Special Issue "Irrigation and Water Resources Management of Landscape Plants"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Resources Management and Governance".

Deadline for manuscript submissions: closed (1 October 2019).

Special Issue Editor

Prof. Dr. R. Thomas Fernandez
E-Mail Website
Guest Editor
Department of Horticulture, Michigan State University, East Lansing, MI, USA
Interests: water quality; pesticide remediation; nutrient remediation; water conservation; irrigation management

Special Issue Information

Dear Colleagues,

The availability and quality of water resources are critical to producers of landscape plants, landscape and ecosystem service providers, and urban environment managers. Increased demand and competition for water resources are driving the need for better stewardship by those who use and affect water resources. Improved irrigation management and techniques for using lower quality water sources are becoming necessary for producers of landscape plants. The impact of the quantity and quality of waters leaving landscape plant production surfaces and the built environment on surrounding water resources is a concern for adjacent or downstream users of such resources. This Special Issue will focus on (1) improving irrigation management in plant production and designed landscapes including the use of alternative/lower quality water sources to reduce the use of higher quality water resources that are more desirable for direct human uses; (2) reducing the movement of contaiminants, e.g., pesticides, nutrients, urban pollutants, and/or pathogens, within or exiting from production systems and designed landscapes; and (3) using landscape plants to improve water management and quality in plant production or urban landscapes, e.g., stormwater mitigation, nutrient and/or pesticide remediation, and urban pollutants.

Prof. Dr. R. Thomas Fernandez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Designed landscape
  • Greenhouse production
  • Nursery production
  • Reclaimed water
  • Recycled water
  • Urban stormwater
  • Water conservation
  • Water quality
  • Water remediation

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery Plants
Water 2019, 11(11), 2354; https://doi.org/10.3390/w11112354 - 09 Nov 2019
Abstract
Managers of ornamental nurseries are increasingly reusing runoff water as an irrigation source, but residual pesticides in recycled water may result in plant phytotoxicity on crop plants. Our study focused on understanding the responses of container-grown landscape plants to residual pesticides in irrigation [...] Read more.
Managers of ornamental nurseries are increasingly reusing runoff water as an irrigation source, but residual pesticides in recycled water may result in plant phytotoxicity on crop plants. Our study focused on understanding the responses of container-grown landscape plants to residual pesticides in irrigation water. Hydrangea paniculata ‘Limelight’, Cornus obliqua ‘Powell garden’, and Hosta ‘Gold standard’ were exposed to various concentrations of isoxaben, chlorpyrifos, and oxyfluorfen (0, 0.15, 0.35, 0.7, and 1.4 mg/L of isoxaben; 0, 0.05, 0.1, 0.2, and 0.4 mg/L of chlorpyrifos; and 0, 0.005, 0.01, 0.015, and 0.02 mg/L of oxyfluorfen) applied as overhead irrigation. After three months of application, we assessed the dry weight biomass, growth, and parameters related to photosynthetic physiology (SPAD chlorophyll index, light-adapted chlorophyll fluorescence, and photosynthesis carbon dioxide response (A/Ci) curves. We also sampled plant leaf, stem, and root tissues for residual pesticides. The effects of the pesticides were pesticide-specific and taxa-specific. Exposure to oxyfluorfen resulted in visible injury in all three taxa and reduced total biomass, chlorophyll index, and photosynthesis in Hydrangea and Hosta. All three taxa absorbed and retained pesticides in leaf and stem tissues. Growers should follow best management practices to reduce exposure from irrigation with runoff, particularly for herbicides with post-emergent activity. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Show Figures

Figure 1

Open AccessArticle
Greenhouse and Nursery Water Management Characterization and Research Priorities in the USA
Water 2019, 11(11), 2338; https://doi.org/10.3390/w11112338 - 08 Nov 2019
Abstract
Nursery, floriculture, and propagation production accounted for 79% ($13.3 Billion) of 2017 ornamental specialty crop production in the United States. Access to high quality water sources is increasingly limited for irrigating these economically significant crops. Given the production, environmental, and economic issues associated [...] Read more.
Nursery, floriculture, and propagation production accounted for 79% ($13.3 Billion) of 2017 ornamental specialty crop production in the United States. Access to high quality water sources is increasingly limited for irrigating these economically significant crops. Given the production, environmental, and economic issues associated with the use of water—including recycled, reclaimed, surface, and ground water—it is critical to develop sustainable runoff, containment, and remediation technologies, and to identify alternative sources of water. To better understand current practices and future water-related needs as perceived by grower stakeholders, an online survey was distributed nationally and five in-depth round table discussion sessions were conducted at the Mid-Atlantic Nursery Trade Show, Gulf States Horticultural Expo, California Grown Show, AmericanHort’s Cultivate, and the Farwest Show with a total of 36 individual industry participants. A team of research and extension specialists facilitated by a Specialty Crops Research Initiative Planning Grant (NIFA Project # 2011-51181-30633) analyzed and concisely summarized the results from the survey and the round table discussions. Research priorities related to water management identified by stakeholders revolved around six themes: (1) recycled water infrastructure and management; (2) contaminants; (3) plant health and water quality; (4) water treatment technologies; (5) competing and complementary water uses; (6) societal perception of agricultural water use. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Open AccessArticle
Water Conserving Irrigation Practices, Plant Growth, Seasonal Crop Coefficients, and Nutrition of Container-Grown Woody Ornamentals
Water 2019, 11(10), 2070; https://doi.org/10.3390/w11102070 - 03 Oct 2019
Abstract
Irrigation practices for container nursery crops often result in over-application and can lead to leaching of nutrients and reduced growth. Our objectives were to: (1) compare growth and foliar nutrient content for plants under daily water use (DWU) based irrigation treatments, (2) determine [...] Read more.
Irrigation practices for container nursery crops often result in over-application and can lead to leaching of nutrients and reduced growth. Our objectives were to: (1) compare growth and foliar nutrient content for plants under daily water use (DWU) based irrigation treatments, (2) determine DWU of 14 woody ornamental taxa, and (3) classify taxa into irrigation functional groups based on crop coefficients (KC). Irrigation was applied daily to 8 taxa in 2009 and 2010 using a control of 19 mm and three irrigation treatments: (1) replacing 100% plant DWU (100DWU) each day, (2) alternating 100% DWU with 75% DWU in a 2-day cycle (100-75DWU), and (3) a 3-day cycle replacing 100% DWU the first day and 75% DWU on the second and third days (100-75-75DWU). In 2009, seasonal average DWU ranged between 8.8 and 17.3 mm depending on taxa and treatment. Most DWU-based treatments resulted in less water applied than the control, yet plant growth was not reduced, and for one taxon (Hydrangea paniculata ‘Limelight’) the 100DWU increased plant growth index. Lower foliar P and K concentrations were found for several taxa in control versus DWU treatments. In 2010, DWU for the season ranged between 2.1- and 22.0-mm d−1 depending on taxa and treatment. Growth was lower only for 100-75-75DWU Hydrangea paniculata ‘Limelight’ compared to other treatments and there were no differences in foliar nutrient content. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Show Figures

Figure 1

Open AccessArticle
Phosphate Removal from Nursery Runoff Water Using an Iron-Based Remediation System
Water 2019, 11(4), 795; https://doi.org/10.3390/w11040795 - 17 Apr 2019
Abstract
Phosphorous (P) losses from containerized plant production nurseries can be significant due to the low nutrient retention capacities of the media components. As environmental regulators establish, refine, and enforce nutrient criteria, effective methods are needed to reduce amounts of P in runoff and [...] Read more.
Phosphorous (P) losses from containerized plant production nurseries can be significant due to the low nutrient retention capacities of the media components. As environmental regulators establish, refine, and enforce nutrient criteria, effective methods are needed to reduce amounts of P in runoff and drainage water. This study investigated the use of a small scale flow-through ferrous iron (Fe(II))-based remediation system for chemically precipitating P. This system consisted of four inter-connected tanks, with the first two maintained under anaerobic conditions and the last two maintained under aerobic conditions. FeSO4 was introduced into the first of the aerobic tanks at different rates to achieve Fe:P ratios of 0, 9.0, 16.3, and 21.2. Water samples were collected from the systems, and P removal was monitored by ion chromatography. Phosphorus removal efficiencies of 78, 95, and 99% were observed for each respective treatment, indicating great potential for this conceptual system at Fe:P dosing ratios ≥16.3 and phosphorus concentrations between 3 and 5 mg/L. This type of system may especially be useful for nurseries with space limitations. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Social and Economic Aspects of Water Use in Specialty Crop Production in the USA: A Review
Water 2019, 11(11), 2337; https://doi.org/10.3390/w11112337 - 08 Nov 2019
Abstract
Understanding human behavior is a complicated and complex endeavor. Academicians and practitioners need to understand the underlying beliefs and motivations to identify current trends and to effectively develop means of communication and education that encourage change in attitudes and behavior. Sociological research can [...] Read more.
Understanding human behavior is a complicated and complex endeavor. Academicians and practitioners need to understand the underlying beliefs and motivations to identify current trends and to effectively develop means of communication and education that encourage change in attitudes and behavior. Sociological research can provide information about how and why people make decisions; this information impacts the research and extension community, helping them formulate programs and present information in a way that increases adoption rates. Life cycle assessment can document how plant production impacts the environment. Production of ornamental plants (greenhouse, container, and field produced flowers trees and shrubs) accounted for 4.4% of the total annual on-farm income and 8.8% of the crop income produced in the United States in 2017, representing a substantial portion of farmgate receipts. Greenhouse and nursery growing operations can use this information to increase production and water application efficiency and decrease input costs. Information related to the environmental impacts of plant production, derived from life cycle assessment, can also inform consumer purchase decisions. Information from water footprint analysis quantifies the relative abundance and availability of water on a regional basis, helping growers understand water dynamics in their operation and informing consumer plant purchases based on water availability and conservation preference. Economics can motivate growers to adopt new practices based on whether they are saving or making money, and consumers modify product selection based on preference for how products are produced. Specialty crop producers, including nursery and greenhouse container operations, rely heavily on high quality water from surface and groundwater resources for crop production; but irrigation return flow from these operations can contribute to impairment of water resources. This review focuses on multiple facets of the socioeconomics of water use, reuse, and irrigation return flow management in nursery and greenhouse operations, focusing on grower and consumer perceptions of water; barriers to adoption of technology and innovations by growers; economic considerations for implementing new technologies; and understanding environmental constraints through life cycle assessment and water footprint analyses. Specialty crop producers can either voluntarily adapt practices gradually to benefit both economic and environmental sustainability or they may eventually be forced to change due to external factors (e.g., regulations). Producers need to have the most current information available to inform their decisions regarding water management. Full article
(This article belongs to the Special Issue Irrigation and Water Resources Management of Landscape Plants)
Back to TopTop