Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

13 pages, 4741 KiB  
Article
Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS) Coupled with an Interferometer for On-Band and Off-Band Detection of Glyoxal
by Callum E. Flowerday, Ryan Thalman, Matthew C. Asplund and Jaron C. Hansen
Toxics 2024, 12(1), 26; https://doi.org/10.3390/toxics12010026 - 28 Dec 2023
Viewed by 1071
Abstract
Glyoxal (CHOCHO) is a trace gas in the atmosphere, often used as an indicator of biogenic emissions. It is frequently compared to formaldehyde concentrations, which serve as indicators of anthropogenic emissions, to gain insights into the characteristics of the environmental source. This study [...] Read more.
Glyoxal (CHOCHO) is a trace gas in the atmosphere, often used as an indicator of biogenic emissions. It is frequently compared to formaldehyde concentrations, which serve as indicators of anthropogenic emissions, to gain insights into the characteristics of the environmental source. This study employed broadband cavity-enhanced absorption spectroscopy to detect gaseous CHOCHO, methylglyoxal, and NO2. Two different detection methods are compared. Spectrograph and CCD Detection: This approach involves coupling the system to a spectrograph with a charge-coupled device (CCD) detector. It achieved a 1 min 1-σ detection limit of 2.5 × 108 molecules/cm3, or 10 parts per trillion (ppt). Methylglyoxal and NO2 achieved 1 min 1-σ detection limits of 34 ppt and 22 ppt, respectively. Interferometer and PMT Detection: In this method, an interferometer is used in conjunction with a photomultiplier tube (PMT) detector. It resulted in a 2 min 1-σ detection limit of 1.5 × 1010 molecules/cm3, or 600 ppt. The NO2 2 min 1-σ detection limit was determined to be 900 ppt. Concentrations of methylglyoxal were difficult to determine using this method, as they appeared to be below the detection limit of the instrument. This study discusses the advantages and limitations of each of these detection methods. Full article
(This article belongs to the Special Issue Aerosol Pollution from Biomass Burning)
Show Figures

Graphical abstract

17 pages, 2369 KiB  
Article
Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities
by Xiasang Chen, Airui Li, Linghong Yin, Li Ke, Pingli Dai and Yong-Jun Liu
Toxics 2024, 12(1), 18; https://doi.org/10.3390/toxics12010018 - 23 Dec 2023
Cited by 1 | Viewed by 1757
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey [...] Read more.
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees. Full article
Show Figures

Figure 1

17 pages, 4349 KiB  
Article
Developmental Programming: Impact of Prenatal Exposure to Bisphenol A on Senescence and Circadian Mediators in the Liver of Sheep
by Giuliana Motta, Soundara Viveka Thangaraj and Vasantha Padmanabhan
Toxics 2024, 12(1), 15; https://doi.org/10.3390/toxics12010015 - 23 Dec 2023
Cited by 1 | Viewed by 1341
Abstract
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We [...] Read more.
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated with premature hepatic senescence and disruption in circadian clock genes. The expression of circadian rhythm and aging-associated genes, along with other markers of senescence such as telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences in the expression of other aging genes—APOE, HGF, KLOTHO, and the clock genes PER2 and CLOCK—in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed aging-related transcriptional changes in the liver may contribute to pathological changes in liver function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

17 pages, 1977 KiB  
Article
A Metabolome and Microbiome Analysis of Acute Myeloid Leukemia: Insights into the Carnosine–Histidine Metabolic Pathway
by Binxiong Wu, Yuntian Xu, Miaomiao Tang, Yingtong Jiang, Ting Zhang, Lei Huang, Shuyang Wang, Yanhui Hu, Kun Zhou, Xiaoling Zhang and Minjian Chen
Toxics 2024, 12(1), 14; https://doi.org/10.3390/toxics12010014 - 22 Dec 2023
Viewed by 1437
Abstract
Metabolism underlies the pathogenesis of acute myeloid leukemia (AML) and can be influenced by gut microbiota. However, the specific metabolic changes in different tissues and the role of gut microbiota in AML remain unclear. In this study, we analyzed the metabolome differences in [...] Read more.
Metabolism underlies the pathogenesis of acute myeloid leukemia (AML) and can be influenced by gut microbiota. However, the specific metabolic changes in different tissues and the role of gut microbiota in AML remain unclear. In this study, we analyzed the metabolome differences in blood samples from patients with AML and healthy controls using UPLC-Q-Exactive. Additionally, we examined the serum, liver, and fecal metabolome of AML model mice and control mice using UPLC-Q-Exactive. The gut microbiota of the mice were analyzed using 16S rRNA sequencing. Our UPLC-MS analysis revealed significant differences in metabolites between the AML and control groups in multiple tissue samples. Through cross-species validation in humans and animals, as well as reverse validation of Celastrol, we discovered that the Carnosine–Histidine metabolic pathway may play a potential role in the occurrence and progression of AML. Furthermore, our analysis of gut microbiota showed no significant diversity changes, but we observed a significant negative correlation between the key metabolite Carnosine and Peptococcaceae and Campylobacteraceae. In conclusion, the Carnosine–Histidine metabolic pathway influences the occurrence and progression of AML, while the gut microbiota might play a role in this process. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
Show Figures

Figure 1

15 pages, 2757 KiB  
Article
Triphenyltin Influenced Carotenoid-Based Coloration in Coral Reef Fish, Amphiprion ocellaris, by Disrupting Carotenoid Metabolism
by Yan Zhang, Xingwei Cai, Yu Hou, Wenming Chen and Jiliang Zhang
Toxics 2024, 12(1), 13; https://doi.org/10.3390/toxics12010013 - 22 Dec 2023
Viewed by 1013
Abstract
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. [...] Read more.
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. Therefore, this study chose the clownfish (Amphiprion ocellaris) in order to investigate the effects of TPT exposure on its carotenoid-based body coloration under the environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 60 d, the carotenoid contents were decreased and histological damage in the liver was found, shown as nuclear pyknosis and shift, lipid deposition and fibrotic tissue hyperplasia. Liver transcriptomic analysis showed that TPT exposure interfered with oxidative phosphorylation and fatty acid metabolism pathways, which related to carotenoids uptake and metabolism. Furthermore, TPT exposure led to oxidative damage in the liver, which is responsible for the changes in the antioxidant capacity of enzymes, including GSH, MDA, POD, CAT and T-SOD. TPT exposure also affected the genes (Scarb1, CD36, Stard3 and Stard5) related to carotenoid absorption and transport, as well as the genes (GstP1 and Bco2) related to carotenoid deposition and decomposition. Taken together, our results demonstrate that TPT influenced carotenoid-based coloration in coral reef fish by disrupting carotenoid metabolism, which complements the ecotoxicological effects and toxic mechanisms of TPT and provides data for the body color biology of coral reef fishes. Full article
(This article belongs to the Special Issue Hazardous Effects of Emerging Contaminants on Wildlife)
Show Figures

Figure 1

17 pages, 2094 KiB  
Article
Do Surface Charges on Polymeric Filters and Airborne Particles Control the Removal of Nanoscale Aerosols by Polymeric Facial Masks?
by Zhaobo Zhang, Mahmut S. Ersan, Paul Westerhoff and Pierre Herckes
Toxics 2024, 12(1), 3; https://doi.org/10.3390/toxics12010003 - 19 Dec 2023
Viewed by 1320
Abstract
The emergence of facial masks as a critical health intervention to prevent the spread of airborne disease and protect from occupational nanomaterial exposure highlights the need for fundamental insights into the interaction of nanoparticles (<200 nm) with modern polymeric mask filter materials. While [...] Read more.
The emergence of facial masks as a critical health intervention to prevent the spread of airborne disease and protect from occupational nanomaterial exposure highlights the need for fundamental insights into the interaction of nanoparticles (<200 nm) with modern polymeric mask filter materials. While most research focuses on the filtration efficiency of airborne particles by facial masks based on pore sizes, pressure drop, or humidity, only a few studies focus on the importance of aerosol surface charge versus filter surface charge and their role in the net particle filtration efficiency of mask filters. In this study, experiments were conducted to assess mask filter filtration efficiency using positively and negatively charged polystyrene particles (150 nm) as challenge aerosols at varying humidity levels. Commercial masks with surface potential (Ψf) in the range of −10 V to −800 V were measured by an electrostatic voltmeter and used for testing. Results show that the mask filtration efficiency is highly dependent on the mask surface potential as well as the charge on the challenge aerosol, ranging from 60% to 98%. Eliminating the surface charge results in a maximum 43% decrease in filtration efficiency, emphasizing the importance of electrostatic charge interactions during the particle capture process. Moreover, increased humidity can decrease the surface charge on filters, thereby decreasing the mask filtration efficiency. The knowledge gained from this study provides insight into the critical role of electrostatic attraction in nanoparticle capture mechanisms and benefits future occupational and environmental health studies. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Aerosol Particles)
Show Figures

Figure 1

21 pages, 3445 KiB  
Article
Acute Toxicity Assays with Adult Coral Fragments: A Method for Standardization
by David Brefeld, Valentina Di Mauro, Matthias Y. Kellermann, Samuel Nietzer, Mareen Moeller, Laura H. Lütjens, Sascha Pawlowski, Mechtild Petersen-Thiery and Peter J. Schupp
Toxics 2024, 12(1), 1; https://doi.org/10.3390/toxics12010001 - 19 Dec 2023
Viewed by 1713
Abstract
Coral reefs are globally declining due to various anthropogenic stressors. Amongst those, chemical pollutants, such as pesticides from agricultural runoff, sewage or an overabundance of personal care products in coastal waters due to intense tourism, may be considered as a local stressor for [...] Read more.
Coral reefs are globally declining due to various anthropogenic stressors. Amongst those, chemical pollutants, such as pesticides from agricultural runoff, sewage or an overabundance of personal care products in coastal waters due to intense tourism, may be considered as a local stressor for reef-building corals. The extent to which such chemicals exhibit toxic effects towards corals at environmentally relevant concentrations is currently controversially discussed and existing studies are often based on varying and sometimes deficient test methods. To address this uncertainty, we adapted available methods into a reliable and comprehensive acute coral toxicity test method for the reef-building coral Montipora digitata. The toxicities of the four substances benzophenone-3 (BP-3), Diuron (DCMU), copper (Cu2+ as CuCl2, positive control) and dimethylformamide (DMF, solvent) were assessed in a 96 h semi-static test design. Endpoints such as maximum quantum yield, bleaching, tissue loss and mortality were evaluated with respect to their suitability for regulatory purposes. Overall, the endpoints bleaching and mortality yielded sensitive and robust results for the four tested substances. As the test method follows the principles of internationally standardized testing methods (ISO, OECD), it can be considered suitable for further validation and standardization. Once validated, a standardized test method will help to obtain reproducible toxicity results useful for marine hazard and risk assessment and regulatory decision making. Full article
(This article belongs to the Special Issue Toxicity of Contaminants on Aquatic Organisms II)
Show Figures

Figure 1

18 pages, 6376 KiB  
Article
Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate
by Mary E. Gilbert, Katherine L. O’Shaughnessy, Kiersten S. Bell and Jermaine L. Ford
Toxics 2023, 11(12), 1027; https://doi.org/10.3390/toxics11121027 - 18 Dec 2023
Cited by 2 | Viewed by 1165
Abstract
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements [...] Read more.
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans. Full article
(This article belongs to the Special Issue Effects of Environmental Pollutants on Neurodevelopment)
Show Figures

Figure 1

23 pages, 2465 KiB  
Article
Characteristics of Abnormalities in Somatosensory Submodalities Observed in Residents Exposed to Methylmercury
by Shigeru Takaoka, Tadashi Fujino, Shin-ichi Shigeoka and Takashi Yorifuji
Toxics 2023, 11(12), 1023; https://doi.org/10.3390/toxics11121023 - 15 Dec 2023
Cited by 1 | Viewed by 1097
Abstract
Hundreds of thousands of people living along the Yatsushiro Sea coast have been exposed to methylmercury from the contaminated water of the Chisso factory in Minamata. The most common neurological disorder caused by methylmercury is somatosensory disturbance, but very few studies have been [...] Read more.
Hundreds of thousands of people living along the Yatsushiro Sea coast have been exposed to methylmercury from the contaminated water of the Chisso factory in Minamata. The most common neurological disorder caused by methylmercury is somatosensory disturbance, but very few studies have been conducted in the world to determine its pathophysiology and origin, including the Japanese cases, which have produced numerous intoxicated individuals. We have already shown in previous studies the body part where the disorder occurs and that its cause is not peripheral nerve damage but damage to the parietal lobes of the cerebrum. We reanalyzed the results of subjective symptoms, neurological findings, and quantitative sensory measurements in 197 residents (63.2 ± 10.7 years old) from contaminated areas exposed to methylmercury from seafood and 130 residents (63.7 ± 9.3 years old) from control areas, the same subjects as in previous studies, to determine the characteristics of somatosensory disturbance in detail. The most commonly affected sensory modalities were superficial peripheral touch and pain in the extremities, followed by two-point discrimination and deep senses, and in the most severe cases, full-body sensory dysfunction and impairment of all sensory submodalities. The severity of sensory submodalities correlated with each other but not with peripheral nerve conduction test indices, further confirming the correctness of our assertion about the responsible foci of sensory disturbance. The health effects of chronic methylmercury toxicosis can be elucidated by a detailed examination of sensory deficits. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Epidemiology)
Show Figures

Figure 1

12 pages, 1567 KiB  
Article
Comparing Ocular Toxicity of Legacy and Alternative Per- and Polyfluoroalkyl Substances in Zebrafish Larvae
by Han-seul Lee, Soogyeong Jang, Youngsub Eom and Ki-Tae Kim
Toxics 2023, 11(12), 1021; https://doi.org/10.3390/toxics11121021 - 14 Dec 2023
Cited by 1 | Viewed by 1266
Abstract
Studies comparing the ocular toxicity potential between legacy and alternative PFAS are lacking. To address this research gap, zebrafish larvae were exposed to both legacy PFAS (i.e., perfluorooctanesulfonic acid [PFOS] and perfluorooctanoic acid [PFOA]) and their corresponding alternatives (i.e., perfluorobutanesulfonic acid [PFBS] and [...] Read more.
Studies comparing the ocular toxicity potential between legacy and alternative PFAS are lacking. To address this research gap, zebrafish larvae were exposed to both legacy PFAS (i.e., perfluorooctanesulfonic acid [PFOS] and perfluorooctanoic acid [PFOA]) and their corresponding alternatives (i.e., perfluorobutanesulfonic acid [PFBS] and perfluorobutanoic acid [PFBA]). Alterations in their visual behaviors, such as phototactic and optomotor responses (OMR), were assessed at sublethal concentrations. Gene expression variations in visual function-associated pathways were also measured. Visual behavioral assessment revealed that PFOS exposure resulted in concentration-dependent reductions in phototactic responses at 10–1000 μg/L, with PFOA exerting reduction effects only at 100 mg/L. However, their two alternatives had no effect at all tested concentrations. Following an improved contrast-OMR (C-OMR) assessment, PFOS decreased the OMR to a water flow stimulus at 10, 100, and 1000 μg/L. The gene expression analysis revealed that PFOS exposure markedly downregulated most genes involved in the opsins in the photoreceptor and phototransduction cascade, which explains the observed visual behavior changes well. Our findings indicate that PFOS is the most likely PFAS to cause visual toxicity, with PFOA present but less likely, and their substitutes, PFBS and PFBA, cannot be classified as visually toxic to zebrafish. Full article
Show Figures

Graphical abstract

14 pages, 2883 KiB  
Article
Bioaccumulation of Some Metals and Metalloids in Laughing Gulls (Leucophaeus atricilla): Increases in Mercury and Decreases in Selenium from 2019 to 2022/2023
by Joanna Burger, Stephanie Feigin, Alinde Fojtik, Amanda Dey and Kelly Ng
Toxics 2023, 11(12), 1007; https://doi.org/10.3390/toxics11121007 - 9 Dec 2023
Viewed by 1086
Abstract
The elements in blood normally reflect the levels in prey, indicating a recent exposure. Laughing gulls (Leucophaes atricilla) eat mainly horseshoe crab eggs (Limulus polyphemus) in the spring in Delaware Bay, New Jersey. The levels of arsenic (As), cadmium [...] Read more.
The elements in blood normally reflect the levels in prey, indicating a recent exposure. Laughing gulls (Leucophaes atricilla) eat mainly horseshoe crab eggs (Limulus polyphemus) in the spring in Delaware Bay, New Jersey. The levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in the blood of laughing gulls foraging on crab eggs were examined in Delaware Bay to provide information on a species that is normally a generalist, and to determine if the levels of these elements were similar in 2019 and 2022/2023, were intercorrelated, and were related to those in crab eggs. Hg increased from 2019 (136 ± 31 ng/g) to 2022/2023 (473 ± 75 ng/g), while Cd and Se decreased. There were some significant correlations among elements and a close relationship between the element levels in blood and those in crab eggs collected in the same month (except for As). The levels differed between laughing gulls and three species of shorebirds for As and Cd. The elements in the blood of gulls and shorebirds should be similar because they eat mainly the same eggs in the same places. A significant proportion of laughing gull blood samples had levels of Hg and Se that were above the levels associated with adverse effects, which requires further examination. Full article
(This article belongs to the Special Issue 10th Anniversary of Toxics: Women's Special Issue Series)
Show Figures

Figure 1

23 pages, 3412 KiB  
Article
Risk Assessment of Isoeugenol in Food Based on Benchmark Dose—Response Modeling
by Thomas Quentin, Heike Franke and Dirk W. Lachenmeier
Toxics 2023, 11(12), 991; https://doi.org/10.3390/toxics11120991 - 5 Dec 2023
Cited by 3 | Viewed by 1355
Abstract
Isoeugenol has recently been evaluated as possibly carcinogenic (Group 2B) by the WHO International Agency for Research on Cancer (IARC). In light of this evaluation, an updated risk assessment of this common food constituent was conducted using the benchmark dose (BMD) approach as [...] Read more.
Isoeugenol has recently been evaluated as possibly carcinogenic (Group 2B) by the WHO International Agency for Research on Cancer (IARC). In light of this evaluation, an updated risk assessment of this common food constituent was conducted using the benchmark dose (BMD) approach as recommended by the European Food Safety Authority (EFSA) for point of departure (POD) determination, as an alternative to the no observed adverse effect level (NOAEL). This approach was specifically chosen, as for the relevant neoplastic endpoints only lowest observed adverse effect level (LOAEL) values are available. The toxicological endpoint from the animal studies with the most conservative BMD lower confidence limit (BMDL) value was identified. Using the obtained BMDL value of 8 mg/kg body weight/day as POD, an acceptable daily intake (ADI) of 16 µg/kg body weight/day was obtained, which—despite being more conservative than previous approaches—is still clearly above the estimated daily exposure level to isoeugenol in the USA and in Europe. These results confirm a low risk of the estimated daily exposure levels of isoeugenol. Full article
(This article belongs to the Special Issue Chemical Contaminants in Food and Feed)
Show Figures

Figure 1

24 pages, 3663 KiB  
Article
Association of Combined Metals and PFAS with Cardiovascular Disease Risk
by Yvonne S. Boafo, Sayed Mostafa and Emmanuel Obeng-Gyasi
Toxics 2023, 11(12), 979; https://doi.org/10.3390/toxics11120979 - 1 Dec 2023
Cited by 2 | Viewed by 1859
Abstract
This study sought to investigate the impact of exposure to metals and per- and polyfluoroalkyl substances (PFASs) on cardiovascular disease (CVD)-related risk. PFASs, including PFOA, PFOS, PFNA, and PFHxS, as well as metals such as lead (Pb), cadmium (Cd), and mercury (Hg), were [...] Read more.
This study sought to investigate the impact of exposure to metals and per- and polyfluoroalkyl substances (PFASs) on cardiovascular disease (CVD)-related risk. PFASs, including PFOA, PFOS, PFNA, and PFHxS, as well as metals such as lead (Pb), cadmium (Cd), and mercury (Hg), were analyzed to elucidate their combined effects on CVD risk. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2014, this investigation explored the effects of PFASs and metals on CVD risk. A spectrum of individual CVD markers, encompassing systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides, was examined. Additionally, comprehensive CVD risk indices were evaluated, namely the Overall Cardiovascular Biomarkers Index (OCBI), including the Framingham Risk Score and an Overall Cardiovascular Index. Linear regression analysis was employed to probe the relationships between these variables. Furthermore, to assess dose–response relationships between exposure mixtures and CVD while mitigating the influence of multicollinearity and potential interaction effects, Bayesian Kernel Machine Regression (BKMR) was employed. Results: Our findings indicated that exposure to PFAS and metals in combination increased CVD risk, with combinations occurring with lead bringing forth the largest impact among many CVD-related markers. Conclusions: This study finds that combined exposure to metals and PFASs significantly elevates the likelihood of CVD risk. These results highlight the importance of understanding the complex interplay between multipollutant exposures and their potential implications for cardiovascular health. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

15 pages, 4628 KiB  
Article
Impact of a Polymer-Based Nanoparticle with Formoterol Drug as Nanocarrier System In Vitro and in an Experimental Asthmatic Model
by Buket Bakan, Anne-Charlotte Jonckheere, Tatjana Decaesteker, Nora F. Marain, Sivakumar Murugadoss, Nefise Ulku Karabay Yavasoglu, Umut Şahar, Raziye Hilal Şenay, Sinan Akgöl, Özlem Göksel, Peter H. M. Hoet and Jeroen A. J. Vanoirbeek
Toxics 2023, 11(12), 974; https://doi.org/10.3390/toxics11120974 - 30 Nov 2023
Viewed by 1216
Abstract
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a [...] Read more.
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

25 pages, 9542 KiB  
Article
Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice
by Dakota R. Robarts, Jiayin Dai, Christopher Lau, Udayan Apte and J. Christopher Corton
Toxics 2023, 11(12), 963; https://doi.org/10.3390/toxics11120963 - 28 Nov 2023
Cited by 1 | Viewed by 1858
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to [...] Read more.
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS. Full article
Show Figures

Figure 1

17 pages, 4662 KiB  
Article
Removal of Pb from Contaminated Kaolin by Pulsed Electrochemical Treatment Coupled with a Permeable Reactive Barrier: Tuning Removal Efficiency and Energy Consumption
by Yinyin Zhang, Libin Zang, Yuyan Zhao, Qiaoqiao Wei and Jiangtao Han
Toxics 2023, 11(12), 961; https://doi.org/10.3390/toxics11120961 - 27 Nov 2023
Cited by 1 | Viewed by 1031
Abstract
Lead contamination in soil has emerged as a significant environmental concern. Recently, pulse electrochemical treatment (PECT) has garnered substantial attention as an effective method for mitigating lead ions in low-permeability soils. However, the impact of varying pulse time gradients, ranging from seconds to [...] Read more.
Lead contamination in soil has emerged as a significant environmental concern. Recently, pulse electrochemical treatment (PECT) has garnered substantial attention as an effective method for mitigating lead ions in low-permeability soils. However, the impact of varying pulse time gradients, ranging from seconds to hours, under the same pulse duty cycle on lead removal efficiency (LRE) and energy consumption in PECT has not been thoroughly investigated. In this study, a novel, modified PECT method is proposed, which couples PECT with a permeable reaction barrier (PRB) and adds acetic acid to the catholyte. A comprehensive analysis of LRE and energy consumption is conducted by transforming pulse time. The results show that the LREs achieved in these experiments were as follows: PCb-3 s (89.5%), PCb-1 m (91%), PCb-30 m (92.9%), and PCb-6 h (91.9%). Importantly, these experiments resulted in significant reductions in energy consumption, with decreases of 68.5%, 64.9%, 51.8%, and 47.4% compared to constant voltage treatments, respectively. It was observed that LRE improved with an increase in both pulse duration and voltage gradient, albeit with a corresponding rise in energy consumption. The results also revealed that corn straw biochar as a PRB could enhance LRE by 6.1% while adsorbing migrating lead ions. Taken together, the present data highlights the potential of modified PECT technology for remediation of lead-contaminated soil, which provides an optimal approach to achieve high LRE while minimizing energy consumption. Full article
Show Figures

Figure 1

16 pages, 8789 KiB  
Article
Depicting the Profile of METTL3-Mediated lncRNA m6A Modification Variants and Identified SNHG7 as a Prognostic Indicator of MNNG-Induced Gastric Cancer
by Tong Liu, Yanlu Feng, Sheng Yang, Yiling Ge, Tianyi Zhang, Jie Li, Chengyun Li, Ye Ruan, Bin Luo and Geyu Liang
Toxics 2023, 11(11), 944; https://doi.org/10.3390/toxics11110944 - 20 Nov 2023
Cited by 1 | Viewed by 1179
Abstract
As a representative example of an environmental chemical carcinogen, MNNG exposure is closely associated with the onset of gastric cancer (GC) where N6-methyladenosine (m6A) RNA methylation tends to be the critical epigenetic event. However, the effect of m6A modification on long non-coding RNAs [...] Read more.
As a representative example of an environmental chemical carcinogen, MNNG exposure is closely associated with the onset of gastric cancer (GC) where N6-methyladenosine (m6A) RNA methylation tends to be the critical epigenetic event. However, the effect of m6A modification on long non-coding RNAs (lncRNAs) in MNNG-induced GC onset is still unclear. To address the above issue, based on the Methylated RNA immunoprecipitation sequencing (MeRIP-seq) data of MNNG-induced malignant cells (MCs) and GC cells, we comprehensively analyzed the MNNG exposure-associated vital lncRNAs. MeRIP-seq analysis identified 1432 lncRNA transcripts in the MC cell, and 3520 lncRNA transcripts were found to be m6A modified in the GC cell, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that MNNG exposure could spark cellular localization change, which might be the critical cellular note variation for malignant transformation. We demonstrated that METTL3 is responsible for N6 methylation of lncRNAs and identified SNHG7 as a downstream target of METTL3. More importantly, we observed that SNHG7 was progressively up-regulated during gastric carcinogenesis by MNNG exposure. Finally, we investigated SNHG7 expression in different stages of GC malignancies and found that elevated SNHG7 expression correlated with advanced clinical features and poor prognosis in GC. In conclusion, our study found for the first time that METTL3 regulates the m6A methylation level of lncRNA SNHG7 and its expression in MNNG exposure-induced GC, suggesting that SNHG7 as a predictive biomarker or therapeutic target for GC. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

19 pages, 2272 KiB  
Article
Responses of Mytilus galloprovincialis in a Multi-Stressor Scenario: Effects of an Invasive Seaweed Exudate and Microplastic Pollution under Ocean Warming
by Cristiana Lopes, Andreia C. M. Rodrigues, Sílvia F. S. Pires, Diana Campos, Amadeu M. V. M. Soares, Hugo C. Vieira and Maria D. Bordalo
Toxics 2023, 11(11), 939; https://doi.org/10.3390/toxics11110939 - 18 Nov 2023
Viewed by 1821
Abstract
Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to [...] Read more.
Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels’ digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure. Full article
(This article belongs to the Special Issue Environmental Contaminants in a Changing World)
Show Figures

Figure 1

16 pages, 3457 KiB  
Article
Toxic Relationships: Prediction of TBT’s Affinity to the Ecdysteroid Receptor of Triops longicaudatus
by Nuno Gonçalo de Carvalho Ferreira, Adriano Chessa, Isabel Oliveira Abreu, Luís Oliva Teles, Peter Kille, António Paulo Carvalho and Laura Guimarães
Toxics 2023, 11(11), 937; https://doi.org/10.3390/toxics11110937 - 17 Nov 2023
Cited by 2 | Viewed by 1312
Abstract
Tributyltin (TBT) is a biocide introduced in the 1960s in antifouling paints. Despite legislation banning its use, its persistence in the environment still causes significant harm to organisms. Tributyltin is a ligand of retinoid X receptors (RXR) and ecdysteroid receptors (EcRs), which in [...] Read more.
Tributyltin (TBT) is a biocide introduced in the 1960s in antifouling paints. Despite legislation banning its use, its persistence in the environment still causes significant harm to organisms. Tributyltin is a ligand of retinoid X receptors (RXR) and ecdysteroid receptors (EcRs), which in arthropods act as homologs of RXR. Focusing on Metazoan species, this study used genomic and proteomic information from different sources to compare their three-dimensional structure, phylogenetic distribution, and amino acid sequence alterations. The objective was to identify possible patterns that relate organisms’ sensitivity to TBT using the species Triops longicaudatus as the basis for the comparisons. The results showed great conservation of this protein across several species when comparing the interaction amino acids described to RXR (an EcR analog) in Homo sapiens. The three-dimensional comparison of RXR showed little conformational variation between different sequences by maintaining the interaction pocket. As for the Species Sensitivity Distribution (SSD) curve, an HC05 = 0.2649 [0.0789–0.7082] µg/L was obtained with no specific distribution between the different taxa. Protein-ligand docking analysis was then used to confirm the SSD curve ranking of species. Still, the results showed an opposite trend that may be related, for example, to differences in the LC50 values used in the calculations. This study serves as the first step for applying bioinformatics techniques to produce information that can be used as an alternative to animal or cellular experimentation. These techniques could be adapted to various chemicals and proteins, allowing for observations in a shorter timeframe and providing information on a broader spectrum. Full article
Show Figures

Figure 1

16 pages, 1865 KiB  
Article
Expression Profiling of Adipogenic and Anti-Adipogenic MicroRNA Sequences following Methylmercury Exposure in Caenorhabditis elegans
by Giancarlo Garofalo, Tyson Nielsen and Samuel Caito
Toxics 2023, 11(11), 934; https://doi.org/10.3390/toxics11110934 - 17 Nov 2023
Viewed by 1058
Abstract
MicroRNA (miRNA) are important regulators of gene expression that respond not only to developmental and pathological cues, but also to environmental stimuli. Dyslipidemia is a hallmark of metabolic conditions and has been shown to significantly affect the expression of circulating miRNA sequences. Recently, [...] Read more.
MicroRNA (miRNA) are important regulators of gene expression that respond not only to developmental and pathological cues, but also to environmental stimuli. Dyslipidemia is a hallmark of metabolic conditions and has been shown to significantly affect the expression of circulating miRNA sequences. Recently, our lab has shown that the environmental toxicant methylmercury (MeHg) causes dyslipidemia in the Caenorhabditis elegans model organism. While 10 and 20 μM MeHg increases the expression of adipogenic transcription factors and lipid-binding proteins in worms, there is limited information on how the toxicant affects the miRNA regulators of these genes. We hypothesized that MeHg would increase the expression of adipogenic miRNA sequences and/or decrease the expression of anti-adipogenic miRNA sequences. We further hypothesized that the target mRNA sequences for the miRNAs affected by MeHg would be consequently altered. We selected three potentially adipogenic (mir-34, mir-124, and mir-355) and three potentially anti-adipogenic (mir-240, mir-786, and let-7) miRNA sequences homologous to known human miRNA sequences altered in obesity, and quantified their levels 24 h and 48 h post MeHg treatment. At 24 h post exposure, MeHg significantly increased expression of both the adipogenic and anti-adipogenic miRNA sequences 1.5–3x above untreated control. By 48 h post exposure, only the adipogenic miRNA sequences were elevated, while the anti-adipogenic miRNA sequences were decreased by 50% compared to untreated control. These data suggest that there are developmental changes in miRNA expression over time following MeHg exposure. We next selected one target mRNA sequence for each miRNA sequence based on miRNA–mRNA relationships observed in humans. MeHg altered the gene expression of all the target genes assayed. Except for mir-34, all the tested miRNA–mRNA sequences showed a conserved relationship between nematode and humans. To determine whether the selected miRNA sequences were involved in lipid accumulation in response to MeHg, lipid storage was investigated in transgenic worm strains that lacked the specific miRNA strains. Of the six strains investigated, only the mir-124 and let-7 mutant worms had lipid storage levels that were statistically different from wild type, suggesting that these two sequences can be potential mediators of MeHg-induced lipid dysregulation. Full article
(This article belongs to the Special Issue Dietary Exposure to Heavy Metals and Health Risks)
Show Figures

Figure 1

16 pages, 3912 KiB  
Article
Strategies for Effective Management of Indoor Air Quality in a Kindergarten: CO2 and Fine Particulate Matter Concentrations
by Doyeon Lee, Younghun Kim, Kee-Jung Hong, Gunhee Lee, Hak-Joon Kim, Dongho Shin and Bangwoo Han
Toxics 2023, 11(11), 931; https://doi.org/10.3390/toxics11110931 - 16 Nov 2023
Viewed by 1255
Abstract
The educational and play-related activities of children proceed mainly indoors in a kindergarten. High concentrations of indoor PM2.5 and CO2 have been linked to various harmful effects on children, considerably impacting their educational outcomes in kindergarten. In this study, we explore [...] Read more.
The educational and play-related activities of children proceed mainly indoors in a kindergarten. High concentrations of indoor PM2.5 and CO2 have been linked to various harmful effects on children, considerably impacting their educational outcomes in kindergarten. In this study, we explore different scenarios involving the operation of mechanical ventilation systems and air purifiers in kindergartens. Using numerical models to analyze indoor CO2 and PM2.5 concentration, we aim to optimize strategies that effectively reduce these harmful pollutants. We found that the amount of ventilation required to maintain good air quality, per child, was approximately 20.4 m3/h. However, we also found that as the amount of ventilation increased, so did the concentration of indoor PM2.5; we found that this issue can be resolved using a high-grade filter (i.e., a MERV 13 grade filter with a collection efficiency of 75%). This study provides a scientific basis for reducing PM2.5 concentrations in kindergartens, while keeping CO2 levels low. Full article
Show Figures

Figure 1

15 pages, 7415 KiB  
Article
Suppressed Histone H3 Lysine 18 Acetylation Is Involved in Arsenic-Induced Liver Fibrosis in Rats by Triggering the Dedifferentiation of Liver Sinusoidal Endothelial Cells
by Fang Hu, Xingcheng Zhou, Qianqian Peng and Lu Ma
Toxics 2023, 11(11), 928; https://doi.org/10.3390/toxics11110928 - 13 Nov 2023
Cited by 1 | Viewed by 1327
Abstract
Arsenic pollution is a global environmental concern. Arsenic-induced chronic liver injury and its irreversible outcomes, including liver cirrhosis and liver cancer, threaten the health of residents in arsenic-contaminated areas. Liver fibrosis is a reversible pathological stage in the progression of arsenic-induced chronic liver [...] Read more.
Arsenic pollution is a global environmental concern. Arsenic-induced chronic liver injury and its irreversible outcomes, including liver cirrhosis and liver cancer, threaten the health of residents in arsenic-contaminated areas. Liver fibrosis is a reversible pathological stage in the progression of arsenic-induced chronic liver injury to cirrhosis and liver cancer. The aim of this study is to identify the epigenetic mechanism of arsenic-induced liver fibrosis based on the dedifferentiation of liver sinusoidal endothelial cells (LSECs). Rats were treated with 0.0, 2.5, 5.0, or 10.0 mg/kg sodium arsenite for 36 weeks. Marked fibrotic phenotypes were observed in the rat livers, manifested by hepatic stellate cell activation and an increased extracellular matrix, as well as the deposition of collagen fibers. The reduced fenestrations on the cells’ surface and the increased expression of the dedifferentiation marker CD31 corroborated the LSECs’ dedifferentiation in the liver tissue, which was also found to be significantly associated with fibrotic phenotypes. We further revealed that arsenic exposure could inhibit the enrichment of histone H3 lysine 18 acetylation (H3K18ac) in the promoters of Fcgr2b and Lyve1, two key genes responsible for maintaining the differentiation phenotype of LSECs. This inhibition subsequently suppressed the genes’ expression, promoting LSEC dedifferentiation and subsequent liver fibrosis. In conclusion, arsenic can trigger liver fibrosis by inhibiting H3K18ac-dependent maintenance of LSEC differentiation. These findings uncover a novel mechanism of arsenic-induced liver fibrosis based on a new insight into epigenetically dependent LSEC dedifferentiation. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 1164 KiB  
Article
Exposure Profile and Characteristics of Parabens and Alkylphenols in Plasma among Rural Adults in Central China
by Qian Gao, Changsheng Huan, Yu Song, Zexin Jia, Qingqing Cao, Chongjian Wang, Zhenxing Mao and Wenqian Huo
Toxics 2023, 11(11), 926; https://doi.org/10.3390/toxics11110926 - 13 Nov 2023
Viewed by 1032
Abstract
Parabens and alkylphenols pose serious hazards to human health, yet there are few studies on their exposure profiles and health risks in rural Chinese populations. In this study, 804 participants were selected from the Henan Rural Cohort in mid-eastern China. The plasma levels [...] Read more.
Parabens and alkylphenols pose serious hazards to human health, yet there are few studies on their exposure profiles and health risks in rural Chinese populations. In this study, 804 participants were selected from the Henan Rural Cohort in mid-eastern China. The plasma levels of parabens (methylparaben, ethylparaben, propylparaben, butylparaben (BuP)) and alkylphenols (4-tert-butylphenol (4-t-BP), 4-tert-octylphenol (4-t-OP)) were analyzed via liquid chromatography–tandem mass spectrometry. Linear regression models were used to investigate factors that may influence pollutant exposure levels. The correlation between contaminants was assessed using Spearman’s correlation. The human contaminant intake was estimated using the estimated daily intake (EDI). The health risk was assessed using the hazard quotient (HQ). The detection frequency of four parabens and two alkylphenols exceeded 75%, with median concentrations of 0.444, 0.067, 0.078, 0.053, 8.810, and 6.401 ng/mL, respectively. Significant correlations were observed between parabens, as well as between 4-t-BP and 4-t-OP. Regarding gender, paraben concentrations were higher in women than in men, except for BuP. The EDI for pollutants except 4-t-OP was lower than their respective tolerable/acceptable daily intake. In total, 85.70% of participants had 4-t-OP HQ > 1. A widespread exposure to parabens and alkylphenols among the rural population was found. The high health risks of alkylphenol exposure indicate that alkylphenols should be used with caution. Full article
(This article belongs to the Special Issue Endocrine Disruptors Exposure, Toxicity and Health Risk Assessment)
Show Figures

Figure 1

16 pages, 4875 KiB  
Article
Polystyrene Nanoplastics in Aquatic Microenvironments Affect Sperm Metabolism and Fertilization of Mytilus galloprovincialis (Lamark, 1819)
by Martina Contino, Greta Ferruggia, Stefania Indelicato, Roberta Pecoraro, Elena Maria Scalisi, Antonio Salvaggio and Maria Violetta Brundo
Toxics 2023, 11(11), 924; https://doi.org/10.3390/toxics11110924 - 11 Nov 2023
Viewed by 1084
Abstract
The continuous and unregulated discharge of wastes and pollutants into the aquatic environment has required constant monitoring of the risks incurred by aquatic ecosystems. Alarmism arises from plastic pollution as larger artifacts release nanoscale fragments that can contact free-living stages such as gametes, [...] Read more.
The continuous and unregulated discharge of wastes and pollutants into the aquatic environment has required constant monitoring of the risks incurred by aquatic ecosystems. Alarmism arises from plastic pollution as larger artifacts release nanoscale fragments that can contact free-living stages such as gametes, embryos, and larvae. Specifically, the interaction between spermatozoa, released in water in externally fertilizing species, and the surrounding microenvironment is essential for successful fertilization. Activation and kinematics of movement, proper maintenance of ionic balance, and chemotactism are processes highly sensitive to even minimal perturbations caused by pollutants such as polystyrene nanoplastics. Spermatozoa of Mytilus galloprovincialis (M. galloprovincialis), an excellent ecotoxicological model, undergo structural (plasma membrane ruptures, DNA damage) and metabolic (reduced motility, fertilizing capacity) damage upon exposure to 50 nm amino-modified polystyrene nanoplastics (nPS-NH2). Nanoplastics of larger diameter (100 nm) did not affect sperm parameters. The findings highlighted the negative impact that plastic pollution, related to nanoparticle diameter and concentration, could have on sperm quality and reproductive potential of organisms, altering the equilibrium of aquatic ecosystems. Full article
(This article belongs to the Special Issue Spotlight on the Ecotoxicological Impacts of Plastic Pollution)
Show Figures

Figure 1

16 pages, 3751 KiB  
Article
Growth Hormones in Broad Bean (Vicia faba L.) and Radish (Raphanus raphanistrum subsp. sativus L.) Are Associated with Accumulated Concentrations of Perfluoroalkyl Substances
by Thimo Groffen, Niels Kuijper, Sevgi Oden, Tim Willems, Lieven Bervoets and Els Prinsen
Toxics 2023, 11(11), 922; https://doi.org/10.3390/toxics11110922 - 11 Nov 2023
Viewed by 1376
Abstract
In this study, we grew radish (Raphanus raphanistrum subsp. sativus L.) and broad beans (Vicia faba L.) in a greenhouse on soils spiked with a mixture of 15 per- and polyfluoroalkyl substances (PFASs) and investigated the association between accumulated ∑PFAS concentrations, [...] Read more.
In this study, we grew radish (Raphanus raphanistrum subsp. sativus L.) and broad beans (Vicia faba L.) in a greenhouse on soils spiked with a mixture of 15 per- and polyfluoroalkyl substances (PFASs) and investigated the association between accumulated ∑PFAS concentrations, growth, and hormone levels. Short-chained PFASs dominated aboveground tissues, whereas long-chained PFASs were most abundant in the plant roots. Our results showed that the presence or absence of exodermal Casparian strips, as well as the hydrophobicity and anion exchange capacities of PFASs, could explain the translocation of PFASs within plants. Significant associations found between accumulated PFAS concentrations and levels of gibberellins (GA1 and GA15), methionine, and indole-3-acetic acid (IAA) imply potential effects of PFASs on plant development and growth. This study provides the first evidence of associations between PFAS accumulation in plants and growth hormone levels, possibly leading to growth reduction of the apical dome and effects on the cell cycle in pericycle cells and methionine metabolism in plants. Full article
(This article belongs to the Special Issue Ecotoxicology and Ecological Risks of PFAS)
Show Figures

Figure 1

17 pages, 2144 KiB  
Article
Toxicity of Beauty Salon Effluents Contaminated with Hair Dye on Aquatic Organisms
by Letícia C. Gonçalves, Matheus M. Roberto, Paloma V. L. Peixoto, Cristina Viriato, Adriana F. C. da Silva, Valdenilson J. A. de Oliveira, Mariza C. C. Nardi, Lilian C. Pereira, Dejanira de F. de Angelis and Maria A. Marin-Morales
Toxics 2023, 11(11), 911; https://doi.org/10.3390/toxics11110911 - 7 Nov 2023
Viewed by 1739
Abstract
Cosmetic residues have been found in water resources, especially trace elements of precursors, couplers, and pigments of hair dyes, which are indiscriminately disposed of in the sewage system. These contaminants are persistent, bioactive, and bioaccumulative, and may pose risks to living beings. Thus, [...] Read more.
Cosmetic residues have been found in water resources, especially trace elements of precursors, couplers, and pigments of hair dyes, which are indiscriminately disposed of in the sewage system. These contaminants are persistent, bioactive, and bioaccumulative, and may pose risks to living beings. Thus, the present study assessed the ecotoxicity of two types of effluents generated in beauty salons after the hair dyeing process. The toxicity of effluent derived from capillary washing with water, shampoo, and conditioner (complete effluent—CE) and effluent not associated with these products (dye effluent—DE) was evaluated by tests carried out with the aquatic organisms Artemia salina, Daphnia similis, and Danio rerio. The bioindicators were exposed to pure samples and different dilutions of both effluents. The results showed toxicity in D. similis (CE50 of 3.43% and 0.54% for CE and DE, respectively); A. salina (LC50 8.327% and 3.874% for CE and DE, respectively); and D. rerio (LC50 of 4.25–4.59% and 7.33–8.18% for CE and DE, respectively). Given these results, we can infer that hair dyes, even at low concentrations, have a high toxic potential for aquatic biota, as they induced deleterious effects in all tested bioindicators. Full article
Show Figures

Graphical abstract

15 pages, 2900 KiB  
Article
Distribution Characteristics of Microplastics in Surface Seawater off the Yangtze River Estuary Section and Analysis of Ecological Risk Assessment
by Xiao Ji, Shuaishuai Yan, Yanlong He, Haisheng He and Hanqi Liu
Toxics 2023, 11(11), 889; https://doi.org/10.3390/toxics11110889 - 30 Oct 2023
Viewed by 1512
Abstract
Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off [...] Read more.
Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off the Yangtze River estuary during four seasons (spring, summer, autumn, and winter). The abundance and characteristics of microplastics in seawater were researched. The results showed that microplastics widely existed in surface seawater; the average abundance of microplastics in seawater was (0.17 ± 0.14) items/m3 (0.00561 ± 0.00462) mg/m3; and accounting for 80% of the total plastic debris, the abundance of microplastics was at moderately low levels compared to national and international studies. The particle size of most microplastics was between 1 mm to 2 mm, accounting for 36.1% of the total microplastics. The main shapes of microplastics were fiber, flake, and line, accounting for 39.5%, 28.4%, and 20.8%, respectively. Polypropylene, polyethylene terephthalate, and polyethylene were the main components of microplastics, accounting for 41.0%, 25.1%, and 24.9%, respectively. Yellow, green, black, and transparent were the most common colors, accounting for 21.9%, 19.6%, 16.5%, and 15.7%, respectively. This study shows that the spatial distribution of microplastics in the surface waters off the Yangtze River estuary shows a decreasing trend from nearshore to farshore due to the influence of land-based inputs, hydrodynamics, and human activities; the distribution of microplastics has obvious seasonal changes, and the level of microplastic pollution is higher in summer. The potential ecological risk of microplastics in the surface waters off the Yangtze River estuary is relatively small. Full article
Show Figures

Figure 1

12 pages, 2058 KiB  
Article
Associations of Long-Term Exposure to PM2.5 and Its Constituents with Erythrocytosis and Thrombocytosis in Rural Populations
by Yiquan Zheng, Yaling He, Ning Kang, Caiyun Zhang, Wei Liao, Yinghao Yuchi, Xiaotian Liu, Jian Hou, Zhenxing Mao, Wenqian Huo, Kai Zhang, Hezhong Tian, Hualiang Lin and Chongjian Wang
Toxics 2023, 11(11), 885; https://doi.org/10.3390/toxics11110885 - 27 Oct 2023
Viewed by 1006
Abstract
Evidence on the effect of long-term exposure to fine particulate matter (PM2.5) on erythrocytosis and thrombocytosis prevalence was limited. We aimed to investigate the association of PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis. The present study [...] Read more.
Evidence on the effect of long-term exposure to fine particulate matter (PM2.5) on erythrocytosis and thrombocytosis prevalence was limited. We aimed to investigate the association of PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis. The present study included a total of 33,585 participants from the Henan Rural Cohort at baseline between 2015 and 2017. A hybrid satellite-based model was employed to estimate the concentrations of PM2.5 mass and its constituents (including black carbon [BC], nitrate [NO3], ammonium [NH4+], inorganic sulfate [SO42−], organic matter [OM], and soil particles [SOIL]). The logistic regression model was used to assess the associations of single exposure to PM2.5 and its constituents with the risks of erythrocytosis and thrombocytosis, and the quantile G-computation method was applied to evaluate their joint exposure risk. For the independent association, the odds ratios for erythrocytosis/thrombocytosis with 1 μg/m3 increase was 1.049/1.043 for PM2.5 mass, 1.596/1.610 for BC, 1.410/1.231 for NH4+, 1.205/1.139 for NO3, 1.221/1.359 for OM, 1.300/1.143 for SO42−, and 1.197/1.313 for SOIL. Joint exposure to PM2.5 and its components was also positively associated with erythrocytosis and thrombocytosis. The estimated weight of NH4+ was found to be the largest for erythrocytosis, while OM had the largest weight for thrombocytosis. PM2.5 mass and its constituents were positively linked to prevalent erythrocytosis and thrombocytosis, both in single-exposure and joint-exposure models. Additionally, NH4+/OM was identified as a potentially responsible component for the association between PM2.5 and erythrocytosis/thrombocytosis. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

11 pages, 927 KiB  
Article
Safety and Toxicology Study of Hu7691, a Novel AKT Inhibitor, following Oral Administration in Rats
by Renhua Gai, Chao Chen, Wei Zhang, Jian Ma, Xiaomeng Wang, Xiaoqing Chi and Guangxing Li
Toxics 2023, 11(11), 880; https://doi.org/10.3390/toxics11110880 - 26 Oct 2023
Viewed by 1056
Abstract
Hu7691 represents a novel Pan-Akt kinase inhibitor, demonstrating excellent selectivity towards non-AGC kinase families and pronounced inhibitory effects on the proliferation of multiple tumor cell lines. However, there is currently a notable absence of in vivo toxicological research evidence concerning Hu7691. This study [...] Read more.
Hu7691 represents a novel Pan-Akt kinase inhibitor, demonstrating excellent selectivity towards non-AGC kinase families and pronounced inhibitory effects on the proliferation of multiple tumor cell lines. However, there is currently a notable absence of in vivo toxicological research evidence concerning Hu7691. This study represents the first investigation into the 14-day repeated-dose toxicity of Hu7691 in male and female Sprague Dawley (SD) rats. Male rats were administered daily doses of 12.5, 50, 100, and 150 mg/kg/day, while female rats received doses of 12.5, 25, 50, and 75 mg/kg/day for 14 consecutive days. Hematological assessments, organ weights, and histopathological examinations revealed corresponding alterations, suggesting potential target organs for toxicity including the spleen, thymus, and gastrointestinal tract. It is worth noting that the test substance may also impact the liver, kidneys, heart, and ovaries. The No Observed Effect Level (NOAEL) was determined to be no greater than 12.5 mg/kg/day. Based on the observed gender-related toxicity differences in preliminary trials, it is recommended that the high dose reference dose for male animals in formal experiments should not be less than 100 mg/kg/day, while for female animals, it should be less than 50 mg/kg/day. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Figure 1

12 pages, 1701 KiB  
Article
New Insights into Nanoplastics Ecotoxicology: Effects of Long-Term Polystyrene Nanoparticles Exposure on Folsomia candida
by Angela Barreto, Joana Santos, Gonçalo Andrade, Matilde Santos and Vera L. Maria
Toxics 2023, 11(10), 876; https://doi.org/10.3390/toxics11100876 - 22 Oct 2023
Viewed by 1699
Abstract
Despite the growing concern over nanoplastics’ (NPls) environmental impacts, their long-term effects on terrestrial organisms remain poorly understood. The main aim of this study was to assess how NPls exposure impacts both the parental (F1) and subsequent generations (F2 and F3) of the [...] Read more.
Despite the growing concern over nanoplastics’ (NPls) environmental impacts, their long-term effects on terrestrial organisms remain poorly understood. The main aim of this study was to assess how NPls exposure impacts both the parental (F1) and subsequent generations (F2 and F3) of the soil-dwelling species Folsomia candida. After a standard exposure (28 days), we conducted a multigenerational study along three generations (84 days), applying polystyrene nanoparticles (PS NPs; diameter of 44 nm) as representatives of NPls. Endpoints from biochemical to individual levels were assessed. The standard test: PS NPs (0.015 to 900 mg/kg) had no effect in F. candida survival or reproduction. The multigenerational test: PS NPs (1.5 and 300 mg/kg) induced no effects on F. candida survival and reproduction along the three generations (F1 to F3). PS NPs induced no effects in catalase, glutathione reductase, glutathione S-transferases, and acetylcholinesterase activities for the juveniles of the F1 to F3. Oxidative damage through lipid peroxidation was detected in the offspring of F1 but not in the juveniles of F2 and F3. Our findings underscore the importance of evaluating multigenerational effects to gain comprehensive insights into the contaminants long-term impact, particularly when organisms are continuously exposed, as is the case with NPls. Full article
Show Figures

Figure 1

12 pages, 1931 KiB  
Article
Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L.
by Yi Lu, Fangyuan Peng, Yingyang Wang, Haipu Li and Zhaoguang Yang
Toxics 2023, 11(10), 860; https://doi.org/10.3390/toxics11100860 - 14 Oct 2023
Viewed by 1093
Abstract
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite [...] Read more.
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate—PV), and SbIII analogs (arsenite—AsIII, glycerol, silicic acid—Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils. Full article
Show Figures

Figure 1

21 pages, 10935 KiB  
Article
Analyzing the Impact of Diesel Exhaust Particles on Lung Fibrosis Using Dual PCR Array and Proteomics: YWHAZ Signaling
by Byeong-Gon Kim, Pureun-Haneul Lee, Jisu Hong and An-Soo Jang
Toxics 2023, 11(10), 859; https://doi.org/10.3390/toxics11100859 - 13 Oct 2023
Viewed by 1226
Abstract
Air pollutants are associated with exacerbations of asthma, chronic bronchitis, and airway inflammation. Diesel exhaust particles (DEPs) can induce and worsen lung diseases. However, there are insufficient data to guide polymerase chain reaction (PCR) array proteomics studies regarding the impacts of DEPs on [...] Read more.
Air pollutants are associated with exacerbations of asthma, chronic bronchitis, and airway inflammation. Diesel exhaust particles (DEPs) can induce and worsen lung diseases. However, there are insufficient data to guide polymerase chain reaction (PCR) array proteomics studies regarding the impacts of DEPs on respiratory diseases. This study was performed to identify genes and proteins expressed in normal human bronchial epithelial (NHBE) cells. MicroRNAs (miRNAs) and proteins expressed in NHBE cells exposed to DEPs at 1 μg/cm2 for 8 h and 24 h were identified using PCR array analysis and 2D PAGE/LC-MS/MS, respectively. YWHAZ gene expression was estimated using PCR, immunoblotting, and immunohistochemical analyses. Genes discovered through an overlap analysis were validated in DEP-exposed mice. Proteomics approaches showed that exposing NHBE cells to DEPs led to changes in 32 protein spots. A transcriptomics PCR array analysis showed that 6 of 84 miRNAs were downregulated in the DEP exposure groups compared to controls. The mRNA and protein expression levels of YWHAZ, β-catenin, vimentin, and TGF-β were increased in DEP-treated NHBE cells and DEP-exposed mice. Lung fibrosis was increased in mice exposed to DEPs. Our combined PCR array–omics analysis demonstrated that DEPs can induce airway inflammation and lead to lung fibrosis through changes in the expression levels of YWHAZ, β-catenin, vimentin, and TGF-β. These findings suggest that dual approaches can help to identify biomarkers and therapeutic targets involved in pollutant-related respiratory diseases. Full article
Show Figures

Figure 1

16 pages, 2388 KiB  
Article
Development of an In Vitro Assessment Method for Chemotherapy-Induced Peripheral Neuropathy (CIPN) by Integrating a Microphysiological System (MPS) with Morphological Deep Learning of Soma and Axonal Images
by Kazuki Matsuda, Xiaobo Han, Naoki Matsuda, Makoto Yamanaka and Ikuro Suzuki
Toxics 2023, 11(10), 848; https://doi.org/10.3390/toxics11100848 - 10 Oct 2023
Cited by 2 | Viewed by 1460
Abstract
Several anticancer drugs used in cancer therapy induce chemotherapy-induced peripheral neuropathy (CIPN), leading to dose reduction or therapy cessation. Consequently, there is a demand for an in vitro assessment method to predict CIPN and mechanisms of action (MoA) in drug candidate compounds. In [...] Read more.
Several anticancer drugs used in cancer therapy induce chemotherapy-induced peripheral neuropathy (CIPN), leading to dose reduction or therapy cessation. Consequently, there is a demand for an in vitro assessment method to predict CIPN and mechanisms of action (MoA) in drug candidate compounds. In this study, a method assessing the toxic effects of anticancer drugs on soma and axons using deep learning image analysis is developed, culturing primary rat dorsal root ganglion neurons with a microphysiological system (MPS) that separates soma from neural processes and training two artificial intelligence (AI) models on soma and axonal area images. Exposing the control compound DMSO, negative compound sucrose, and known CIPN-causing drugs (paclitaxel, vincristine, oxaliplatin, suramin, bortezomib) for 24 h, results show the somatic area-learning AI detected significant cytotoxicity for paclitaxel (* p < 0.05) and oxaliplatin (* p < 0.05). In addition, axonal area-learning AI detected significant axonopathy with paclitaxel (* p < 0.05) and vincristine (* p < 0.05). Combining these models, we detected significant toxicity in all CIPN-causing drugs (** p < 0.01) and could classify anticancer drugs based on their different MoA on neurons, suggesting that the combination of MPS-based culture segregating soma and axonal areas and AI image analysis of each area provides an effective evaluation method to predict CIPN from low concentrations and infer the MoA. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
Nonlinear SAR Modelling of Mosquito Repellents for Skin Application
by James Devillers, Adeline Larghi, Valérie Sartor, Marie-Laure Setier-Rio, Christophe Lagneau and Hugo Devillers
Toxics 2023, 11(10), 837; https://doi.org/10.3390/toxics11100837 - 2 Oct 2023
Viewed by 1186
Abstract
Finding new marketable mosquito repellents is a complex and time-consuming process that can be optimized via modelling. In this context, a SAR (Structure–Activity Relationship) model was designed from a set of 2171 molecules whose actual repellent activity against Aedes aegypti was available. Information-rich [...] Read more.
Finding new marketable mosquito repellents is a complex and time-consuming process that can be optimized via modelling. In this context, a SAR (Structure–Activity Relationship) model was designed from a set of 2171 molecules whose actual repellent activity against Aedes aegypti was available. Information-rich descriptors were used as input neurons of a three-layer perceptron (TLP) to compute the models. The most interesting classification model was a 20/6/2 TLP showing 94% and 89% accuracy on the training set and test set, respectively. A total of 57 other artificial neural network models based on the same architecture were also computed. This allowed us to consider all chemicals both as training and test set members in order to better interpret the results obtained with the selected model. Most of the wrong predictions were explainable. The 20/6/2 TLP model was then used for predicting the potential repellent activity of new molecules. Among them, two were successfully evaluated in vivo. Full article
Show Figures

Figure 1

19 pages, 2466 KiB  
Article
Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects
by Tesnim Ben Rayana, Pascal Wild, Amélie Debatisse, Valérie Jouannique, Kirushanthi Sakthithasan, Guillaume Suarez and Irina Guseva Canu
Toxics 2023, 11(10), 836; https://doi.org/10.3390/toxics11100836 - 2 Oct 2023
Cited by 2 | Viewed by 1224
Abstract
Introduction: Health effects after long-term exposure to subway particulate matter (PM) remain unknown due to the lack of individual PM exposure data. This study aimed to apply the job exposure matrix (JEM) approach to retrospectively assess occupational exposure to PM in the Parisian [...] Read more.
Introduction: Health effects after long-term exposure to subway particulate matter (PM) remain unknown due to the lack of individual PM exposure data. This study aimed to apply the job exposure matrix (JEM) approach to retrospectively assess occupational exposure to PM in the Parisian subway. Methods: Job, the line and sector of the transport network, as well as calendar period were four JEM dimensions. For each combination of these dimensions, we generated statistical models to estimate the annual average PM10 concentration using data from an exhaustive inventory of the PM measurement campaigns conducted between 2004 and 2020 in the Parisian subway and historical data from the Parisian air pollution monitoring network. The resulting JEM and its exposure estimates were critically examined by experts using the uncertainty analysis framework. Results: The resulting JEM allows for the assignment of the estimated annual PM10 concentration to three types of professionals working in the subway: locomotive operators, station agents, and security guards. The estimates’ precision and validity depend on the amount and quality of PM10 measurement data used in the job-, line-, and sector-specific models. Models using large amounts of personal exposure measurement data produced rather robust exposure estimates compared to models with lacunary data (i.e., in security guards). The analysis of uncertainty around the exposure estimates allows for the identification of the sources of uncertainty and parameters to be addressed in the future in order to refine and/or improve the JEM. Conclusions: The JEM approach seems relevant for the retrospective exposure assessment of subway workers. When applied to available data on PM10, it allows for the estimation of this exposure in locomotive operators and station agents with an acceptable validity. Conversely, for security guards, the current estimates have insufficient validity to recommend their use in an epidemiological study. Therefore, the current JEM should be considered as a valid prototype, which shall be further improved using more robust measurements for some jobs. This JEM can also be further refined by considering additional exposure determinants. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Diseases)
Show Figures

Figure 1

16 pages, 4387 KiB  
Article
The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice
by Yifei Yang, Yun-Chung Hsiao, Chih-Wei Liu and Kun Lu
Toxics 2023, 11(10), 833; https://doi.org/10.3390/toxics11100833 - 1 Oct 2023
Viewed by 1192
Abstract
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as [...] Read more.
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins “rescued” from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

21 pages, 5889 KiB  
Article
Perfluorooctanoic Acid Promotes Recruitment and Exocytosis of Rodlet Cells in the Renal Hematopoietic Tissue of Common Carp
by Maurizio Manera, Giuseppe Castaldelli and Luisa Giari
Toxics 2023, 11(10), 831; https://doi.org/10.3390/toxics11100831 - 30 Sep 2023
Cited by 3 | Viewed by 1214
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants, with perfluorooctanoic acid (PFOA) being a prominent member. PFOA poses a risk to aquatic ecosystems and human health due to its presence in water, environmental persistence, and bioaccumulation. Since rodlet cells (RCs) have emerged [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants, with perfluorooctanoic acid (PFOA) being a prominent member. PFOA poses a risk to aquatic ecosystems and human health due to its presence in water, environmental persistence, and bioaccumulation. Since rodlet cells (RCs) have emerged as potential biomarkers for chemical stressors, this study aimed to investigate the effects of sub-chronic PFOA exposure on RCs in the renal hematopoietic tissue of common carp. Three groups of fish were used: an unexposed control group and two groups exposed to environmentally relevant (200 ng L−1) and elevated (2 mg L−1) PFOA concentrations. Light and transmission electron microscopy were employed to assess RCs’ distribution patterns and exocytosis, while biometry quantified RCs in the hematopoietic tissue. The results showed that, even at environmentally relevant concentrations, PFOA significantly influenced RCs’ distribution patterns, leading to increased occurrence and cluster formation, as well as heightened exocytosis activity. This research highlights PFOA’s immunotoxicity in fish and suggests the potential of RCs as sentinel cells in the immunological response to environmental contaminants. These findings enhance our understanding of PFAS toxicity and emphasise the importance of monitoring their impact on fish as representative vertebrates and reliable animal models. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

21 pages, 3683 KiB  
Article
Short-Term Transcriptomic Points of Departure Are Consistent with Chronic Points of Departure for Three Organophosphate Pesticides across Mouse and Fathead Minnow
by Rubia Martin, Monique Hazemi, Kevin Flynn, Daniel Villeneuve and Leah Wehmas
Toxics 2023, 11(10), 820; https://doi.org/10.3390/toxics11100820 - 29 Sep 2023
Cited by 1 | Viewed by 957
Abstract
New approach methods (NAMs) can reduce the need for chronic animal studies. Here, we apply benchmark dose (concentration) (BMD(C))–response modeling to transcriptomic changes in the liver of mice and in fathead minnow larvae after short-term exposures (7 days and 1 day, respectively) to [...] Read more.
New approach methods (NAMs) can reduce the need for chronic animal studies. Here, we apply benchmark dose (concentration) (BMD(C))–response modeling to transcriptomic changes in the liver of mice and in fathead minnow larvae after short-term exposures (7 days and 1 day, respectively) to several dose/concentrations of three organophosphate pesticides (OPPs): fenthion, methidathion, and parathion. The mouse liver transcriptional points of departure (TPODs) for fenthion, methidathion, and parathion were 0.009, 0.093, and 0.046 mg/Kg-bw/day, while the fathead minnow larva TPODs were 0.007, 0.115, and 0.046 mg/L, respectively. The TPODs were consistent across both species and reflected the relative potencies from traditional chronic toxicity studies with fenthion identified as the most potent. Moreover, the mouse liver TPODs were more sensitive than or within a 10-fold difference from the chronic apical points of departure (APODs) for mammals, while the fathead minnow larva TPODs were within an 18-fold difference from the chronic APODs for fish species. Short-term exposure to OPPs significantly impacted acetylcholinesterase mRNA abundance (FDR p-value <0.05, |fold change| ≥2) and canonical pathways (IPA, p-value <0.05) associated with organism death and neurological/immune dysfunctions, indicating the conservation of key events related to OPP toxicity. Together, these results build confidence in using short-term, molecular-based assays for the characterization of chemical toxicity and risk, thereby reducing reliance on chronic animal studies. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

17 pages, 3298 KiB  
Article
Assessment of Radiation Exposure in a Nuclear Medicine Department during 99mTc-MDP Bone Scintigraphy
by Suphalak Khamruang Marshall, Piyatida Prom-on, Siriluck Sangkue and Wasinee Thiangsook
Toxics 2023, 11(10), 814; https://doi.org/10.3390/toxics11100814 - 26 Sep 2023
Cited by 2 | Viewed by 26066
Abstract
This study measured 99mTc-MDP bone scintigraphy radiation risks, as low-dose radiation exposure is a growing concern. Dosimeter measurements were taken at four positions (left lateral, right lateral, anterior, and posterior) around the patients at 30, 60, 100, and 200 cm at 0, [...] Read more.
This study measured 99mTc-MDP bone scintigraphy radiation risks, as low-dose radiation exposure is a growing concern. Dosimeter measurements were taken at four positions (left lateral, right lateral, anterior, and posterior) around the patients at 30, 60, 100, and 200 cm at 0, 1.5, and 3 h. The highest dose rates were recorded from 51% of the patients, who emitted ≥ 25 µSv/h up to 49.00 µSv/h at the posterior location at a distance of 30 cm. Additionally, at the anterior location at a distance of 30 cm, 42% of patients emitted ≥ 25 µSv/h up to 38.00 µSv/h. Furthermore, at 1.5 h after the tracer injection, 7% of the dose rates exceeded 25 µSv/h. There was a significant reduction in mean dose rates for all positions as distance and time increased (p-value < 0.05). As a result, radiation levels decreased with increased distance and time as a result of radiation decay, biological clearance, and distance from the source. In addition, increasing the distance from the patient for all positions reduced the radiation dose, as was substantiated via exponential regression analysis. Additionally, after completing the bone scintigraphy, the patients’ dose rates on discharge were within the current guidelines, and the mean radiation doses from 99mTc-MDP were below occupational limits. Thus, medical staff received less radiation than the recommended 25 μSv/h. On discharge and release to public areas, the patients’ mean dose rates were as follows: 1.13 µSv/h for the left lateral position, 1.04 µSv/h for the right lateral, 1.39 µSv/h for the anterior, and 1.46 µSv/h for the posterior. This confirms that if an individual was continuously present in an unrestricted area, the dose from external sources would not exceed 20 µSv/h. Furthermore, the patients’ radiation doses were below the public exposure limit on discharge. Full article
(This article belongs to the Special Issue Radiation: Occurrence, Transport and Effect)
Show Figures

Figure 1

14 pages, 2926 KiB  
Article
Mathematical Estimation of Endogenous Proline as a Bioindicator to Regulate the Stress of Trivalent Chromium on Rice Plants Grown in Different Nitrogenous Conditions
by Chengzhi Li, Yuxi Feng, Peng Tian and Xiaozhang Yu
Toxics 2023, 11(10), 803; https://doi.org/10.3390/toxics11100803 - 22 Sep 2023
Viewed by 885
Abstract
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO [...] Read more.
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO3)/ammonium (NH4+)] N on the accumulation of proline (Pro) in rice plants under trivalent chromium [Cr(III)] stress were studied through using the mass balance matrix model (MBMM). Application of ‘NH4+’ showed the largest contribution to the Pro content in rice shoots under different concentrations of Cr(III), followed by ‘NO3’, ‘Arg’, and ‘Glu’ applications. On the other hand, ‘Arg’ application displayed the largest contribution to the Pro content in roots under Cr(III) stress, followed by ‘NH4+’, ‘Glu’, and ‘NO3’ applications. The combined application of ‘NH4++Arg’ showed the greatest contribution to the Pro content in both roots and shoots of Cr(III)-treated rice seedlings, while the application of ‘NO3+Glu’ showed the least contribution to the Pro content in rice seedlings. The current study indicated that the endogenous level of Pro in rice seedlings is quite sensitive to Cr(III) stress under different N sources, and the mathematical modeling showed a reliable result while estimating the relationship between Pro content and N source application. Full article
Show Figures

Figure 1

19 pages, 1401 KiB  
Article
Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study
by Paulo Cesar Basta, Ana Claudia Santiago de Vasconcellos, Gustavo Hallwass, Decio Yokota, Daniel de Oliveira d’El Rei Pinto, Danicley Saraiva de Aguiar, Ciro Campos de Souza and Marcelo Oliveira-da-Costa
Toxics 2023, 11(9), 800; https://doi.org/10.3390/toxics11090800 - 21 Sep 2023
Cited by 11 | Viewed by 2863
Abstract
Mercury is one of the most dangerous contaminants on the planet. In recent years, evidence of mercury contamination in the Amazon has significantly increased, notably due to gold-mining activities. Although mercury contamination in fish has consistently been documented, little is known about the [...] Read more.
Mercury is one of the most dangerous contaminants on the planet. In recent years, evidence of mercury contamination in the Amazon has significantly increased, notably due to gold-mining activities. Although mercury contamination in fish has consistently been documented, little is known about the risk associated with fish consumption by populations in urban areas of the Amazon. We sampled 1010 fish sold in public markets in six state capitals and 11 additional cities. Mercury levels were determined for each specimen, and the evaluation of the health risks associated with consuming mercury-contaminated fish was conducted according to the methodology proposed by the World Health Organization (WHO). Our study reveals that more than one-fifth (21.3%) of the fish sold in urban centers had mercury levels above the safe limits (≥0.5 µg/g) established by the Brazilian Health Surveillance Agency (ANVISA). The prevalence of Hg contamination ≥0.5 µg/g was approximately 14 times higher in carnivorous than in noncarnivorous fish. The analysis of the risk attributable to fish consumption reveals that daily mercury intake exceeded the reference dose recommended by the U.S. EPA in all population groups analyzed, reaching up to 7 and 31 times in women of childbearing age and children from 2 to 4 years old, respectively. However, these risks are diverse depending on the type of fish consumed and must be considered to formulate appropriate nutritional guidelines for safe fish consumption by the local community. Full article
Show Figures

Figure 1

12 pages, 4449 KiB  
Article
The Therapeutic Effect of Catechin on Nephrolithiasis Induced by Co-Exposure to Melamine and Cyanuric Acid in Sprague–Dawley Rats
by Hangwei Wang, Zhanren Liu, Shaojie Liu, Ruoru Yang, Yifei Wang, Yiying Gu, Min Wu, Ruihua Dong and Bo Chen
Toxics 2023, 11(9), 799; https://doi.org/10.3390/toxics11090799 - 21 Sep 2023
Viewed by 1036
Abstract
This study aimed to assess the therapeutic efficacy of catechin against experimentally induced kidney stones resulting from co-exposure to melamine (MEL) and cyanuric acid (CYA) in male Sprague–Dawley rats. To induce nephrolithiasis, a combination of MEL and CYA (1:1 ratio, each at a [...] Read more.
This study aimed to assess the therapeutic efficacy of catechin against experimentally induced kidney stones resulting from co-exposure to melamine (MEL) and cyanuric acid (CYA) in male Sprague–Dawley rats. To induce nephrolithiasis, a combination of MEL and CYA (1:1 ratio, each at a dose of 31.5 mg/kg bw/day) was administered to the rats for 28 consecutive days. After nephrolithiasis was successfully induced, the rats were randomly divided into two groups: a treatment group and a sham group. The treatment group was given a daily oral dose of 50 mg/kg of catechin for 28 days, while the sham group received no intervention. Urine and blood samples were collected throughout the treatment period, and kidney samples were taken on day 28. Our findings demonstrated that treatment with catechin significantly reduced crystal deposition and pathological damage in the rats from nephrolithiasis. Additionally, renal injury markers were significantly decreased in the treatment group compared to the sham group. These findings suggest that catechin has potential therapeutic benefits in treating nephrolithiasis induced by co-exposure to MEL and CYA. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

17 pages, 3100 KiB  
Article
Untargeted Metabolomics Analysis Reveals Toxicity Based on the Sex and Sexual Maturity of Single Low-Dose DEHP Exposure
by Hyeon-Jeong Lee, Jonghwa Jin, Yoondam Seo, Inseon Kang, Junghyun Son, Eugene C. Yi and Hophil Min
Toxics 2023, 11(9), 794; https://doi.org/10.3390/toxics11090794 - 20 Sep 2023
Cited by 1 | Viewed by 1291
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) is a prevalent environmental endocrine disruptor that affects homeostasis, reproduction, and developmental processes. The effects of DEHP have been shown to differ based on sex and sexual maturity. This study examines the metabolic profiles of mature adult rats from both [...] Read more.
Di-(2-Ethylhexyl) phthalate (DEHP) is a prevalent environmental endocrine disruptor that affects homeostasis, reproduction, and developmental processes. The effects of DEHP have been shown to differ based on sex and sexual maturity. This study examines the metabolic profiles of mature adult rats from both sexes, aged 10 weeks, and adolescent female rats, aged 6 weeks, following a single 5 mg/kg of body weight DEHP oral administration. An untargeted metabolomic analysis was conducted on urine samples collected at multiple times to discern potential sex- and maturity-specific DEHP toxicities. Various multivariate statistical analyses were employed to identify the relevant metabolites. The findings revealed disruptions to the steroid hormone and primary bile acid biosynthesis. Notably, DEHP exposure increased hyocholic, muricholic, and ketodeoxycholic acids in male rats. Moreover, DEHP exposure was linked to heart, liver, and kidney damage, as indicated by increased plasma GOT1 levels when compared to the levels before DEHP exposure. This study provides detailed insights into the unique mechanisms triggered by DEHP exposure concerning sex and sexual maturity, emphasizing significant distinctions in lipid metabolic profiles across the different groups. This study results deepens our understanding of the health risks linked to DEHP, informing future risk assessments and policy decisions. Full article
Show Figures

Figure 1

11 pages, 9592 KiB  
Article
Triplex DNA Helix Sensor Based on Reduced Graphene Oxide and Electrodeposited Gold Nanoparticles for Sensitive Lead(II) Detection
by Jing Gao, Piao Xu, Lu Qiao, Yani Tao, Yao Xiao, Hong Qin, Yuan Zhu and Yi Zhang
Toxics 2023, 11(9), 795; https://doi.org/10.3390/toxics11090795 - 20 Sep 2023
Viewed by 1000
Abstract
A triplex DNA electrochemical sensor based on reduced graphene oxide (rGO) and electrodeposited gold nanoparticles (EAu) was simply fabricated for Pb2+ detection. The glass carbon electrode (GCE) sequentially electrodeposited with rGO and EAu was further modified with a triplex DNA helix that [...] Read more.
A triplex DNA electrochemical sensor based on reduced graphene oxide (rGO) and electrodeposited gold nanoparticles (EAu) was simply fabricated for Pb2+ detection. The glass carbon electrode (GCE) sequentially electrodeposited with rGO and EAu was further modified with a triplex DNA helix that consisted of a guanine (G)-rich circle and a stem of triplex helix based on T-A•T base triplets. With the existence of Pb2+, the DNA configuration which was formed via the Watson–Crick and Hoogsteen base pairings was split and transformed into a G-quadruplex. An adequate electrochemical response signal was provided by the signal indicator methylene blue (MB). The proposed sensor demonstrated a linear relationship between the differential pulse voltammetry (DPV) peak currents and the logarithm of Pb2+ concentrations from 0.01 to 100.00 μM with a detection limit of 0.36 nM. The proposed sensor was also tested with tap water, river and medical wastewater samples with qualified recovery and accuracy and represented a promising method for Pb2+ detection. Full article
(This article belongs to the Special Issue Data Science for Environmental Chemical Monitoring)
Show Figures

Figure 1

19 pages, 3022 KiB  
Article
Pharmacokinetic Analysis of Ethanol in a Human Study: New Modification of Mathematic Model
by Paulo Zekan, Neven Ljubičić, Vladimir Blagaić, Ivan Dolanc, Antonija Jonjić, Miran Čoklo and Alenka Boban Blagaić
Toxics 2023, 11(9), 793; https://doi.org/10.3390/toxics11090793 - 20 Sep 2023
Viewed by 1501
Abstract
In the pharmacokinetic analysis of ethanol after oral administration, only single- or two-compartment models are used, but their precision in estimating pharmacokinetic parameters might be insufficient. In a recent study, pharmacokinetic analysis using a modified Norberg three-compartment model was performed after oral administration [...] Read more.
In the pharmacokinetic analysis of ethanol after oral administration, only single- or two-compartment models are used, but their precision in estimating pharmacokinetic parameters might be insufficient. In a recent study, pharmacokinetic analysis using a modified Norberg three-compartment model was performed after oral administration of differently sweetened alcoholic solutions and compared to pharmacokinetic analysis using the classic Widmark model. On three occasions, eight male volunteers consumed differently sweetened alcoholic solutions: non-sweetened, sweetened with sucrose, and sweetened with steviol glycoside. Blood ethanol concentration was determined from samples obtained at t = 15, 30, 60, 90, 120, 180 min after consumption. Pharmacokinetic analysis was performed model independently, using the classic Widmarks model and using the modified Norberg model. Results showed that estimated pharmacokinetic parameters depend on the type of model used. The classic Widmark model in particular overestimated the fraction of absorbed ethanol from the gastrointestinal system to systemic circulation. Furthermore, the type of sweetener also affected pharmacokinetic parameters, although the difference was not statistically significant. In conclusion, the novel pharmacokinetic model, while being more physiological, fits experimental data better and hence is more suitable for modelling real-life alcohol consumption. In addition, the effect of natural non-caloric sweetener steviol glycoside on ethanol pharmacokinetics, analysed for the first time in the current research, might be different when compared to the common-used sweetener sucrose. Full article
(This article belongs to the Special Issue New Insights into Forensic Toxicology)
Show Figures

Figure 1

19 pages, 10080 KiB  
Article
Impact of Perinatal Coexposure to Chlorpyrifos and a High-Fat Diet on Kisspeptin and GnRHR Presence and Reproductive Organs
by Marwa Lahimer, Narimane Djekkoun, Sophian Tricotteaux-Zarqaoui, Aurélie Corona, Isabelle Lafosse, Habib Ben Ali, Mounir Ajina, Véronique Bach, Moncef Benkhalifa and Hafida Khorsi-Cauet
Toxics 2023, 11(9), 789; https://doi.org/10.3390/toxics11090789 - 19 Sep 2023
Viewed by 1126
Abstract
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in [...] Read more.
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in the reproductive organs of rats’ offspring. A total of 16 pregnant rats are divided into four groups: a control group (n = 4), CPF group (4 rats exposed daily to 1/mg/kg/day), HFD group (4 rats randomly fed a 5.25 kcal/g HFD), and coexposed group (4 rats exposed to CPF and HDF). At postnatal development postnatal day (PND) 60, male and female offspring were sacrificed. The reproductive organs (ovary and testis) were removed, and histological and immunohistological analysis and in silico quantification (TissueGnostics software 6.0.1.102, TissueFAXS, HistoQuest) were applied to investigate the impact of different treatments on Kisspeptin and GnRHR expression in reproductive organs. The main outcomes of the study showed a significant decrease in rat offspring’s body weight in the CPF group from PND30 and PND60 (p < 0.05 and p < 0.01, respectively). Histological analysis showed a significant increase in the atretic follicle and abnormal testis structure with germ cell desquamation in the CPF-exposed group. The immunodetection quantification of protein shows a significant decrease in GnRHR and Kisspeptin in the HFD and CPF exposed groups, respectively, in testis rat offspring. Perinatal exposure to CPF and HFD exposure affect the reproduction function of rat offspring. Full article
(This article belongs to the Special Issue Environmental Exposure and Reproductive Health)
Show Figures

Figure 1

11 pages, 984 KiB  
Article
Biochar Decreases Cr Toxicity and Accumulation in Sunflower Grown in Cr(VI)-Polluted Soil
by Shuai Li, Yiming Xie, Shuguang Jiang, Mingda Yang, Hongxia Lei, Wenzhi Cui and Fayuan Wang
Toxics 2023, 11(9), 787; https://doi.org/10.3390/toxics11090787 - 16 Sep 2023
Cited by 1 | Viewed by 1077
Abstract
Biochar is preferentially recommended for the remediation of heavy metal-polluted soils. Sunflower is an important high-biomass oil crop with a promising potential for phytoremediation of Cr(VI)-polluted soil. However, how biochar affects sunflower growth and Cr accumulation in Cr(VI)-polluted soil needs to be elucidated. [...] Read more.
Biochar is preferentially recommended for the remediation of heavy metal-polluted soils. Sunflower is an important high-biomass oil crop with a promising potential for phytoremediation of Cr(VI)-polluted soil. However, how biochar affects sunflower growth and Cr accumulation in Cr(VI)-polluted soil needs to be elucidated. Here, a pot culture experiment was conducted to study whether soil amendment with biochar (0, 0.1%, 1%, and 5%, w/w) can mitigate Cr toxicity and accumulation in sunflower seedlings grown in soils artificially polluted with different levels of Cr(VI) (0, 50, and 250 mg Cr(VI)/kg soil). The addition of Cr(VI) exhibited significant phytotoxicity, as evidenced by inhibited plant growth and even the death of seedlings at 250 mg/kg Cr(VI). Overall, biochar amendment showed positive effects on plant growth and Cr immobilization, dependent on both the biochar dose and Cr addition level. When 50 mg/kg Cr(VI) was added, 1% biochar showed positive effects similar to 5% biochar on improving plant growth and mineral nutrition (particularly K), reducing Cr content in shoots and roots, and decreasing Cr availability and Cr(VI) content in the soil. In comparison with non-amendment, 1% and 5% biochar caused 85% and 100% increase in shoot dry weights, and 75% and 86% reduction in shoot Cr concentrations, respectively. When 250 mg/kg Cr(VI) was added, a 5% dose produced much better benefits than 1%, while a 0.1% dose did not help plants to survive. Overall, an appropriate dose of biochar enhanced Cr(VI) immobilization and subsequently decreased its toxicity and accumulation in sunflower seedlings. Our findings confirm that biochar can be used as an efficient amendment for the remediation of Cr(VI)-polluted soils and cleaner production of sunflower oil and biomass. Full article
Show Figures

Figure 1

10 pages, 1200 KiB  
Article
Per- and Polyfluoroalkyl Substances (PFAS) in Community Water Systems (CWS) and the Risk of Thyroid Cancer: An Ecological Study
by Mathilda Alsen, Angela M. Leung and Maaike van Gerwen
Toxics 2023, 11(9), 786; https://doi.org/10.3390/toxics11090786 - 16 Sep 2023
Cited by 3 | Viewed by 1596
Abstract
Thyroid cancer incidence has been steadily increasing over the past decade in the United States (US). A discussion exists regarding the potential contribution of exposure to endocrine-disrupting chemicals, encompassing certain per- and poly-fluoroalkyl substances (PFASs). This ecological study evaluated the potential correlation between [...] Read more.
Thyroid cancer incidence has been steadily increasing over the past decade in the United States (US). A discussion exists regarding the potential contribution of exposure to endocrine-disrupting chemicals, encompassing certain per- and poly-fluoroalkyl substances (PFASs). This ecological study evaluated the potential correlation between PFAS levels in drinking water and thyroid cancer incidence in the US. Data on age-adjusted thyroid cancer incidence rate (per 100,000 persons) by county were obtained from the Centers for Disease Control and Prevention (CDC) for US counties with available data in 2015–2019. Data on PFAS concentrations in the drinking water of selected community water systems (CWSs) were obtained from the CDC National Environmental Public Health Tracking Network in 2013–2015. The correlation between PFASs in CWSs and thyroid cancer incidence was calculated using Spearman correlation. A statistically significant correlation was found between perfluorooctanoic acid (PFOA) (r = 0.031; p = 0.043), perfluorononanoic acid (PFNA) (r = 0.058; p ≤ 0.001), and thyroid cancer incidence. The results suggest a potential link between certain PFAS exposures and thyroid cancer risk. However, due to the nature of an ecological study, no conclusions can be drawn at the individual level or causality. More research is needed, particularly on an individual level to allow for more detailed exposure assessment. Full article
(This article belongs to the Special Issue The 10th Anniversary of Toxics)
Show Figures

Figure 1

18 pages, 4588 KiB  
Article
Application of Pattern Recognition and Computer Vision Tools to Improve the Morphological Analysis of Microplastic Items in Biological Samples
by Aleksander Maria Astel and Paulina Piskuła
Toxics 2023, 11(9), 779; https://doi.org/10.3390/toxics11090779 - 13 Sep 2023
Cited by 1 | Viewed by 1011
Abstract
Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. [...] Read more.
Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. Within the framework of applying microscopic expertise coupled with image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used to determine shape descriptors (such as length, width, item area, etc.). The edge points required to compute shape characteristics were set manually in digital images acquired by the camera coupled with a binocular, and respective values were computed via the use of built-in MotiConnect software. As an alternative, a new approach consisting of digital image thresholding, binarization, the use of connected-component labeling, and the computation of shape descriptors on a pixel level via using the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4% of the images were suitable for thresholding without any additional pretreatment. A significant correlation was obtained between the shape descriptors computed by the software and computed using the proposed approach. The range of correlation coefficients at a very high level of significance, according to the pair of correlated measures, was higher than 0.69. The length of fibers can be satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75). Compactness and circularity significantly differ for particles and fibers. Full article
Show Figures

Figure 1

11 pages, 1157 KiB  
Article
Metal Ions Modify In Vitro DNA Damage Yields with High-LET Radiation
by Dylan J. Buglewicz, Cathy Su, Austin B. Banks, Jazmine Stenger-Smith, Suad Elmegerhi, Hirokazu Hirakawa, Akira Fujimori and Takamitsu A. Kato
Toxics 2023, 11(9), 773; https://doi.org/10.3390/toxics11090773 - 12 Sep 2023
Viewed by 1035
Abstract
Cu2+ and Co2+ are metals known to increase DNA damage in the presence of hydrogen peroxide through a Fenton-type reaction. We hypothesized that these metals could increase DNA damage following irradiations of increasing LET values as hydrogen peroxide is a product [...] Read more.
Cu2+ and Co2+ are metals known to increase DNA damage in the presence of hydrogen peroxide through a Fenton-type reaction. We hypothesized that these metals could increase DNA damage following irradiations of increasing LET values as hydrogen peroxide is a product of the radiolysis of water. The reaction mixtures contain either double- or single-stranded DNA in solution with Cu2+ or Co2+ and were irradiated either with X-ray, carbon-ion or iron-ion beams, or they were treated with hydrogen peroxide or bleomycin at increasing radiation dosages or chemical concentrations. DNA damage was then assessed via gel electrophoresis followed with a band intensity analysis. DNA damage was the greatest when DNA in the solution with either metal was treated with only hydrogen peroxide followed by the DNA damage of DNA in the solution with either metal post irradiation of low-LET (X-Ray) or high-LET (carbon-ion and iron-ion), respectively, and demonstrated the least damage after treatment with bleomycin. Cu2+ portrayed greater DNA damage than Co2+ following all experimental conditions. The metals’ effect caused more DNA damage and was observed to be LET-dependent for single-strand break formation but inversely dependent for double-strand break formation. These results suggest that Cu2+ is more efficient than Co2+ at inducing both DNA single-strand and double-strand breaks following all irradiations and chemical treatments. Full article
(This article belongs to the Special Issue Radiation: Occurrence, Transport and Effect)
Show Figures

Figure 1

Back to TopTop