fluctuations. Freshw. Sci. 2014, 33, 537–547. [Google Scholar] [CrossRef]
- Sommaruga-Wögrath, S.; Koinig, K.A.; Schmidt, R.; Sommaruga, R.; Tessadri, R.; Psenner, R. Temperature effects on the acidity of remote alpine lakes. Nature 1997, 387, 64–67. [Google Scholar] [CrossRef]
- Catalán, J.; Ballesteros, E.; Gacia, E.; Palau, A.; Camarero, L. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: A reference for acidified sites. Wat. Res. 1993, 27, 133–141. [Google Scholar] [CrossRef]
- Leira, M.; Fillippi, M.L.; Cantonati, M. Diatom community response to extreme water-level fluctuations in two Alpine lakes: A core case study. J. Paleolimnol. 2015, 53, 289–307. [Google Scholar] [CrossRef]
- Tiberti, R.; Splendiani, A. Management of a highly unlikely native fish: The case of arctic charr Salvelinus alpinus from the Southern Alps. Aquatic Conserv. Mar. Freshw. Ecosyst. 2019, 29, 312–320. [Google Scholar] [CrossRef]
- Baron, J. The Fate of Mountain Lakes. Mt. Views 2016, 10, 2–4. [Google Scholar]
- Camarero, L.; Catalan, J.; Boggero, A.; Marchetto, A.; Mosello, R.; Psenner, R. Acidification in high mountain lakes in Central, Southwest and Southeast Europe (Alps, Pyrenees, Pirin). Limnologica 1995, 25, 141–156. [Google Scholar]
- Tait, D.; Thaler, B. Atmospheric deposition and lake chemistry trends at a high mountain site in the eastern Alps. J. Limnol. 2000, 59, 61–71. [Google Scholar] [CrossRef]
- Thies, H.; Nickus, U.; Mair, V.; Tessadri, R.; Tait, D.; Thaler, B.; Psenner, R. Unexpected response of high alpine lake waters to climate warming. Environ. Sci. Technol. 2007, 41, 7424–7429. [Google Scholar] [CrossRef]
- Marnezy, A. Alpine dams. J. Alp. Res. 2008, 96, 103–112. [Google Scholar] [CrossRef][Green Version]
- Spitale, D.; Angeli, N.; Lencioni, V.; Tolotti, M.; Cantonati, M. Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia 2015, 70, 1597–1605. [Google Scholar] [CrossRef]
- Margalef, R. Limnología; Editorial Omega: Barcelona, Spain, 1983; ISBN 8428207143. [Google Scholar]
- Baker, J.A.; Killgore, K.J.; Kasul, R.L. Aquatic habitats and fish communities in the lower Mississippi River. Rev. Aquat. Sci. 1991, 3, 213–356. [Google Scholar]
- Welcomme, R.L. Fisheries Ecology of Floodplain Rivers; Longman: London, UK; New York, NY, USA, 1979; ISBN 0582463106. [Google Scholar]
- Constantine, J.A.; Dunne, T.; Piegay, H.; Kandolf, G.M. Controls on the alluviation of oxbow lakes by bed-material load along the Sacramento River, California. Sedimentology 2010, 57, 389–407. [Google Scholar] [CrossRef]
- Ward, J.V. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv. 1998, 83, 269–278. [Google Scholar] [CrossRef]
- Piégay, H.; Bornette, G.; Citterio, A.; Hérouin, E.; Moulin, B.; Statiotis, C. Channel instability as control factor of silting dynamics and vegetation pattern within perifluvial aquatic zones. Hydrol. Process. 2000, 14, 3011–3029. [Google Scholar] [CrossRef]
- Schramm, H.L., Jr.; Eggleton, M.A.; Minnis, R.B. Spatial Analysis of Floodplain Habitat Critical to Lower Mississippi River Fishes; Mississippi Cooperative Fish and Wildlife Research Unit: Mississippi State, MS, USA, 1999. [Google Scholar]
- Dembowska, E.A.; Kubiak-Wojcicka, K. Influence of water level fluctuations on phytoplankton communities in an oxbow lake. Fundam. Appl. Limnol. 2017, 190, 221–233. [Google Scholar] [CrossRef]
- Naus, C.J.; Reid Adams, S. Fish nursery habitat function of the main channel, floodplain tributaries and oxbow lakes of a medium-sized river. Ecol. Freshw. Fish 2018, 27, 4–18. [Google Scholar] [CrossRef]
- Zeug, S.C.; Winemiller, K.O. Relationships between hydrology, spatial heterogeneity, and fish recruitment dynamics in a temperate floodplain river. River Res. Appl. 2007, 24, 90–102. [Google Scholar] [CrossRef]
- Bolpagni, R.; Piotti, A. Hydro-hygrophilous vegetation diversity and distribution patterns in riverine wetlands in an agricultural landscape: A case study from the Oglio River (Po Plain, Northern Italy). Phytocoenologia 2015, 45, 69–84. [Google Scholar] [CrossRef][Green Version]
- Bolpagni, R.; Piotti, A. The importance of being natural in a human-altered riverscape: Role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Aquat. Conserv. Mar. Freshw. Ecosys. 2016, 26, 1168–1183. [Google Scholar] [CrossRef]
- Pierobon, E.; Bolpagni, R.; Bartoli, M.; Viaroli, P. Net primary production and seasonal CO2 and CH4 fluxes in a Trapa natans L. meadow. J. Limnol. 2010, 69, 225–234. [Google Scholar] [CrossRef][Green Version]
- Bolpagni, R.; Pierobon, E.; Longhi, D.; Nizzoli, D.; Bartoli, M.; Tomaselli, M.; Viaroli, P. Diurnal exchanges of CO2 and CH4 across the water-atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquat. Bot. 2007, 87, 43–48. [Google Scholar] [CrossRef]
- Bolpagni, R.; Bartoli, M.; Viaroli, P. Species and functional plant diversity in a heavily impacted riverscape: Implications for threatened hydro-hygrophilous flora conservation. Limnologica 2013, 43, 230–238. [Google Scholar] [CrossRef]
- Racchetti, E.; Bartoli, M.; Soana, E.; Longhi, D.; Christian, R.R.; Pinardi, M.; Viaroli, P. Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 2011, 103, 335–354. [Google Scholar] [CrossRef]
- Bolpagni, R.; Laini, A.; Mutti, T.; Viaroli, P.; Bartoli, M. Connectivity and habitat typology drive CO2 and CH4 fluxes across land–water interfaces in lowland rivers. Aquat. Sci. 2019, 12, e2036. [Google Scholar] [CrossRef][Green Version]
- Gore, J.A.; Shields, F.D., Jr. Can large rivers be restored? Bioscience 1995, 45, 142–152. [Google Scholar] [CrossRef]
- Miranda, L.E. Fish Assemblages in Oxbow Lakes Relative to Connectivity with the Mississippi River. T. Am. Fish. Soc. 2011, 134, 1480–1489. [Google Scholar] [CrossRef]
- Pander, J.; Mueller, M.; Geist, J. Habitat diversity and connectivity govern the conservation value of restored aquatic floodplain habitats. Biol. Conserv. 2019, 217, 1–10. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef][Green Version]
- Thornton, K.W. Perspectives on reservoir limnology. In Reservoir Limnology: Ecological Perspectives; Thornton, K.W., Kimmel, B.L., Payne, F.E., Eds.; John Wiley & Sons: New York, NY, USA, 1990; pp. 1–13. ISBN 978-0471885016. [Google Scholar]
- Wetzel, R.G. Limnology. Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001; ISBN 9780127447605. [Google Scholar]
- Cronk, J.K.; Fennessy, M.S. Wetland Plants, Biology and Ecology; CRC Press: Boca Raton, FL, USA, 2001; pp. 1–462. ISBN 9781566703727. [Google Scholar]
- Rørslett, B. An integrated approach to hydropower impact assesment. II. Submerged macrophytes in some Norwegian hydroelectric lakes. Hydrobiologia 1989, 175, 65–82. [Google Scholar] [CrossRef]
- Krolová, M.; Čížková, H.; Hejzlar, J.; Poláková, S. Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowl. Manag. Aquat. Ec. 2013, 408, 7. [Google Scholar] [CrossRef][Green Version]
- Mjelde, M.; Hellsten, S.; Ecke, F. A water level drawdown index for aquatic macrophytes in Nordic lakes. Hydrobiologia 2013, 70, 141–151. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Meeker, J.E. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 1992, 12, 192–203. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thomaz, S.M.; Cunha, E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Krolová, M.; Čížková, H.; Hejzlar, J. Depth limit of littoral vegetation in a storage reservoir: A case study of Lipno Reservoir (Czech Republic). Limnologica 2012, 42, 164–174. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Mainstone, C.P.; Parr, W. Phosphorus in Rivers—Ecology and Management. Sci. Total Environ. 2002, 282–283, 25–47. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems—A global problem. Environ. Sci. Pollut. R. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Hilton, J.; O’Hare, M.; Bowes, M.J.; Jones, J.I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total Environ. 2006, 365, 66–83. [Google Scholar] [CrossRef]
- Moss, B. Ecology of Freshwaters, Man and Medium, Past to Future, 3rd ed.; Blackwell Science: Oxford, UK, 1998; ISBN 978-1-444-31342-0. [Google Scholar]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Kubečka, J.; Seďa, J.; Duncan, A.; Matěna, J.; Ketelaars, H. Composition and biomass of the fish stocks in various european reservoirs and ecological consequences. Int. Rev. Hydrobiol. 1998, 83, 559–568. [Google Scholar]
- Persson, L.; Greenberg, L.A. Juvenile competitive bottlenecks: The perch (Perca fluviatilis)—Roach (Rutilus rutilus) interaction. Ecology 1990, 71, 44–56. [Google Scholar] [CrossRef]
- Šmejkal, M.; Ricard, D.; Sajdlová, Z.; Čech, M.; Vejřík, L.; Blabolil, P.; Vejříková, I.; Prchalová, M.; Vašek, M.; Souza, A.T.; et al. Can species-specific prey responses to chemical cues explain prey susceptibility to predation? Ecol. Evol. 2018, 8, 4544–4551. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Ritterbusch, D.; Argillier, C.; Białokoz, W.; Blabolil, P.; Breine, J.; Jaarsma, N.G.; Krause, T.; Kubečka, J.; Lauridsen, T.L.; et al. Response of fish communities to multiple pressures: Development of a total anthropogenic pressure intensity index. Sci. Total Environ. 2017, 586, 502–511. [Google Scholar] [CrossRef]
- Draštík, V.; Kubečka, J.; Šovčík, P. Hydrology and angler’s catches in the Czech reservoirs. Ecohydrol. Hydrobiol. 2004, 4, 429–439. [Google Scholar]
- Duncan, A.; Kubečka, J. Land/water ecotone effects in reservoirs on the fish fauna. Hydrobiologia 1995, 303, 11–30. [Google Scholar] [CrossRef]
- Clavero, M.; Hermoso, V.; Aparicio, E.; Godinho, F.N. Biodiversity in heavily modified waterbodies: Native and introduced fish in Iberian reservoirs. Freshw. Biol. 2013, 58, 1190–1201. [Google Scholar] [CrossRef]
- Catford, J.A.; Vesk, P.A.; Richardson, D.M.; Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Chang. Biol. 2012, 18, 44–62. [Google Scholar] [CrossRef][Green Version]
- Byers, J.E. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 2002, 97, 449–458. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Env. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef][Green Version]
- Johnson, P.T.J.; Olden, J.D.; Vander Zanden, M.J. Dam Invaders: Impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 2008, 6, 357–363. [Google Scholar] [CrossRef][Green Version]
- Clavero, M.; Hermoso, V. Reservoirs promote the taxonomic homogenization of fish communities within river basins. Biodivers. Conserv. 2011, 20, 41–57. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Madsen, J.D. Predicting invasion success of Eurasian watermilfoil. J. Aquat. Plant Manag. 1998, 36, 28–32. [Google Scholar]
- Van Zuidam, J.P.; Peeters, E.T.H.M. Occurrence of macrophyte monocultures in drainage ditches relates to phosphorus in both sediment and water. Springer Plus 2013, 2, 564. [Google Scholar] [CrossRef]
- Verdonschot, R.C.M.; Keizer-Vlek, H.E.; Verdonschot, P.F.M. Biodiversity value of agricultural drainage ditches; a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 715–727. [Google Scholar] [CrossRef]
- Francis, R.A. Urban rivers: Novel ecosystems, new challenges. WIREs Water 2014, 1, 19–29. [Google Scholar] [CrossRef]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global perspectives on the urban stream syndrome. Freshw. Sci. 2016, 35, 412–420. [Google Scholar] [CrossRef][Green Version]
- Gál, B.; Szivák, I.; Heino, J.; Schmera, D. The effect of urbanization on freshwater macroinvertebrates—Knowledge gaps and future research directions. Ecol. Ind. 2019, 104, 357–364. [Google Scholar] [CrossRef][Green Version]
- Higgins, S.L.; Thomas, F.; Goldsmith, B.; Brooks, S.J.; Hassall, C.; Harlow, J.; Stone, D.; Völker, S.; White, P. Urban freshwaters, biodiversity, and human health and well-being: Setting an interdisciplinary research agenda. Wiley Interdiscip. Rev. Water 2019, 6, e1339. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 2019, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands. A Framework for Decision-Making; International Mire Conservation Group: Greifswald, Germany; International Peat Society: Jyväskylä, Finland; Saarijärven Offset Oy: Saarijärvi, Finland, 2002; ISBN 951-97744-8-3. [Google Scholar]
- Hájek, M.; Horsák, M.; Hájková, P.; Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. 2006, 8, 97–114. [Google Scholar] [CrossRef]
- Dierssen, K.; Dierssen, B. Moore; Ökosysteme Mitteleuropas aus Geobotanischer Sicht: Stuttgart, Germany, 2001; pp. 1–230. ISBN 9783800156436. [Google Scholar]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands; Oxford University Press: Oxford, UK, 2013; pp. 1–432. ISBN 978-0199603008. [Google Scholar]
- Vitt, D.H. Peatlands: Ecosystems dominated by bryophytes. In Bryophyte Biology; Shaw, A.J., Goffinet, B., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 312–343. ISBN 9780511754807. [Google Scholar]
- Wheeler, B.D.; Proctor, M.C.F. Ecological gradients, subdivisions and terminology of north-west European mires. J. Ecol. 2000, 88, 187–203. [Google Scholar] [CrossRef]
- Proctor, M.C.; McHaffie, H.S.; Legg, C.J.; Amphlett, A. Evidence from water chemistry as a criterion of ombrotrophy in the mire complexes of Abernethy Forest, Scotland. J. Veg. Sci. 2009, 20, 160–169. [Google Scholar] [CrossRef]
- Jiroušek, M.; Poulíčková, A.; Kintrová, K.; Opravilová, V.; Hájková, P.; Rybníček, K.; Kočí, M.; Bergová, K.; Hnilica, R.; Mikulášková, E.; et al. Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshw. Biol. 2013, 58, 2196–2207. [Google Scholar] [CrossRef]
- Lindsay, R. Peatland classification. In The Wetland Book: I: Structure and Function, Management, and Methods; Finlayson, C.M., Everard, M., Irvine, K., McInnes, R.J., Middleton, B.A., van Dam, A.A., Davidson, N.C., Eds.; Springer: Berlin, Germany, 2018; pp. 1515–1528. ISBN 978-94-007-1471-7. [Google Scholar]
- Peterka, T.; Hájek, M.; Jiroušek, M.; Jiménez-Alfaro, B.; Aunina, L.; Bergamini, A.; Dítě, D.; Felbaba-Klushyna, L.; Graf, U.; Hájková, P.; et al. Formalized classification of European fen vegetation at the alliance level. Appl. Veg. Sci. 2017, 20, 124–142. [Google Scholar] [CrossRef][Green Version]
- Singh, P.; Těšitel, J.; Plesková, Z.; Peterka, T.; Dítě, D.; Hájková, P.; Pawlikowski, P.; Hájek, M. The ratio between bryophyte functional groups impacts vascular plants in rich fens. Appl. Veg. Sci. 2019. [Google Scholar] [CrossRef]
- Horsák, M. Mollusc community patterns and species response curves along a mineral richness gradient: A case study in fens. J. Biogeogr. 2006, 33, 98–107. [Google Scholar] [CrossRef]
- Rozbrojová, Z.; Hájek, M. Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J. Veg. Sci. 2008, 19, 613–620. [Google Scholar] [CrossRef]
- Vicherová, E.; Hájek, M.; Hájek, T. Calcium intolerance of fen mosses: Physiological evidence, effects of nutrient availability and successional drivers. Perspect. Plant Ecol. 2015, 17, 347–359. [Google Scholar] [CrossRef]
- Bain, J.T.; Proctor, M.C.F. The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: Some experimental evidence. N. Phytol. 1980, 86, 393–400. [Google Scholar] [CrossRef]
- Patberg, W.; Baaijens, G.J.; Smolders, A.J.; Grootjans, A.P.; Elzenga, J.T.M. The importance of groundwater carbon dioxide in the restoration of small Sphagnum bogs. Preslia 2013, 85, 389–403. [Google Scholar]
- Hájek, M.; Jiroušek, M.; Navrátilová, J.; Horodyská, E.; Peterka, T.; Plesková, Z.; Navrátil, Z.; Hájková, P.; Hájek, T. Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia 2015, 87, 279–301. [Google Scholar]
- Hájková, P.; Hájek, M. Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationships to water and soil chemistry. Preslia 2003, 75, 271–287. [Google Scholar]
- Horsáková, V.; Hájek, M.; Hájková, P.; Dítě, D.; Horsák, M. Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species. Divers. Distrib. 2018, 24, 742–754. [Google Scholar] [CrossRef][Green Version]
- Dítě, D.; Hájek, M.; Svitková, I.; Košuthová, A.; Šoltés, R.; Kliment, J. Glacial-relict symptoms in the Western Carpathian flora. Folia Geobot. 2018, 53, 277–300. [Google Scholar] [CrossRef]
- Hájková, P.; Štechová, T.; Šoltés, R.; Šmerdová, E.; Plesková, Z.; Dítě, D.; Bradáčová, J.; Mútňanová, M.; Singh, P.; Hájek, M. Using a new database of plant macrofossils of the Czech and Slovak Republics to compare past and present distribution of hypothetically relict fen mosses. Preslia 2018, 90, 367–386. [Google Scholar] [CrossRef][Green Version]
- Hájek, M.; Horsák, M.; Tichý, L.; Hájková, P.; Dítě, D.; Jamrichová, E. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: A null model approach. J. Biogeogr. 2011, 38, 742–755. [Google Scholar] [CrossRef]
- Horsák, M.; Hájek, M.; Spitale, D.; Hájková, P.; Dítě, D.; Nekola, J.C. The age of island-like habitats impacts habitat specialist species richness. Ecology 2012, 93, 1106–1114. [Google Scholar] [CrossRef]
- Warner, B.G.; Asada, T. Biological diversity of peatlands in Canada. Aquat. Sci. 2006, 68, 240–253. [Google Scholar] [CrossRef]
- Middleton, B.A.; Holsten, B.; van Diggelen, R. Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl. Veg. Sci. 2006, 9, 307–316. [Google Scholar] [CrossRef]
- Van Diggelen, R.; Middleton, B.; Bakker, J.; Grootjans, A.; Wassen, M. Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Appl. Veg. Sci. 2006, 9, 157–162. [Google Scholar] [CrossRef][Green Version]
- Soomers, H.; Karssenberg, D.; Verhoeven, J.T.; Verweij, P.A.; Wassen, M.J. The effect of habitat fragmentation and abiotic factors on fen plant occurrence. Biodiver. Conserv. 2013, 22, 405–424. [Google Scholar] [CrossRef]
- Buczkó, K. Bryophytic diatoms from Hungary. In Proceedings of the Eighteenth International Diatom Symposium, Miedzyzdroje, Poland, 2–7 September 2004; Witkowski, A., Ed.; Biopress Limited: Bristol, UK, 2006; Volume 2006, pp. 1–15. [Google Scholar]
- Berendse, F.; Breemen, N.; Van Rydin, H.; Buttler, A.; Heijmans, M.; Hoosbeek, M.R.; Lee, J.A.; Mitchell, E.; Saarinen, T.; Vasander, H.; et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob. Chang. Biol. 2001, 7, 591–598. [Google Scholar] [CrossRef][Green Version]
- Charman, D. Peatlands and Environmental Change; Wiley: Hoboken, NJ, USA, 2002; pp. 1–301. ISBN 978-0-470-84410-6. [Google Scholar]
- Essl, F.; Dullinger, S.; Moser, D.; Rabitsch, W.; Kleinbauer, I. Vulnerability of mires under climate change: Implications for nature conservation and climate change adaptation. Biodivers. Conserv. 2012, 21, 655–669. [Google Scholar] [CrossRef]
- Moradi, H.; Fakheran, S.; Peintinger, M.; Bergamini, A.; Schmid, B.; Joshi, J. Profiteers of environmental change in the Swiss Alps: Increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years. Alp. Bot. 2012, 122, 45–56. [Google Scholar] [CrossRef][Green Version]
- Herrera-Pantoja, M.; Hiscock, K.M.; Boar, R.R. The potential impact of climate change on groundwater-fed wetlands in eastern England. Ecohydrology 2012, 5, 401–413. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; García-Calvo, L.; García, P.; Acebes, J.L. Anticipating extinctions of glacial relict populations in mountain refugia. Biol. Conserv. 2016, 201, 243–251. [Google Scholar] [CrossRef]
- Page, S.E.; Baird, A.J. Peatlands and global change: Response and resilience. Annu. Rev. Env. Resour. 2016, 41, 35–57. [Google Scholar] [CrossRef]
- Janssen, J.A.M.; Rodwell, J.S.; Criado, M.G.; Arts, G.H.P.; Bijlsma, R.J.; Schaminee, J.H.J. European Red List of Habitats: Part 2. Terrestrial and Freshwater Habitats; Directorate-General for the Environment: Brussels, Belgium, 2016; ISBN 978-92-79-61588-7. [Google Scholar]
- Grootjans, A.P.; Adema, E.B.; Bleuten, W.; Joosten, H.; Madaras, M.; Janáková, M. Hydrological landscape settings of base-rich fen mires and fen meadows: An overview. Appl. Veg. Sci. 2006, 9, 175–184. [Google Scholar] [CrossRef]
- Vicherová, E.; Hájek, M.; Šmilauer, P.; Hájek, T. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry. Sci. Total Environ. 2017, 580, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Hájková, P.; Horsák, M.; Hájek, M.; Jankovská, V.; Jamrichová, E.; Moutelíková, J. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. Holocene 2015, 25, 702–715. [Google Scholar] [CrossRef]
- Bart, D.; Davenport, T.; Yantes, A. Environmental predictors of woody plant encroachment in calcareous fens are modified by biotic and abiotic land-use legacies. J. Appl. Ecol. 2016, 53, 541–549. [Google Scholar] [CrossRef][Green Version]
- Jamrichová, E.; Gálová, A.; Gašpar, A.; Horsák, M.; Frodlová, J.; Hájek, M.; Hajnalová, M.; Hájková, P. Holocene development of two calcareous spring fens at the Carpathian-Pannonian interface controlled by climate and human impact. Folia Geobot. 2018, 53, 243–263. [Google Scholar] [CrossRef]
- Koch, M.; Jurasinski, G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecol. Divers. 2015, 8, 49–60. [Google Scholar] [CrossRef]
- Kapfer, J.; Grytnes, J.A.; Gunnarsson, U.; Birks, H.J.B. Fine-scale changes in vegetation composition in a boreal mire over 50 years. J. Ecol. 2011, 99, 1179–1189. [Google Scholar] [CrossRef]
- Pedrotti, E.; Rydin, H.; Ingmar, T.; Hytteborn, H.; Turunen, P.; Granath, G. Fine-scale dynamics and community stability in boreal peatlands: Revisiting a fen and a bog in Sweden after 50 years. Ecosphere 2014, 5, 1–24. [Google Scholar] [CrossRef]
- Seer, F.K.; Schrautzer, J. Status, future prospects, and management recommendations for alkaline fens in an agricultural landscape: A comprehensive survey. J. Nat. Conserv. 2014, 22, 358–368. [Google Scholar] [CrossRef]
- Merriam, K.E.; Markwith, S.H.; Coppoletta, M. Livestock exclusion alters plant species composition in fen meadows. Appl. Veg. Sci. 2018, 21, 3–11. [Google Scholar] [CrossRef]
- Ross, L.C.; Speed, J.D.; Øien, D.I.; Grygoruk, M.; Hassel, K.; Lyngstad, A.; Moen, A. Can mowing restore boreal rich-fen vegetation in the face of climate change? PLoS ONE 2019, 14, e0211272. [Google Scholar] [CrossRef]
- Poulíčková, A.; Hájková, P.; Kintrová, K.; Bat’ková, R.; Czudková, M.; Hájek, M. Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions. Environ. Pollut. 2013, 179, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Paal, J.; Vellak, K.; Liira, J.; Karofeld, E. Bog recovery in northeastern Estonia after the reduction of atmospheric pollutant input. Restor. Ecol. 2010, 18, 387–400. [Google Scholar] [CrossRef]
- Friberg, N.; Dybkjaer, J.B.; Olafsson, J.S.; Gislason, G.M.; Larsen, S.E.; Lauridsen, T.L. Relationships between structure and function in streams contrasting in temperature. Freshw. Biol. 2009, 54, 2051–2068. [Google Scholar] [CrossRef]
- Gerdol, R.; Petraglia, A.; Bragazza, L.; Iacumin, P.; Brancaleoni, L. Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Glob. Chang. Biol. 2007, 13, 1810–1821. [Google Scholar] [CrossRef]
- Bragazza, L.; Siffi, C.; Iacumin, P.; Gerdol, R. Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biol. Biochem. 2007, 39, 257–267. [Google Scholar] [CrossRef]
- Neuhäusl, R. Hochmoore am Teich Velké Dářko; Academia-Verlag: Praha, Czech Republic, 1975; pp. 1–120. [Google Scholar]
- Nørgaard, E. Environment and behaviour of Theridion saxatile. Oikos 1956, 7, 159–192. [Google Scholar] [CrossRef]
- Horsák, M.; Polášková, V.; Zhai, M.; Bojková, J.; Syrovátka, V.; Šorfová, V.; Schenková, J.; Polášek, M.; Peterka, T.; Hájek, M. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Sci. Total Environ. 2018, 634, 355–365. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Jiménez-Alfaro, B.; Hájek, M.; Díaz, T.E.; Pritchard, H.W. Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobot. 2015, 50, 293–301. [Google Scholar] [CrossRef]
- Seymour, K.S.; Christanis, K.; Bouzinos, A.; Papazisimou, S.; Papatheodorou, G.; Moran, E.; Dénès, G. Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quatern. Int. 2004, 121, 53–65. [Google Scholar] [CrossRef]
- Hájek, M.; Hájková, P.; Apostolova, I.; Horsák, M.; Plášek, V.; Shaw, B.; Lazarova, M. Disjunct occurrences of plant species in the refugial mires of Bulgaria. Folia Geobot. 2009, 44, 365–386. [Google Scholar] [CrossRef]
- Vukojičić, S.; Jakovljević, K.; Matevski, V.; Randjelović, V.; Niketić, M.; Lakušić, D. Distribution, Diversity and Conservation of Boreo-Montane Plant Species in the Central Part of the Balkan Peninsula and the Southern Part of the Pannonian Plain. Folia Geobot. 2014, 49, 487–505. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M.; Apostolova, I.; Zelený, D.; Dítě, D. Shifts in the ecological behaviour of plant species between two distant regions: Evidence from the base richness gradient in mires. J. Biogeogr. 2008, 35, 282–294. [Google Scholar] [CrossRef]
- Theodoridis, S.; Nogués-Bravo, D.; Conti, E. The role of cryptic diversity and its environmental correlates in global conservation status assessments: Insights from the threatened bird’s-eye primrose (Primula farinosa L.). Divers. Distrib. 2019, 25, 1457–1471. [Google Scholar] [CrossRef][Green Version]
- Cantonati, M.; Lange-Bertalot, H.; Decet, F.; Gabrieli, J. Diatoms in very-shallow pools of the site of community importance Danta di Cadore Mires (south-eastern Alps), and the potential contribution of these habitats to diatom biodiversity conservation. Nova Hedwig. 2011, 93, 475–507. [Google Scholar] [CrossRef]
- Cantonati, M.; Van de Vijver, B.; Lange-Bertalot, H. Microfissurata gen. nov. (Bacillariophyta), a new diatom genus from dystrophic and intermittently-wet terrestrial habitats. J. Phycol. 2009, 45, 732–741. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Bond-Lamberty, B.; Euskirchen, E.; Talbot, J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S. The resilience and functional role of moss in boreal and arctic ecosystems. N. Phytol. 2012, 196, 49–67. [Google Scholar] [CrossRef][Green Version]
- Rosset, V.; Angelibert, S.; Arthaud, F.; Bornette, G.; Robin, J.; Wezel, A.; Vallod, D.; Oertli, B. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014, 51, 415–425. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Bergström, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Börling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio 2015, 44, 163–179. [Google Scholar] [CrossRef][Green Version]
- Wetzel, R.G. Land water interfaces: Metabolic and limnological regulators. Verh. Int. Ver. Limnol. 1990, 24, 6–24. [Google Scholar] [CrossRef]
- Schiemer, F.; Zalewski, M.; Thorpe, J.E. Land/Inland water ecotones: Intermediate habitats critical for conservation and management. Hydrobiologia 1995, 303, 259–264. [Google Scholar] [CrossRef]
- Hill, M.J.; Ryves, D.B.; White, J.C.; Wood, P.J. Macroinvertebrate diversity in urban and rural ponds: Implications for freshwater biodiversity conservation. Biol. Conserv. 2016, 201, 50–59. [Google Scholar] [CrossRef]
- Bagella, S.; Gascón, S.; Filigheddu, R.; Cogoni, A.; Boix, D. Mediterranean Temporary Ponds: New challenges from a neglected habitat. Hydrobiologia 2016, 782, 1–10. [Google Scholar] [CrossRef]
- Hill, M.J.; Wood, P.J. The macroinvertebrate biodiversity and conservation value of garden and field ponds along a rural-urban gradient. Fund. Appl. Limnol. 2014, 185, 107–119. [Google Scholar] [CrossRef]
- Bazzanti, M. Pond macroinvertebrates of the Presidential Estate of Castelporziano (Rome): A review of ecological aspects and selecting indicator taxa for conservation. Rend. Lincei 2015, 26, 337–343. [Google Scholar] [CrossRef]
- Rosset, V.; Simaika, J.P.; Arthaud, F.; Bornette, G.; Vallod, D.; Samways, M.J.; Oertli, B. Comparative assessment of scoring methods to evaluate the conservation value of pond and small lake biodiversity. Aquat. Conserv. Mar. Freshw. Ecosys. 2013, 23, 23–36. [Google Scholar] [CrossRef]
- Fuentes-Rodríguez, F.; Juan, M.; Gallego, I.; Lusi, M.; Fenoy, E.; León, D.; Peñalver, P.; Toja, J.; Casas, J.J. Diversity in Mediterranean farm ponds: Trade-offs and synergies between irrigation modernisation and biodiversity conservation. Freshw. Biol. 2013, 58, 63–78. [Google Scholar] [CrossRef]
- Tóth, A.; Horváth, Z.; Vad, C.F.; Zsuga, K.; Nagy, S.A.; Boros, E. Zooplankton of the european soda pans: Fauna and conservation of a unique habitat type. Int. Rev. Hydrobiol. 2014, 99, 255–276. [Google Scholar] [CrossRef]
- Briers, R.A. Invertebrate communities and environmental conditions in a series of urban drainage ponds in eastern Scotland: Implications for biodiversity and conservation value of SUDS. Clean 2014, 42, 193–200. [Google Scholar] [CrossRef][Green Version]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2003, 115, 329–341. [Google Scholar] [CrossRef]
- Hunter, M.L., Jr.; Acuña, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.J.K.; Felipe-Lucia, M.R.; Fitzsimons, J.A.; González, E.; Kinnison, M.; Lindenmayer, D.; et al. Conserving small natural features with large ecological roles: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- Maynou, X.; Martín, R.; Aranda, D. The role of small secondary biotopes in a highly fragmented landscape as habitat and connectivity providers for dragonflies (Insecta: Odonata). J. Insect Conserv. 2017, 21, 517–530. [Google Scholar] [CrossRef]
- Hill, M.J.; Heino, J.; White, J.C.; Ryves, D.B.; Wood, P.J. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol. Conserv. 2019, 237, 348–357. [Google Scholar] [CrossRef]
- Oertli, B.; Parris, K.M. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef][Green Version]
- Johansson, F.; Bini, L.M.; Coiffard, P.; Svanbäck, R.; Wester, J.; Heino, J. Environmental variables drive differences in the beta diversity of dragonfly assemblages among urban stormwater ponds. Ecol. Indic. 2019, 106, 105529. [Google Scholar] [CrossRef]
- Hill, M.J.; Biggs, J.; Thornhill, I.; Briers, R.A.; Gledhill, D.G.; White, J.C.; Wood, P.J.; Hassall, C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob. Chang. Biol. 2017, 23, 986–999. [Google Scholar] [CrossRef]
- Pielou, E.C. After the Ice Age: The Return of Life to Glaciated North America; University of Chicago Press: Chicago, IL, USA, 1991; ISBN 978-0226668123. [Google Scholar]
- Wrona, F.J.; Reist, J.D. Freshwater ecosystems. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity; Meltofte, H., Ed.; Conservation of Arctic Flora and Fauna, Arctic Council: Akureyri, Iceland, 2013; pp. 335–377. ISBN 978-9935-431-22-6. [Google Scholar]
- Lento, J.; Goedkoop, W.; Culp, J.; Christoffersen, K.; Fefilova, E.; Guðbergsson, G.; Liljaniemi, P.; Ólafsson, J.S.; Sandøy, S.; Zimmerman, C.; et al. Circumpolar Biodiversity Monitoring Program State of Arctic Freshwater Biodiversity Report; Conservation of Arctic Flora and Fauna, Arctic Council: Akureyri, Iceland, 2019; ISBN 978-9935-431-77-6. [Google Scholar]
- Christiansen, J.S.; Reist, J.D.; Brown, R.J.; Brykov, V.A.; Christensen, G.; Christoffersen, K.; Cott, P.; Crane, P.; Dempson, J.B.; Docker, M.; et al. Fishes. Conservation of Arctic Flora and Fauna. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity; Meltofte, H., Ed.; Arctic Council: Akureyri, Iceland, 2013; pp. 192–245. ISBN 978-9935-431-22-6. [Google Scholar]
- Jyrkänkallio-Mikkola, J.; Meier, S.; Heino, J.; Laamanen, T.; Pajunen, V.; Tolonen, K.T.; Tolkkinen, M.; Soininen, J. Disentangling multi-scale environmental effects on stream microbial communities. J. Biogeogr. 2017, 44, 1512–1523. [Google Scholar] [CrossRef]
- Soininen, J.; Heino, J.; Kokocinski, M.; Muotka, T. Local-regional diversity relationship varies with spatial scale in lotic diatoms. J. Biogeogr. 2009, 36, 720–727. [Google Scholar] [CrossRef]
- Alahuhta, J. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci. 2015, 26, 564–575. [Google Scholar] [CrossRef]
- Heino, J.; Tolonen, K.T. Untangling the assembly of littoral macroinvertebrate communities through measures of functional and phylogenetic alpha diversity. Freshw. Biol. 2017, 62, 1168–1179. [Google Scholar] [CrossRef]
- Rocha, M.P.; Bini, L.M.; Domisch, S.; Tolonen, K.T.; Jyrkänkallio-Mikkola, J.; Soininen, J.; Hjort, J.; Heino, J. Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. J. Biogeogr. 2018, 45, 2744–2754. [Google Scholar] [CrossRef][Green Version]
- Heino, J.; Tolonen, K.T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 2017, 62, 2431–2444. [Google Scholar] [CrossRef]
- Erős, T.; Heino, J.; Schmera, D.; Rask, M. Characterising functional trait diversity and trait-environment relationships in fish assemblages of boreal lakes. Freshw. Biol. 2009, 54, 1788–1803. [Google Scholar] [CrossRef]
- Sandin, L. Benthic macroinvertebrates in Swedish streams: Community structure, taxon richness, and environmental relations. Ecography 2003, 26, 269–282. [Google Scholar] [CrossRef]
- Tolonen, K.E.; Leinonen, K.; Marttila, H.; Erkinaro, J.; Heino, J. Environmental predictability of taxonomic and functional community composition in high-latitude streams. Freshw. Biol. 2017, 62, 1–16. [Google Scholar] [CrossRef]
- Johnson, R.K.; Goedkoop, W.; Sandin, L. Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshw. Biol. 2004, 49, 1179–1194. [Google Scholar] [CrossRef]
- Soininen, J.; Kokocinski, M.; Estlander, S.; Kotanen, J.; Heino, J. Neutrality, niches and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 2007, 14, 146–154. [Google Scholar] [CrossRef]
- Grönroos, M.; Heino, J.; Siqueira, T.; Landeiro, V.L.; Kotanen, J.; Bini, L.M. Metacommunity structuring in stream networks: Roles of dispersal mode, distance type and regional environmental context. Ecol. Evol. 2013, 3, 4473–4487. [Google Scholar] [CrossRef]
- Heino, J.; Muotka, T.; Paavola, R. Determinants of macroinvertebrate diversity in headwater streams: Regional and local influences. J. Anim. Ecol. 2003, 72, 425–434. [Google Scholar] [CrossRef]
- Pajunen, V.; Luoto, M.; Soininen, J. Stream diatom assemblages as predictors of climate. Freshw. Biol. 2016, 61, 876–886. [Google Scholar] [CrossRef]
- Culp, J.; Lento, J.; Curry, R.A.; Luiker, E.; Halliwell, D. Arctic biodiversity of stream macroinvertebrates declines in response to latitudinal change in the abiotic template. Freshw. Sci. 2019. [Google Scholar] [CrossRef][Green Version]
- Toivanen, M.; Hjort, J.; Heino, J.; Tukiainen, H.; Aroviita, J.; Alahuhta, J. Is catchment geodiversity a useful surrogate of aquatic plant species richness? J. Biogeogr. 2019, 46, 1–12. [Google Scholar] [CrossRef]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Alahuhta, J.; Heino, J.; Luoto, M. Climate change and the future distribution of aquatic macrophytes across boreal catchments. J. Biogeogr. 2011, 38, 383–393. [Google Scholar] [CrossRef]
- Hildrew, A.G. Freshwater Acidification: Natural History, Ecology and Environmental Policy; International Ecology Institute: Oldendorf, Germany, 2018; ISBN 9783946729273. [Google Scholar]
- Murray, J. British Antarctic Expedition 1907–9, under the Command of Sir E.H. Shackleton. Reports on the Scientific Investigations. Volume 1 Biology; Willian Heinemann: London, UK, 1910; p. 105. [Google Scholar] [CrossRef][Green Version]
- Laybourn-Parry, J.; Wadham, J.L. Antarctic Lakes; Oxford University Press: Oxford, UK, 2014; pp. 1–215. ISBN 978-0199670505. [Google Scholar]
- Roberts, D.; McMinn, A. A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. Holocene 1999, 9, 401–408. [Google Scholar] [CrossRef]
- Hawes, I.; Howard-Williams, C.; Fountain, A. Ice-Based freshwater ecosystems. In Polar Lakes and Rivers—Arctic and Antarctic Aquatic Ecosystems; Vincent, W.F., Laybourn-Parry, J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 103–118. [Google Scholar] [CrossRef]
- Siegert, M.J. A 60-year international history of Antarctic subglacial lake exploration. In Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes; Siegert, M.J., Jamieson, S.S.R., White, D.A., Eds.; Geological Society: London, UK, 2018; Volume 461, pp. 7–22. [Google Scholar] [CrossRef]
- Christner, B.C.; Priscu, J.C.; Achberger, A.M.; Barbante, C.; Carter, S.P.; Christianson, K.; Michaud, A.B.; Mikucki, J.A.; Mitchell, A.C.; Skidmore, M.L.; et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 2014, 512, 310–313. [Google Scholar] [CrossRef]
- Howard-Williams, C.; Hawes, I.; Doran, P.; Siegert, M.; Camacho, A.; Kaup, E. Diversity of Antarctic lakes, ponds and streams. Antarctic Environments Portal, Information Summaries. 2019. Available online: https://www.environments.aq/information-summaries/diversity-of-antarctic-lakes-ponds-and-streams/ (accessed on 15 January 2020).
- Obryk, M.K.; Doran, P.T.; Priscu, J.C. Prediction of ice-free conditions for a perennially ice-covered Antarctic Lake. J. Geophys. Res. Earth Surf. 2019, 124, 686–694. [Google Scholar] [CrossRef]
- Quayle, W.C.; Peck, L.S.; Peat, H.; Ellis-Evans, J.C.; Harrigan, P.R. Extreme responses to climate change in Antarctic lakes. Science 2002, 295, 645. [Google Scholar] [CrossRef]
- Gibson, J.A.; Bayly, I.A.E. New insights into the origins of crustaceans of Antarctic lakes. Antarct. Sci. 2007, 19, 157–163. [Google Scholar] [CrossRef]
- Vyverman, W.; Verleyen, E.; Wilmotte, A.; Hodgson, D.A.; Willems, A.; Peeters, K.; Van de Vijver, B.; De Wever, A.; Leliaert, F.; Sabbe, K. Evidence for widespread endemism among Antarctic microorganisms. Polar Sci. 2008, 4, 103–113. [Google Scholar] [CrossRef][Green Version]
- Pessi, I.G.; Lara, Y.; Durieu, B.; Maalouf, P.D.C.; Verleyen, E.; Wilmotte, A. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef][Green Version]
- Jung, P.; Briegel-Williams, L.; Schermer, M.; Büdel, B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. MicrobiologyOpen 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Strunecky, O.; Elster, J.; Komárek, J. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiol. Ecol. 2012, 82, 482–490. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Taton, A.; Grubisic, S.; Balthazart, P.; Hodgson, D.A.; Laybourn-Parry, J.; Wilmotte, A. Biogeographical distribution and ecological range of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 2006, 57, 272–289. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Broady, P.A. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiv. Conserv. 1996, 5, 1307–1335. [Google Scholar] [CrossRef]
- Verleyen, E.; Vyverman, W.; Sterken, M.; Hodgson, D.A.; De Wever, A.; Juggins, S.; Van de Vijver, B.; Jones, V.J.; Vanormelingen, P.; Roberts, D.; et al. The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 2009, 118, 1239–1249. [Google Scholar] [CrossRef]
- Karanovic, T.; Gibson, J.; Hawes, I.; Andersen, D.; Stevens, M. Three new species of Diacyclops (Copepods: Cyclopoida) from continental Antarctica. Antarct. Sci. 2014, 26, 250–260. [Google Scholar] [CrossRef][Green Version]
- Chown, S.L.; Huiskes, A.H.L.; Gremmen, N.J.M.; Lee, J.E.; Terauds, A.; Crosbie, K.; Frenot, Y.; Hughes, K.A.; Imura, S.; Kiefer, K.; et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA 2012, 109, 4938–4943. [Google Scholar] [CrossRef][Green Version]
- Li, S.-P.; Ochyra, R.; Wu, P.-C.; Seppelt, R.D.; Cai, M.-H.; Wang, H.-Y.; Li, C.-S. Drepanocladus longifolius (Amblystegiaceae), an addition to the moss flora of King George Island, South Shetland Islands, with a review of Antarctic benthic mosses. Polar Biol. 2009, 32, 1415–1425. [Google Scholar] [CrossRef]
- Velasco-Castrillón, A.; Gibson, J.A.; Stevens, M.I. A review of current Antarctic limno-terrestrial microfauna. Polar Biol. 2014, 37, 1517–1531. [Google Scholar] [CrossRef]
- Fountain, A.G.; Levy, J.S.; Goosefff, M.N.; Van Horn, D. The McMurdo Dry Valleys: a landscape on the threshold of change. Geomorphology 2014, 225, 25–35. [Google Scholar] [CrossRef]
- Hawes, I.; Sumner, D.Y.; Andersen, D.T.; Mackey, T.J. Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice covered, Antarctic lake. Geobiology 2011, 9, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Jungblut, A.D.; Hawes, I. Using Captain Scott’s Discovery specimens to unlock the past: Has Antarctic cyanobacterial diversity changed over the last 100 years? Proc. Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed]
- Naselli-Flores, L. Mediterranean climate and eutrophication of reservoirs: Limnological skills to improve management. In Eutrophication: Causes, Consequences and Control; Ansari, A., Singh, G.S., Lanza, G., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 131–142. [Google Scholar] [CrossRef]
- Bonada, N.; Resh, V.H. Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef][Green Version]
- Cid, N.; Bonada, N.; Carlson, S.M.; Grantham, T.E.; Gasith, A.; Resh, V.H. High Variability Is a Defining Component of Mediterranean-Climate Rivers and Their Biota. Water 2017, 9, 52. [Google Scholar] [CrossRef][Green Version]
- Carrizo, S.F.; Lengyel, S.; Kapusi, F.; Szabolcs, M.; Kasperidus, H.D.; Scholz, M.; Markovic, D.; Freyhof, J.; Cid, N.; Cardoso, A.C.; et al. Critical catchments for freshwater biodiversity conservation in Europe: identification, prioritisation and gap analysis. J. Appl. Ecol. 2017, 54, 1209–1218. [Google Scholar] [CrossRef][Green Version]
- Naselli-Flores, L. Man-made lakes in Mediterranean semi-arid climate: The strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 2003, 506, 13–21. [Google Scholar] [CrossRef]
- Ferreira, M.; Beja, P. Mediterranean amphibians and the loss of temporary ponds: Are there alternative breeding habitats? Biol. Cons. 2013, 165, 179–186. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Marrone, F. Different invasibility of permanent and temporary water bodies in a semi-arid Mediterranean island. Inland Waters 2019, 9, 411–421. [Google Scholar] [CrossRef]
- Barone, R.; Castelli, G.; Naselli-Flores, L. Red sky at night cyanobacteria delight: The role of climate in structuring phytoplankton assemblages in a shallow Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia 2010, 639, 43–53. [Google Scholar] [CrossRef]
- Tockner, K.; Ward, J.V.; Arscott, D.B.; Edwards, P.J.; Kollmann, J.; Gurnell, A.M.; Petts, G.E.; Maiolini, B. The Tagliamento River: A model ecosystem of European importance. Aquat. Sci. 2003, 65, 239–253. [Google Scholar] [CrossRef][Green Version]
- Gallart, F.; Cid, N.; Latron, J.; Llorens, P.; Bonada, N.; Jeuffroy, J.; Jiménez-Argudo, S.-M.; Vega, R.-M.; Solà, C.; Soria, M.; et al. TREHS: An open-access software tool for investigating and evaluating temporary river regimes as a first step for their ecological status assessment. Sci. Total Environ. 2017, 607–608, 519–540. [Google Scholar] [CrossRef] [PubMed]
- Tonkin, J.D.; Bogan, M.T.; Bonada, N.; Rios-Touma, B.; Lytle, D.A. Seasonality and predictability shape temporal species diversity. Ecology 2017, 98, 1201–1216. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sabater, S.; Timoner, X.; Borrego, C.; Acuña, V. Stream biofilm responses to flow intermittency: From cells to ecosystems. Front. Environ. Sci. 2016, 4, 1–10. [Google Scholar] [CrossRef][Green Version]
- Hershkovitz, Y.; Gasith, A. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 2012, 719, 59–75. [Google Scholar] [CrossRef]
- Bonada, N.; Dolédec, S.; Statzner, B. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: Implications for future climatic scenarios. Glob. Chang. Biol. 2007, 13, 1658–1671. [Google Scholar] [CrossRef]
- Kerezsy, A.; Gido, K.; Magalhaes, M.F.; Skelton, P.H. The biota of intermittent rivers and ephemeral streams: Fishes. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 273–298. [Google Scholar] [CrossRef]
- Múrria, C.; Bonada, N.; Vellend, M.; Zamora-Muñoz, C.; Alba-Tercedor, J.; Sainz-Cantero, C.E.; Garrido, J.; Acosta, R.; El Alami, M.; Barquín, J.; et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 2017, 26, 6085–6099. [Google Scholar] [CrossRef]
- Soria, M.; Leigh, C.; Datry, T.; Bini, L.M.; Bonada, N. Biodiversity in perennial and intermittent rivers: A meta-analysis. Oikos 2017, 126, 1078–1089. [Google Scholar] [CrossRef][Green Version]
- Soria, M.; Gutiérrez-Cánovas, C.; Bonada, N.; Acosta, R.; Rodríguez-Lozano, P.; Fortuño, P.; Burgazzi, G.; Vinyoles, D.; Gallart, F.; Latron, J.; et al. Natural disturbances can produce misleading bioassessment results: Identifying metrics to detect anthropogenic impacts in intermittent rivers. J. Appl. Ecol. 2019, in press. [Google Scholar] [CrossRef]
- Munné, A.; Prat, N. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecol. Indic. 2011, 11, 651–662. [Google Scholar] [CrossRef]
- Fritz, K.; Cid, N.; Autrey, B. Governance, Legislation, and Protection of Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 477–507. [Google Scholar] [CrossRef]
- Millán, A.; Velasco, J.; Gutiérrez-Cánovas, C.; Arribas, P.; Picazo, F.; Sánchez-Fernández, D.; Abellán, P. Mediterranean saline streams in southeast Spain: What do we know? J. Arid Environ. 2011, 75, 1352–1359. [Google Scholar] [CrossRef][Green Version]
- Arribas, P.; Abellán, P.; Velasco, J.; Bilton, D.T.; Millán, A.; Sánchez-Fernández, D. Evaluating drivers of vulnerability to climate change: A guide for insect conservation strategies. Glob. Chang. Biol. 2012, 18, 2135–2146. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef][Green Version]
- Datry, T.; Bonada, N.; Heino, J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 2016, 125, 149–159. [Google Scholar] [CrossRef][Green Version]
- Naselli-Flores, L.; Barone, R. Phytoplankton dynamics and structure: A comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 2000, 438, 65–74. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to change in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Barone, R. Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: How to make a virtue out of necessity. Hydrobiologia 2019, 831, 33–41. [Google Scholar] [CrossRef]
- García-Berthou, E.; Moreno-Amich, R. Introduction of exotic fish into a Mediterranean lake over a 90-year period. Arch. Hydrobiol. 2000, 149, 271–284. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, C.; Díaz-Paniagua, C.; Serrano, L.; Florencio, M.; Portheault, A. Mediterranean temporary ponds as amphibians breeding habitats: The importance of preserving pond networks. Aquat. Ecol. 2009, 43, 1179–1191. [Google Scholar] [CrossRef][Green Version]
- Griffiths, R.A. Temporary ponds as amphibian habitat. Aquat. Conserv. Mar. Freshw. Ecosys. 1997, 7, 119–126. [Google Scholar] [CrossRef]
- Incagnone, G.; Marrone, F.; Barone, R.; Robba, L.; Naselli-Flores, L. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 2015, 750, 103–123. [Google Scholar] [CrossRef]
- Boix, D.; Kneitel, J.; Robson, B.J.; Duchet, C.; Zúñiga, L.; Day, J.; Gascón, S.; Sala, J.; Quintana, X.D.; Blaustein, L. Invertebrates of temporary ponds in Mediterranean climates. In Invertebrates in Freshwater Wetlands. An International Perspective on Their Ecology; Batzer, D., Boix, D., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 141–189. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Termine, R.; Barone, R. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity? Hydrobiologia 2016, 764, 103–113. [Google Scholar] [CrossRef]
- Stoch, F.; Korn, M.; Turki, S.; Naselli-Flores, L.; Marrone, F. The role of spatial environmental factors as determinants of large branchiopod distribution in Tunisian temporary ponds. Hydrobiologia 2016, 782, 37–51. [Google Scholar] [CrossRef][Green Version]
- Sahuquillo, M.; Miracle, M.R. The role of historic and climatic factors in the distribution of crustacean communities in Iberian Mediterranean ponds. Freshw. Biol. 2013, 58, 1251–1266. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar]
- Bolgovics, A.; Viktoria, B; Várbíró, G.; Krasznai, E.A.; Ács, É.; Kiss, K.T.; Borics, G. Groups of small lakes maintain larger microalgal diversity than large ones. Sci. Total Environ. 2019, 678, 162–172. [Google Scholar] [CrossRef][Green Version]
- Bagella, S.; Gascón, S.; Caria, M.C.; Sala, J.; Boix, D. Cross-taxon congruence in Mediterranean temporary wetlands: Vascular plants, crustaceans, and coleopterans. Community Ecol. 2011, 12, 40–50. [Google Scholar] [CrossRef]
- Marrone, F.; Alfonso, G.; Stoch, F.; Pieri, V.; Alonso, M.; Dretakis, M.; Naselli-Flores, L. An account on the non-malacostracan crustacean fauna from the inland waters of Crete, Greece, with the synonymization of Arctodiaptomus piliger Brehm, 1955 with Arctodiaptomus alpinus (Imhof, 1885). Limnetica 2019, 38, 167–187. [Google Scholar] [CrossRef]
- Marrone, F.; Barone, R.; Naselli-Flores, L. Cladocera (Branchiopoda: Anomopoda, Ctenopoda and Onychopoda) from Sicilian inland waters: An updated inventory. Crustaceana 2005, 78, 1025–1039. [Google Scholar] [CrossRef][Green Version]
- Marrone, F.; Castelli, G.; Barone, R.; Naselli-Flores, L. Ecology and distribution of calanoid copepods in Sicilian inland waters (Italy). Verh. Internat. Verein. Limnol. 2006, 29, 2150–2156. [Google Scholar] [CrossRef][Green Version]
- Bagella, S.; Caria, M.C. Diversity and ecological characteristics of vascular flora in Mediterranean temporary pools. C. R. Biol. 2012, 335, 69–76. [Google Scholar] [CrossRef]
- Sciandrello, S.; Privitera, M.; Puglisi, M.; Minissale, P. Diversity and spatial patterns of plant communities in volcanic temporary ponds of Sicily (Italy). Biologia 2016, 71, 793–803. [Google Scholar] [CrossRef]
- Cogoni, A.; Filippino, G.; Marignani, M. Small-scale pattern of bryoflora in Mediterranean temporary ponds: Hints for monitoring. Hydrobiologia 2016, 782, 81–95. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Barone, R. Phytoplankton dynamics in permanent and temporary Mediterranean waters: Is the game hard to play because of hydrological disturbance? Hydrobiologia 2012, 698, 147–159. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 1959, 93, 145–159. [Google Scholar] [CrossRef][Green Version]
- Zohary, T.; Yacobi, Y.Z.; Alster, A.; Fishbein, T.; Lippman, S.; Tibor, G. Phytoplankton. In Lake Kinneret: Ecology and Management; Chapter 10; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 161–190. [Google Scholar] [CrossRef]
- Nishri, A.; Leibovici, E. External sources of nutrients. In Lake Kinneret: Ecology and Management; Chapter 19; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 329–346. [Google Scholar] [CrossRef]
- Zohary, T.; Sukenik, A.; Berman, T.; Nishri, A. Lake Kinneret: Ecology and Management; Springer: Heidelberg, Germany, 2014; p. 683. [Google Scholar] [CrossRef]
- Ostrovsky, I.; Goren, M.; Shapiro, J. Fish Biology and Ecology. In Lake Kinneret: Ecology and Management; Chapter 16; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 273–292. [Google Scholar] [CrossRef]
- Tsurnamal, M. The biology and ecology of the blind prawn, Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana 1978, 34, 195–213. [Google Scholar] [CrossRef]
- Berman, T.; Zohary, T.; Nishri, A.; Sukenik, A. General background. In Lake Kinneret: Ecology and Management; Chapter 1; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 1–15. [Google Scholar] [CrossRef]
- Markel, D.; Shamir, U.; Green, P. Operational Management of Lake Kinneret and its watershed. In Lake Kinneret: Ecology and Management; Chapter 31; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 541–560. [Google Scholar] [CrossRef]
- Sukenik, A.; Zohary, T.; Markel, D. The monitoring program. In Lake Kinneret: Ecology and Management; Chapter 32; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 561–575. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Water 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Dreizin, Y.; Tenne, A.; Hoffman, D. Integrating large scale seawater desalination plants within Israel’s water supply system. Desalination 2008, 220, 132–149. [Google Scholar] [CrossRef]
- Rimmer, A.; Gal, G.; Opher, T.; Lechinsky, Y.; Yacobi, Y.Z. Mechanisms of long-term variations of the thermal structure in a warm lake. Limnol. Oceanogr. 2011, 56, 974–988. [Google Scholar] [CrossRef]
- Pollingher, U. Phytoplankton periodicity in a subtropical lake (Lake Kineret, Israel). Hydrobiologia 1986, 138, 127–138. [Google Scholar] [CrossRef]
- Zohary, T. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshw. Biol. 2004, 49, 1355–1371. [Google Scholar] [CrossRef]
- Zohary, T.; Sukenik, A.; Nishri, A. Overview. In Lake Kinneret: Ecology and Management; Chapter 37; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 657–671. [Google Scholar] [CrossRef]
- Sukenik, A.; Hadas, O.; Kaplan, A. Cyanobacteria. In Lake Kinneret: Ecology and Management; Chapter 12; Zohary, T., Sukenik, A., Berman, T., Nishri, A., Eds.; Springer: Heidelberg, Germany, 2014; pp. 213–226. [Google Scholar] [CrossRef]
- Zohary, T.; Alster, A.; Hadas, O.; Obertegger, U. There to stay: Opportunistic and versatile filamentous green alga Mougeotia in Lake Kinneret, Israel. Hydrobiologia 2019, 831, 87–100. [Google Scholar] [CrossRef]
- Heller, J.; Dolev, A.; Zohary, T.; Gal, G. Invasion dynamics of the snail Pseudoplotia scabra in Lake Kinneret. Biological Invasions 2014, 16, 7–12. [Google Scholar] [CrossRef]
- Moss, B. The kingdom of the shores: Achievement of good ecological potential in reservoirs. Freshw. Rev. 2008, 1, 29–42. [Google Scholar] [CrossRef][Green Version]
- Naselli-Flores, L.; Barone, R. Water-level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 2005, 548, 85–99. [Google Scholar] [CrossRef]
- Naselli-Flores, L. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: The case of Lake Arancio, Sicily, Italy. Inland Waters 2014, 4, 15–26. [Google Scholar] [CrossRef][Green Version]
- Gownaris, N.J.; Rountos, K.J.; Kaufman, L.; Kolding, J.; Lwiza, K.M.M.; Pikitch, E.K. Water level fluctuations and the ecosystem functioning of lakes. J. Great Lakes Res. 2018, 44, 1154–1163. [Google Scholar] [CrossRef]
- Naselli-Flores, L.; Barone, R. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 2003, 502, 133–143. [Google Scholar] [CrossRef]
- Moss, B. The Water Framework Directive: Total environment or political compromise? Sci. Total Environ. 2008, 400, 32–41. [Google Scholar] [CrossRef]
- Oertli, B. Editorial: Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. Mar. Freshw. Ecosys. 2018, 28, 264–269. [Google Scholar] [CrossRef]
- Junk, W.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Aselmann, I.; Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 1989, 8, 307–358. [Google Scholar] [CrossRef]
- Fraser, L.H.; Keddy, P.A. The World’s Largest Wetlands: Ecology and Conservation. Ecoscience 2005, 13, 559–560. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Junk, W.J. The importance of stream-wetland-systems for biodiversity: A tropical perspective. In Biodiversity in Wetlands: Assessment, Function and Conservation; Gopal, B., Junk, W.J., Davies, J.A., Eds.; Backhuys: Leiden, The Netherlands, 2000; pp. 11–34. ISBN 90-5782-059-5. [Google Scholar]
- Reis, V.; Hermoso, V.; Hamilton, S.K.; Bunn, S.E.; Fluet-Chouinard, E.; Venables, B.; Linke, S. Characterizing seasonal dynamics of Amazonian wetlands for conservation and decision making. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1073–1082. [Google Scholar] [CrossRef][Green Version]
- Ramsar Convention Secretariat. The Ramsar Convention Manual: A Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2013. [Google Scholar]
- Sieben, E.J.J.; Khubeka, S.P.; Sithole, S.; Job, N.M.; Kotze, D.C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manag. 2017, 26, 441–458. [Google Scholar] [CrossRef]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, F.; Herold, N.; Murdiyarso, D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef][Green Version]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef][Green Version]
- Nilssen, J.P. Tropical lakes—Functional ecology and future development. The need for a process-orientated approach. Hydrobiologia 1984, 113, 231–242. [Google Scholar] [CrossRef]
- Jenkins, M.W.; McCord, S.; Edebe, J. Sustaining Lake Levels in Lake Nakuru, Kenya: Development of a Water Balance Mode for Decision Making. Research Brief 09-05-SUMAWA; University of California Global Livestock Collaborative Research Support Program: Davis, CA, USA, 2009; p. 4. [Google Scholar]
- Junk, W.J. Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 2002, 29, 414–435. [Google Scholar] [CrossRef]
- Gopal, B.; Junk, W.J.; Finlayson, C.M.; Breen, C.M. Present state and future of tropical wetlands. In Aquatic Ecosystems; Polunin, N., Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 142–154. ISBN 9780521833271. [Google Scholar]
- Oviedo, G.; Kenza, A.M. Indigenous Peoples, Local Communities and Wetland Conservation; Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Clarkson, R.B.E.; Ausseil, A.; Gerbeaux, P. Wetland ecosystem services. In Ecosystem Services in New Zealand; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2014. [Google Scholar]
- Mitsch, W.J.; Blanca Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. IJBESM 2015, 11, 1–4. [Google Scholar] [CrossRef][Green Version]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; Lewis: New York, NY, USA, 1996; ISBN 978-1-56670-526-4. [Google Scholar]
- Mitsch, W.J.; Day, J.W., Jr.; Gilliam, J.W.; Groffman, P.M.; Hey, D.L.; Randall, G.W.; Wang, N. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. BioScience 2001, 51, 373–388. [Google Scholar] [CrossRef]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.S.; Reed, D.J.; Shabman, L.A.; et al. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Campbell, D.; Jackson, R. Hydrology of wetlands. In Freshwaters of New Zealand; Harding, J., Mosley, P., Pearson, C., Sorrell, B., Eds.; Caxton Press for the New Zealand Hydrological Society and New Zealand Limnological Society: Christchurch, New Zealand, 2004; pp. 1–20. ISBN 0-476-00708-9. [Google Scholar]
- Béné, C. Contribution of inland fisheries to rural livelihoods and food security in Africa: An overview. In Freshwater Ecoregions of Current State of Knowledge Regarding the World’s Wetlands 165 Africa and Madagascar: A Conservation Assessment; Thieme, M.L., Abell, R., Stiassny, M.L.J., Skelton, P., Eds.; Island Press: Washington, DC, USA, 2005; pp. 6–11. ISBN 9781559633659. [Google Scholar]
- Matthews, E.; Fung, I. Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1987, 1, 61–86. [Google Scholar] [CrossRef]
- Petrescu, A.M.; van Beek, L.; van Huissteden, J.; Prigent, C.; Sachs, T.; Corradi, C.; Parmentier, F.J.V.; Dolman, A.J. Modelling regional to global CH4 emissions from boreal and arctic wetlands. Glob. Biogeochem. Cycles 2010, 24, GB4009. [Google Scholar] [CrossRef][Green Version]
- Petrescu, A.M.; Lohila, A.; Tuovinen, J.; Baldocchi, D.D.; Desai, A.R.; Roulet, N.T.; Vesala, T.; Dolman, A.J.; Oechel, W.C.; Marcolla, B.; et al. The uncertain climate footprint of wetlands under human pressure. Proc. Natl. Acad. Sci. USA 2015, 112, 4594–4599. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Lähteenoja, O.; Ruokoleinen, K.; Schulman, L.; Oinonen, M. Amazonian peatlands: An ignored C sink and potential source. Glob. Chang. Biol. 2009, 15, 2311–2320. [Google Scholar] [CrossRef]
- Sjögersten, S.; Black, C.R.; Evers, S.; Hoyos-Santillan, J.; Wright, E.L.; Turner, B.L. Tropical wetlands: A missing link in the global carbon cycle? Glob. Biogeochem. Cycles 2014, 28, 1371–1386. [Google Scholar] [CrossRef]
- Gumbricht, T. Mapping Global Tropical Wetlands from Earth Observing Satellite Imagery; Working Paper 103; CIFOR: Bogor, Indonesia, 2012. [Google Scholar] [CrossRef][Green Version]
- Wohl, E.; Barros, A.; Brunsell, N.; Chappell, N. The hydrology of the humid tropics. Nat. Clim. Chang. 2012, 2, 655–662. [Google Scholar] [CrossRef]
- Castello, L.; Macedo, M.N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Chang. Biol. 2016, 22, 990–1007. [Google Scholar] [CrossRef]
- Mergou, F.E.; Lazaridou-Dimitriadou, M.; Albanakis, K. The effets of dams on rivers “continuum”. Conference paper. In Proceedings of the Protection and Restoration of the Environment XI, Thessaloniki, Greece, 3–6 July 2012. [Google Scholar]
- Childs, M. Literature Survey: The Impacts of Dams on River Channel Geomorphology; MSc research at The University of Hull; The University of Hull: Hull, UK, 2010. [Google Scholar]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef][Green Version]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2014, 77, 161–170. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Maldonado-Ocampo, J.A.; Carvajal-Vallejos, F.M.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Cañas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.; Zuanon, J.A.S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 2016, 25, 451–466. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef][Green Version]
- Roberts, T.R. On the river of no returns: Thailand’s Pak Mun Dam and its fish ladder. Nat. Hist. Bull. Siam. Soc. 2001, 49, 189–230. [Google Scholar]
- Dudgeon, D. Threats to freshwater biodiversity globally and in the Indo-Burma Biodiversity Hotspot. In The Status and Distribution of Freshwater Biodiversity in Indo-Burma; Allen, D.J., Smith, K.G., Darwall, W.R.T., Eds.; IUCN: Cambridge, UK; Gland, Switzerland, 2012; pp. 1–28. ISBN 978-2-8317-1424-0. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005; ISBN 9781569735886. [Google Scholar]
- Lodge, D.M. Lakes. In Global Biodiversity in a Changing Environment: Scenarios for the 21st Century; Chapin, F.S., III, Sala, O.E., Huber-Sannwald, E., Eds.; Springer: New York, NY, USA, 2001; pp. 277–313. ISBN 978-1-4613-0157-8. [Google Scholar]
- Craig, J.F. Human induced changes in the composition of fish communities in the African Great Lakes. Rev. Fish Biol. Fisher. 1992, 2, 93–124. [Google Scholar] [CrossRef]
- Lowe-McConnell, R.H. Fish faunas of the African Great Lakes: Origins, diversity, and vulnerability. Conserv. Biol. 1993, 7, 634–643. [Google Scholar] [CrossRef]
- Vimos, D.J.; Encalada, A.C.; Ríos-Touma, B.; Suárez, E.; Prat, N. Effects of exotic trout on benthic communities in high-Andean tropical streams. Freshw. Sci. 2015, 34, 770. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Carlsson, N.O.L.; Brönmark, C.; Hansson, L. Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 2004, 85, 1575–1580. [Google Scholar] [CrossRef][Green Version]
- Global Invasive Species Database. Species Profile: Eichhornia crassipes. 2019. Available online: http://www.iucngisd.org/gisd/species.php?sc=70 (accessed on 3 September 2019).
- Dos Santos, J.R.; Galvão, L.S.; Oliveira, L.E.; de Aragão, C. Remote sensing of amazonian forests: Monitoring structure, phenology and responses to environmental changes. Rev. Bras. Cartogr. 2014, 3, 1413–1436. [Google Scholar]
- Miettinen, J.; Hooijer, A.; Shi, C.; Tollenaar, D.; Vernimmen, R.; Liew, S.C.; Malins, C.; Page, S.E. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 2012, 4, 908–918. [Google Scholar] [CrossRef][Green Version]
- Miettinen, J.; Shi, C.; Liew, S.C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [Google Scholar] [CrossRef][Green Version]
- Langner, A.; Miettinen, J.; Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef][Green Version]
- Harrison, M.E.; Ripoll Capilla, B.; Thornton, S.A.; Cattau, M.E.; Page, S.E. Impacts of the 2015 fire season on peat-swamp forest biodiversity in Indonesian Borneo. In Peatlands in Harmony—Agriculture, Industry & Nature: Oral Presentations, Proceedings of the 15th International Peat Congress, Sarawak, Malaysia, 15–19 August 2016; International Peat Society and Malaysian Peat Society: Kuching, Malaysia, 2016; pp. 713–717. [Google Scholar]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Segah, H.; Harada, T.; Limin, S.; June, T.; Hirata, R.; Osaki, M. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob. Chang. Biol. 2006, 13, 412–425. [Google Scholar] [CrossRef]
- Moore, S.; Evans, C.D.; Page, S.E.; Garnett, M.H.; Jones, T.G.; Freeman, C.; Hooijer, A.; Wiltshire, A.J.; Limin, S.H.; Gauci, V. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 2013, 493, 660–663. [Google Scholar] [CrossRef][Green Version]
- Mitchell, S.A. The status of wetlands, threats and the predicted effect of global climate change: The situation in Sub-Saharan Africa. Aquat. Sci. 2013, 75, 95–112. [Google Scholar] [CrossRef]
- Thieme, M.L.; Lehner, B.; Abell, R.; Matthews, J. Exposure of Africa’s freshwater biodiversity to a changing climate. Conserv. Lett. 2010, 3, 324–331. [Google Scholar] [CrossRef]
- Barros, D.F.; Albernaz, A.L.M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz. J. Biol. 2014, 74, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Gopal, B. Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquat. Sci. 2013, 75, 39–61. [Google Scholar] [CrossRef]
- Jafari, M.; Tavili, A.; Panahi, F.; Esfahan, E.Z.; Ghorbani, M. Characteristics of arid and desert ecosystems. In Reclamation of Arid Lands; Jafari, M., Tavili, A., Panahi, F., Esfahan, E.Z.M., Ghorbani, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 21–91. [Google Scholar] [CrossRef]
- Tydecks, L.; Jeschke, J.M.; Zarfl, C.; Böhning-Gaese, K.; Schütt, B.; Bremerich, V.; Tockner, K. Oases in the Sahara Desert—Linking Biological and Cultural Diversity. People Nat. 2020, in press. [Google Scholar]
- Holzapfel, C. Deserts. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2008; pp. 879–898. [Google Scholar]
- Fisher, S.G.; Gray, L.J.; Grimm, N.B.; Busch, D.E. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 1982, 52, 93–110. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Cohen, Z. The effect of phosphate starvation on the lipid and fatty acid composition of the freshwater eustigmatophyte Monodus subterraneus. Phytochemistry 2006, 67, 696–701. [Google Scholar] [CrossRef]
- Grimm, N.B.; Petrone, K.C. Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 1997, 37, 33–61. [Google Scholar] [CrossRef]
- Scott, J.T.; Marcarelli, A.M. Cyanobacteria in freshwater benthic environments. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 2012; pp. 271–289. [Google Scholar] [CrossRef]
- Harms, T.K.; Sponseller, R.A.; Grimm, N.B. Desert Streams. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 871–879. ISBN 9780444520333. [Google Scholar]
- Saber, A.A.; Mareš, J.; Guella, G.; Anesi, A.; Štenclová, L.; Cantonati, M. Polyphasic approach to a characteristic Ulva population from a limno-rheocrenic, mineral (chloride, sodium, sulphate) spring in the Siwa Oasis (Western Desert of Egypt). Fottea 2018, 18, 227–242. [Google Scholar] [CrossRef][Green Version]
- Green, A.J.; Jenkins, K.M.; Bells, D.; Morris, P.J.; Kingsford, R.T. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshw. Biol. 2008, 53, 380–392. [Google Scholar] [CrossRef]
- Keleher, M.J.; Rader, R.B. Dispersal limitations and history explain community composition of metaphyton in desert springs of the Bonneville Basin, Utah: A multiscale analysis. Limnol. Oceanogr. 2008, 53, 1604–1613. [Google Scholar] [CrossRef]
- Foissner, W. Biogeography and dispersal of microorganisms: A review emphasizing protists. Acta Protozool. 2006, 45, 111–136. [Google Scholar]
- Witt, J.D.; Threloff, D.L.; Hebert, P.D. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: Implications for desert spring conservation. Mol. Ecol. 2006, 15, 3073–3082. [Google Scholar] [CrossRef] [PubMed]
- Sluys, R.; Grant, L.J.; Blair, D. Freshwater planarians from artesian springs in Queensland, Australia (Platyhelminthes, Tricladida, Paludicola). Contrib. Zool. 2007, 76, 9–19. [Google Scholar] [CrossRef][Green Version]
- Brown, C.M. 1965. Freshwater algae of the Central Death Valley Desert. Ohio J. Sci. 1965, 65, 11–28. [Google Scholar]
- Shaaban, A.S.; Mansour, H.A.; Saber, A.A. Unveiling algal biodiversity of El-Farafra Oasis (Western Desert, Egypt) and potential relevance of its use in water bio-assessment: Special interest on springs and drilled wells. Egypt. J. Phycol. 2015, 16, 47–75. [Google Scholar]
- Garcia-Pichel, F.; Wade, B.D.; Farmer, J.D. Jet-suspended, calcite-ballasted cyanobacterial waterwarts in a desert spring. J. Phycol. 2002, 38, 420–428. [Google Scholar] [CrossRef]
- Saber, A.A.; Ballot, A.; Schneider, S.; Cantonati, M. Morphological and molecular features of a Chara vulgaris population from desert springs on the Sinai Peninsula (Springs of Moses, Egypt). Bot. Lett. 2018, 165, 77–89. [Google Scholar] [CrossRef]
- Dvořák, P.; Casamatta, D.A.; Hašler, P.; Jahodářová, E.; Norwich, A.R.; Poulíčková, A. Diversity of the cyanobacteria. In Modern topics in the phototrophic prokaryotes: Environmental and applied Aspects; Hallenbeck, P.C., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–46. [Google Scholar]
- Minckley, T.A.; Turner, D.S.; Weinstein, S.R. The relevance of wetland conservation in arid regions: A re-examination of vanishing communities in the American Southwest. J. Arid Environ. 2013, 88, 213–221. [Google Scholar] [CrossRef]
- Rossini, R.A.; Fensham, R.J.; Stewart-Koster, B.; Gotch, T.; Kennard, M.J. Biogeographical patterns of endemic diversity and its conservation in Australia’s artesian desert springs. Divers. Distrib. 2018, 24, 1199–1216. [Google Scholar] [CrossRef][Green Version]
- Rossini, R.A.; Tibbetts, H.L.; Fensham, R.J.; Walter, G.H. Can environmental tolerances explain convergent patterns of distribution in endemic spring snails from opposite sides of the Australian arid zone? Aquat. Ecol. 2017, 51, 605–624. [Google Scholar] [CrossRef]
- Holste, D.R.; Inoue, K.; Lang, B.K.; Berg, D.J. Identification of microsatellite loci and examination of genetic structure for the endangered springsnails Juturnia kosteri and Pyrgulopsis roswellensis in the Chihuahuan Desert. Aquat. Conserv. Mar. Freshw. Ecosys. 2016, 26, 715–723. [Google Scholar] [CrossRef]
- Stanislawczyk, K.; Walters, A.D.; Haan, T.J.; Sei, M.; Lang, B.K.; Berg, D.J. Variation among macroinvertebrate communities suggests the importance of conserving desert springs. Aquat. Conserv. Mar. Freshw. Ecosys. 2018, 28, 944–953. [Google Scholar] [CrossRef]
- Murphy, N.P.; Pavlova, A.L.; Thompson, R.; Davis, J.; Sunnucks, P. Swimming through sand: Connectivity of aquatic fauna in deserts. Ecol. Evol. 2015, 5, 5252–5264. [Google Scholar] [CrossRef] [PubMed]
- Saber, A.A.; Kouwets, F.A.C.; Haworth, E.Y.; Cantonati, M. A new Euastrum species (Conjugatophyceae, Streptophyta) from the Western Desert of Egypt. Cryptogam. Algol. 2018, 39, 215–226. [Google Scholar] [CrossRef]
- Navarro, L.M.; Fernández, N.; Guerra, C.; Guralnick, R.; Kissling, W.D.; Londoño, M.C.; Muller-Karger, F.; Turak, E.; Balvanera, P.; Costello, M.J.; et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Env. Sust. 2017, 29, 158–169. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.; Cardoso, A.C.; et al. Essential biodiversity variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef][Green Version]
- Turak, E.; Harrison, I.; Dudgeon, D.; Abell, R.; Bush, A.; Darwall, W.; Finlayson, C.M.; Ferrier, S.; Freyhof, J.; Hermoso, V.; et al. Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biol. Conserv. 2017, 213, 272–279. [Google Scholar] [CrossRef]
- Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; García, E.A.; Guralnick, R.P.; Isaac, N.J.; Kelling, S.; Los, W.; et al. Building essential biodiversity variables (EBV s) of species distribution and abundance at a global scale. Biol. Rev. 2018, 93, 600–625. [Google Scholar] [CrossRef][Green Version]
- Jetz, W.; McGeoch, M.; Guralnick, R.; Ferrier, S.; Beck, J.; Costello, M.; Fernandez, M.; Geller, G.; Keil, P.; Cory Merow, C.; et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 2019, 3. [Google Scholar] [CrossRef][Green Version]
- Richardson, J.S.; Sato, T. Resource flows across freshwater-terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology 2015, 8, 406–415. [Google Scholar] [CrossRef]
- Soininen, J.; Bartels, P.; Heino, J.; Luoto, M.; Hillebrand, H. Toward more integrated ecosystem research in aquatic and terrestrial environments. BioScience 2015, 65, 174–182. [Google Scholar] [CrossRef][Green Version]
- Tonkin, J.D.; Altermatt, F.; Finn, D.; Heino, J.; Olden, J.D.; Pauls, S.U.; Lytle, D.A. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 2018, 63, 141–163. [Google Scholar] [CrossRef][Green Version]
- Hughes, J.M.R.; Bond, H.; Knight, C.; Stanley, K. Challenges for Freshwater Ecosystems. In Water Science, Policy, and Management; Dadson, S.J., Garrick, D.E., Penning-Rowsell, C., Hall, J.W., Hope, R., Hughes, J., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef][Green Version]
- Downing, J.A. Limnology and oceanography: Two estranged twins reuniting by global change. Inland Waters 2014, 4, 215–232. [Google Scholar] [CrossRef][Green Version]
- Allan, J.D.; Flecker, A.S. Biodiversity conservation in running waters. BioScience 1993, 43, 32–43. [Google Scholar] [CrossRef]
- Stendera, S.; Adrian, R.; Bonada, N.; Cañedo-Argüelles, M.; Hugueny, B.; Januschke, K.; Plettenbuer, F.; Hering, D. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: A review. Hydrobiologia 2012, 696, 1–28. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Hawkins, C.P.; Kefford, B.J.; Schäfer, R.B.; Dyack, B.J.; Brucet, S.; Buchwalter, D.; Dunlop, J.; Frör, O.; Lazorchak, J.; et al. Saving freshwater from salts. Science 2016, 351, 914–916. [Google Scholar] [CrossRef]
- Kernan, M.; Battarbee, R.W.; Moss, B. Climate Change, Freshwater Ecosystems. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Richter, B.D.; Powell, E.M.; Lystash, T.; Faggert, M. Protection and Restoration of Freshwater Ecosystems. In Water Policy and Planning in a Variable and Changing Climate; Miller, K.A., Hamlet, A.F., Kenney, D.S., Redmond, K.T., Eds.; Taylor & Francis Group, LLC: London, UK, 2016; pp. 82–103. ISBN 9781138490864. [Google Scholar]
- Maliva, R.G. ASR and Aquifer Recharge Using Wells. In Anthropogenic Aquifer Recharge; Maliva, R.G., Ed.; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Poikane, S.; Kelly, M.G.; Cantonati, M. Benthic algal assessment of ecological status in European lakes and rivers: Challenges and opportunities. Sci. Total Environ. 2016, 568, 603–613. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Srivastava, D.S.; Duffy, J.E.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2006, 443, 989–992. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef][Green Version]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Covich, A.P.; Austen, M.C.; Bärlocher, F.; Chauvet, E.; Cardinale, B.J.; Biles, C.L.; Inchausti, P.; Dangles, O.; Solan, M.; Gessner, M.O.; et al. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. BioScience 2004, 54, 767–775. [Google Scholar] [CrossRef]
- Strayer, D.; Downing, J.A.; Haag, W.R.; King, T.L.; Layer, J.B.; Newton, T.J.; Nichols, S. Changing perspectives on pearly mussels, North America’s most imperiled animals. BioScience 2004, 54, 429–439. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Reconciliation ecology and the future of species diversity. Oryx 2003, 37, 194–205. [Google Scholar] [CrossRef][Green Version]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. S. 2014, 45, 247–269. [Google Scholar] [CrossRef][Green Version]
- Nilsson, C.; Polvi, L.E.; Gardeström, J.; Hasselquist, E.M.; Lind, L.; Sarneel, J.M. Riparian and in-stream restoration of boreal streams and rivers: Success or failure? Ecohydrology 2015, 8, 753–764. [Google Scholar] [CrossRef]
- Boon, P.J.; Davies, B.R.; Petts, G.E. Global Perspectives on River Conservation: Science, Policy and Practice; John Wiley: Chichester, UK, 2000; p. 548. ISBN 978-0-471-96062-1. [Google Scholar]
- Moss, B. Biodiversity in fresh waters: An issue of species preservation or system functioning? Environ. Conserv. 2000, 27, 1–4. [Google Scholar] [CrossRef]
- Herbert, M.E.; Mcintyre, P.B.; Doran, P.J.; Allan, J.D.; Abell, R. Terrestrial Reserve Networks Do Not Adequately Represent Aquatic Ecosystems. Conserv. Biol. 2010, 24, 1002–1011. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Palmer, M.A.; Hart, D.D.; Richter, B.D.; Arthington, A.H.; Rogers, K.H.; Meyer, J.L.; Stanford, J.A. River flows and water wars: Emerging science for environmental decision-making. Front. Ecol. Environ. 2003, 1, 298–306. [Google Scholar] [CrossRef]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.S.; LeRoy Poff, N.; Angermeier, P.L.; Dahm, C.N.; Gleick, P.H.; Hairston, N.G., Jr.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D. Meeting ecological and societal needs for freshwater. Ecol. Appl. 2002, 12, 1247–1260. [Google Scholar] [CrossRef]
Freshwater Habitat Type | Biodiversity and Ecological Features | Main Impacts | Conservation Issues |
---|---|---|---|
Groundwater (GW) and Dependent Ecosystems [47] | Rare, narrow endemics, sensitive | GW overexploitation, pollution, global change, alteration in flow regime, disconnection between SW bodies and GW | Biodiversity decreasing in both abundance and species richness, narrow endemics at high risk of extinction |
Springs and Spring-fed Streams (Crenal) [40,41,42,43,44,45,46,47] | Exclusive, rare, threatened, sensitive species (LIHRe) | Water abstraction, habitat destruction (tapping), livestock watering practices | Near-natural springs are vanishing |
Glacial Streams (Kryal) [48] | Extremely harsh and selective environments due to high turbidity and low temperatures | Global warming causing glacier retreat and disappearance | Glaciers are disappearing not only from isolated tropical summits but also from mid-latitude mountain ranges |
Streams (Rhithral) [46,47] | Dynamic core section of the River Continuum, unidirectional flow, nutrient spiraling, patchiness | Hydraulic modifications, water abstraction, diking, damming, contamination, pollution | Severe constraints to natural seasonal-flow variability and channel-morphology rearrangement |
Large Rivers (Potamal) | Naturally turbid, floodplains, meanders, potamoplankton, large-bodied species | Hydroelectric power production, used as transportation corridors, diked to protect infrastructure, drained for irrigation, introduction of non-native species | Cumulative effects of dams involve declines in native freshwater biodiversity at regional scales |
Ancient and Large Lakes | Large L.: Mainly postglacial colonizers but endemic species in some. Ancient L.: High endemism and diversity. Substantial depth variation in benthic communities | Eutrophication, climate warming, overfishing, invasive non-native species, hydrological alterations | Strict protection of endemic species is necessary. Safeguarding water levels is of great importance |
High-mountain lakes [47] | Often isolated (local genotypes), phytoplankton dominated by flagellate mixotrophic algae which control bacterioplankton, substantial depth variation in benthic communities | Environmental & climate change, diffuse airborne pollution, introduction of non-native fish species, exploitation for hydroelectric purposes or artificial-snow making, eutrophication, acidification, grazing, tourism | Conservation measures especially in natural preserves: fish-stocking ban, fish eradication, protection against eutrophication |
Oxbow Lakes | Threatened, sensitive species | Alteration in flow regime, water abstraction, damming, flood control infrastructures, global change | Natural river dynamic processes are largely impaired, increasing water turbidity, spread of alien species |
Reservoirs | Abundant, diverse, reduced littoral, often productivity gradients increasing diversity | Water-level fluctuations, eutrophication, floods, fishery/recreation, invasive species | Mesotrophic/oligotrophic species, species dependent on stable water level, phytophilous flora and fauna |
Urban Freshwater Habitats [49] | Typically low biodiversity, but there are also examples of higher species richness compared with similar non-urban habitats | Pollution, habitat destruction, invasive species | Reference conditions for novel ecosystems, identification of specific conservation goals, matching biodiversity indicators to the conservation objectives |
Mires [47,50] | Semi-zonal at North, rare and relict at South, diverse, endangered, sensitive | Drainage, hydrological alterations, eutrophication, land-use change, GW overexploitation and pollution, nitrogen deposition, climate change | Rapidly declining biodiversity (e.g., microorganisms, invertebrates, plants) especially in base-rich fens, succession to less-unique ecosystems, endangered worldwide, complex inter-specific interactions |
Small Wetland Ecosystems [51] | Threatened, rare, sensitive species | Land reclamation, drainage, water overexploitation, pollution, global change | Abandonment of traditional agronomic practices, water turbidity, alien species |
Boreal and Arctic Freshwater Habitats | Relatively low levels of endemism but some unique cold-adapted species | Climate warming (melting permafrost), land-use change, hydromorphological alteration, long-range pollution | Concomitant reduction of multiple stressors exacerbated by climate change |
Antarctic Freshwater Habitats | High levels of endemism, depauperate | Alteration of habitat through changing climate/hydrology | Protection from invasive taxa |
Mediterranean Streams | High species richness, high levels of endemism, high temporal turnover in species composition | Climate change (i.e., increased frequency and severity of droughts), dam construction, water abstraction, pollution, invasive species | Biodiversity decline, high extinction risk (especially strictly aquatic organisms, such as fish and mollusks), many protected areas do not cover critical areas of biodiversity |
Mediterranean Reservoirs | Low biodiversity, lack of littoral species, high risk for non-native-species propagation | No or very low threats, favor non-native species | No particular conservation issues exist |
Mediterranean Temp. and Perm. Ponds | Very high biodiversity, high number of exclusive species (temp. ponds), high risk of extinction | Temp. ponds: Industrial agriculture (water over-exploitation, crop-extension increases, transformation into perm. water bodies), used as dumpsites or filled to create infrastructures |