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Abstract: Metabolism underlies the pathogenesis of acute myeloid leukemia (AML) and can be
influenced by gut microbiota. However, the specific metabolic changes in different tissues and the
role of gut microbiota in AML remain unclear. In this study, we analyzed the metabolome differences
in blood samples from patients with AML and healthy controls using UPLC-Q-Exactive. Additionally,
we examined the serum, liver, and fecal metabolome of AML model mice and control mice using
UPLC-Q-Exactive. The gut microbiota of the mice were analyzed using 16S rRNA sequencing. Our
UPLC-MS analysis revealed significant differences in metabolites between the AML and control
groups in multiple tissue samples. Through cross-species validation in humans and animals, as well
as reverse validation of Celastrol, we discovered that the Carnosine–Histidine metabolic pathway
may play a potential role in the occurrence and progression of AML. Furthermore, our analysis
of gut microbiota showed no significant diversity changes, but we observed a significant negative
correlation between the key metabolite Carnosine and Peptococcaceae and Campylobacteraceae. In
conclusion, the Carnosine–Histidine metabolic pathway influences the occurrence and progression of
AML, while the gut microbiota might play a role in this process.

Keywords: acute myeloid leukemia; gut microbiota; metabolomics; metabolic pathway

1. Introduction

Acute myeloid leukemia (AML) is a malignant tumor characterized by abnormal
proliferation, differentiation disorders, and blocked apoptosis of myeloid stem cells. The
accumulation of leukemia cells causes damage by inhibiting normal hematopoiesis and
infiltrating other tissues and organs. The prognosis of the disease is poor, with an average
survival period of only about 3 months without specific treatment, and the 5-year survival
rate after treatment is only about 10–35% [1]. For decades, chemotherapy has remained the
main treatment for AML [2], with the goal of inducing remission. However, elderly patients,
who are the main population affected by the disease, often have difficulty tolerating
chemotherapy [3]. In addition, relapse is difficult to avoid, and the survival rate drops
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sharply after relapse. AML is highly heterogeneous, and there has been little progress in
treatment methods for a long time. Therefore, a better understanding of the development
and progression mechanisms of AML is required in order to effectively prevent the disease
and mitigate its incidence.

Metabolomics is the scientific study of the metabolite profile of an organism under
specific physiological or pathological conditions. By analyzing the types and quantities of
metabolites in an organism, it can reveal the metabolic pathways, regulatory mechanisms,
and associations with disease development. Metabolic changes may play an important role
in the occurrence and development of AML. In AML research, metabolomics techniques
have been widely used to analyze the blood metabolism of groups of patients with AML
and controls, in order to discover metabolic pathways and molecular biomarkers associated
with AML [4], and to aid in disease diagnoses and outcome prediction [5,6]. However,
organismal metabolism is a complex system involving multiple metabolic pathways and
molecular interactions. Single-type samples may not fully reflect the overall changes
in organismal metabolism. Studies have found that plasma has better reproducibility,
while serum has higher sensitivity [7,8]. Using different sample types can lead to more
comprehensive results. Therefore, in this study, we analyzed the metabolic changes in
serum, liver, and fecal samples of mice, as well as serum and plasma samples from human
subjects to complement each other and to enhance population metabolic information, for
validation and replication. Additionally, in the mouse experiments, we used a natural
compound, Celastrol, which has been shown to possess anti-leukemia activity, as a reversing
agent [9], to further validate key metabolites.

The gut microbiota, a crucial microbial component residing in the gastrointestinal
tract, have been found to play a significant role in metabolism and immunity due to their
large numbers and diverse genomes. Helicobacter pylori, through chronic inflammation and
specific virulence factors, has emerged as a major risk factor for gastric cancer [10]. Similarly,
Fusobacterium nucleatum has been implicated in inducing colorectal cancer metastasis by
downregulating m6A gene modification [11]. It has been reported that the gut microbiota
can regulate and maintain normal hematopoiesis [12]. In the research of AML, researchers
have discovered that the composition of the gut microbiota is related to the treatment [13].
Currently, fecal microbiota transplantation (FMT) is being used in clinical practice to
correct gut dysbiosis and eradicate multidrug-resistant bacteria, thereby treating diseases.
These findings suggest that the gut microbiota may also play a role in the occurrence
and development of AML. Therefore, it is necessary to explore the complex relationship
between the gut microbiota and the development of AML.

The gut microbiota can influence the human body by producing metabolites, with
short-chain fatty acids (SCFAs) [14] and tryptophan [15] being among the most extensively
studied. These metabolites help maintain gut barrier integrity and reduce disease-related
effects. Feces consist of undigested food residues, bacterial metabolites, and other waste
materials from the intestines, making changes in fecal metabolites reflective of the metabolic
activities of the gut microbiota. By analyzing 16S rRNA in feces, we can gain insights into
the composition and function of the gut microbiota, and further investigate the relationship
between the gut microbiota and human health. The regulation of organismal metabolism by
the gut microbiota genome plays a crucial role in normal physiological functions and disease
responses. However, there is still a lack of research on microbiota-dependent metabolites
in AML. Additionally, the gut microbiota are susceptible to influences from the diet [16],
medications [17], and the environment, making it challenging to conduct population studies
with limited confounding variables. Therefore, we aimed to elucidate the alterations in the
gut microbiota in the context of AML using a mouse model, which provides a relatively
stable and controlled environment. Additionally, we sought to investigate the relationship
between changes in the gut microbiota and metabolic alterations.

This study aimed to investigate the non-targeted metabolic changes in multiple sam-
ples of AML using a mouse model and blood samples from patients with AML, employing
UPLC-MS technology. Additionally, a reversal experiment was conducted using an AML
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inhibitor, Celastrol, to elucidate key metabolic processes. Furthermore, changes in the
gut microbiota were revealed through 16S rRNA amplicon sequencing, and the potential
mechanisms of gut microbiota in AML metabolic changes were inferred through statistical
and biological correlations. The significance of this study lies in the establishment of a
mouse model and the utilization of various techniques to uncover the overall metabolic
changes in multiple samples and across species in AML, as well as exploring the potential
connections between these changes and the gut microbiota. This research is important for a
deeper understanding of the pathogenesis of AML, and identification of new prevention
and treatment targets.

2. Materials and Methods
2.1. AML Mouse Model

SPF-grade BALB/c nude mice (male, 5 weeks old, weighing 18–20 g) were purchased
from Shanghai Lingchang Biotechnology Co., Ltd. (Shanghai, China). and housed at the
Animal Experimental Center of Nanjing Medical University. The mice were kept under
constant environmental conditions with a humidity of 55 ± 10% and a temperature of
22 ± 2 ◦C, with a 12 h light/dark cycle. They had unrestricted access to water and food.
The principles of the 3Rs were followed to ensure the welfare of the experimental animals.
After one week of adaptation, the mice were randomly divided into a control group (n = 8)
and a treatment group (n = 25). There was no statistically significant difference of weight
between groups (Figure S1). HL-60 cells in the logarithmic growth phase were resuspended
in PBS at a density of 5 × 107 cells/mL and subcutaneously injected into the right dorsal
axillary region of the treatment group mice, with an injection volume of 100 µL. The control
group mice were injected with an equal volume of physiological saline. When the tumor
volume reached 200–250 mm3, the mice were randomly divided into the AML group
(n = 8), low-dose Celastrol treatment group (n = 8), and high-dose Celastrol treatment group
(n = 9). The Celastrol treatment groups were intraperitoneally injected with 200 µL of a
solution containing Celastrol at concentrations of 0.1 mg/mL and 0.2 mg/mL, respectively,
once daily. Previous research has demonstrated the inhibitory efficacy of Celastrol against
AML at these specific concentrations [18,19]. The control group and AML group were
given an equal volume of physiological saline daily. When the tumor volume of the AML
group mice reached 2500–3000 mm3, samples were collected. Adequate fecal samples were
collected from the intestines of the dissected mice and stored in clean containers for 16S
rRNA gene sequencing. Various organs were also collected and stored in liquid nitrogen
for the subsequent analysis.

2.2. Study Population

This section describes a cross-sectional study that included two groups: an AML
group (n = 19) diagnosed between October 2020 and December 2020 and a recruited healthy
control group (n = 35) at Jiangsu Provincial Hospital and Nanyang First People’s Hospital.
The inclusion criteria for the AML group were as follows: diagnosed with AML based on
blood cell examination with no liver or kidney diseases, and no recent use of medications
that could affect metabolism. The inclusion criteria for the healthy control group were the
exclusion of individuals with common endocrine disorders, acute or chronic gastroenteritis,
severe impairment of cardiac, hepatic, pulmonary, or renal structure and function, and
individuals with tumors. Basic information, including age, gender, and medical history,
was recorded for all participants for the subsequent analysis. Fasting blood samples were
collected in the morning after an 8–12 h fast (plasma group: n = 30, serum group: n = 24)
and stored at −80 ◦C for the subsequent UPLC-MS analysis. This study was conducted in
accordance with the ethical standards of Jiangsu Provincial Hospital and Nanyang First
People’s Hospital. All participants involved in this study provided informed consent.
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2.3. Metabolomic Analysis

The metabolomic analysis of plasma, serum, liver, and feces was performed using
the UPLC-Q-Exactive platform (UPLC Ultimate 3000 system, Dionex, Germering, GER;
Q-Exactive Orbitrap, Thermo Fisher Scientific, Bremen, GER) according to our previous
report [20]. Briefly, protein precipitation was conducted with a methanol–water mixture
containing isotope-labeled internal standards. The fecal samples were homogenized using
vortexing and ultrasonic wave treatment as described in our previous study [21]. The
supernatant was concentrated to dryness using a centrifugal concentrator (Labconco,
Kansas, MO, USA). The dried sample was reconstituted and ready for the analysis. A
Hypersil GOLD C18 column (100 mm × 2.1 mm, 1.9 µm, Thermo Fisher Scientific, Vilnius,
Lithuania) was used for a chromatography system. Acetonitrile containing 0.1% formic
acid was used as mobile phase A and ultrapure water containing 0.1% formic acid was
used as mobile phase B. The flow rate was set at 0.40 mL/min (column temperature at
40 ◦C). The ionization mode for mass spectrometry was heated electrospray ionization
(HESI). The spray voltage was set at 3.5 kV for positive ion mode and 2.5 kV for negative
ion mode. Full scan mode was used with a scan range of 70 to 1050 m/z and a resolution
of 70,000. The accurate mass and retention time of metabolites were compared with those
of metabolite standards using a self-built standard library using TraceFinder 3.1 software
for metabolite identification. All samples were analyzed in a randomized fashion to avoid
bias of the injection order. The data were further analyzed after integral normalization [22].
An equivalent volume from each sample under investigation was combined to create
quality control (QC) samples, and a blank solvent was utilized as the reference blank.
The same procedural steps applied to the test samples were followed for the QC and
blank samples. The QC samples were injected after every fifth sample injection during the
analysis of the test samples. The ropls package (v1.30.0) was used to perform a partial least
squares discriminant analysis (PLS-DA) and extract important features based on variable
importance in projection (VIP).

2.4. The 16S rRNA Gene Sequencing and Amplicon Analysis

The 16S rRNA gene sequencing was performed by Shanghai Meiji Biomedical Tech-
nology Co., Ltd. (Shanghai, China). The specific steps are as follows: After extracting
the microbial community genomic DNA from the samples using the E.Z.N.A.® soil DNA
kit (Omega Bio-tek, Atlanta, GA, USA) according to the manufacturer’s instructions, the
quality of the DNA was checked using 1% agarose gel electrophoresis, and the DNA concen-
tration and purity were measured using NanoDrop2000 (Thermo Fisher Scientific, Waltham,
MA, USA). Specific primers with barcodes were synthesized for the conserved sequences
of the V3-V4 region of the 16S rRNA gene (338F: 5′-ACTCCTACGGGAGGCAGCAG-3′ and
806R: 5′-GGACTACHVGGGTWTCTAAT-3′), and PCR amplification was performed using
TransStart Fastpfu DNA Polymerase (TransGen Biotech, Beijing, China). This step was
carried out on an ABI GeneAmp® 9700 (ABI, Foster City, CA, USA) thermal cycler. Each
sample was amplified in triplicate, and the mixed products were checked using 2% agarose
gel electrophoresis. The PCR products were then gel-extracted using the AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, USA) and eluted with Tris-HCl. After
constructing the Miseq library using the NEXTFLEX Rapid DNA-Seq Kit (Bioo Scientific,
Austin, TX, USA), sequencing was performed on the Miseq PE300 platform (Illumina, San
Diego, CA, USA). The paired-end (PE) reads from sequencing data, which were split based
on barcodes and primers, were merged and quality-controlled using FLASH (v1.2.11), fastp
(v0.20.1), and vsearch (v2.15.0). The analysis of amplicons includes the concatenation and
quality control of raw data, operational taxonomic unit (OTU) clustering and annotation, a
diversity analysis, and functional prediction. The specific steps are as follows:

QIIME1 (v1.9.1) was used for OTU clustering, annotation, and phylogenetic tree
construction. (1) The merged and quality-controlled sequences were clustered into OTUs at
a 97% similarity threshold using the usearch61 algorithm. Representative sequences were
selected for each OTU. (2) The rdp algorithm was then used to annotate the representative
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sequences at a confidence threshold of 0.7, based on the Silva 16S rRNA database (v132),
resulting in a table of annotated OTUs. (3) The PyNAST algorithm was used to align the
representative sequences, and gaps were filtered out to construct a phylogenetic tree for
a downstream analysis. Rare OTUs (<0.005%) and unnecessary taxonomic groups were
filtered out, and the OTU table was rarefied based on the minimum sample abundance for
the downstream analysis.

A species diversity analysis included an analysis of species abundance and com-
position. An α-diversity analysis focused on the diversity within individual samples
and reflected the richness and evenness of microbial communities. Metrics such as Sobs,
Chao, Shannon, Simpson, and PD indices were used to characterize sample diversity. A
β-diversity analysis is used to compare the differences in microbial composition between
groups and to analyze the similarity between samples. The Weighted UniFrac distance
algorithm is used to construct a hierarchical clustering tree based on the similarity of
samples between groups. A DESeq2 analysis was used to identify significantly different
taxonomic groups. Taxa with p < 0.05 and fold change > 2 were considered as significantly
altered taxa.

PICRUSt2 software v2.3.0b0 was used to predict the metabolic functional profiles of
bacteria corresponding to the 16S rRNA gene sequences. First, an evolutionary tree with
gene information (species and quantity) was constructed based on known gene sequences
and gene abundances. Then, the 16S rRNA gene sequences obtained from sequencing were
matched to their phylogenetic relatives in the tree to predict their gene information. The
predicted gene information was then assigned biological significance by identifying the
corresponding metabolic pathways using the MetaCyc database. To examine the differences
in metabolic pathways between different groups, we employed Welch’s t-tests and fold
change to compare the abundance of pathways in each group. Pathways with a p-value less
than 0.05 and a fold change greater than 2 were considered significantly different between
the groups.

2.5. Statistical Analysis

Quantitative data were presented as the mean ± standard deviation (M ± SD). Two
group comparisons were performed using t-tests or Wilcoxon rank-sum tests. A one-way
analysis of variance (ANOVA) was used when the comparison was conducted in three
groups followed by Dunnett’s test. Rate comparisons were conducted using chi-square
tests or Fisher’s exact tests. Spearman rank correlation coefficients were used to assess
correlation. R software (v4.2.1) was used for all analyses and preparation of figures. To
improve the statistical robustness, we used VIP > 1 in combination with the p-value < 0.05
to find significant metabolomic changes [23,24]. Unless otherwise specified, p < 0.05 was
considered statistically significant.

3. Results
3.1. Multi-Sample Metabolomic Analysis of AML Mice and Human Population
3.1.1. Carnosine and L-Histidine: Key Players in AML Revealed in Mouse Model

In order to investigate the overall metabolic changes in AML, we constructed an
AML mouse model and selected mouse serum, liver, and feces as the study objects. These
sample sources represent different levels of metabolic reactions, with mouse serum and
liver metabolism reflecting the host’s metabolic status, and fecal metabolism reflecting
the metabolic activity of the gut microbiota. Through the metabolic analysis of these
samples, we hope to uncover the changes and correlations between host metabolism and
gut microbiota metabolism, and provide new clues for further research.

In the AML group, nude mice developed rice-sized white tumors subcutaneously
around 10 days after HL-60 cell inoculation, indicating successful modeling of tumor-
bearing nude mice. A total of 160 endogenous metabolites were detected in all mouse
samples. PLS-DA models were established for the metabolomic data of serum, liver, and
feces. However, the liver sample data failed to establish a successful model, indicating that
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the metabolic changes were mild between different groups. On the other hand, successful
models were established for the feces and serum groups. As shown in Figure 1A,B, the
AML group and the control group were clearly separated in the 3D plots, with Q2(cum)
values of 0.694 and 0.815, respectively. Permutation tests also indicated the stability of the
predictive results.
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Figure 1. Metabolomic analysis of mouse feces and serum. (A,B) PLS-DA score plots of mouse
feces and serum, with each point representing a sample and colored by group. Red represents
the AML group, while blue represents the control group. (C,D) VIP-p plots of mouse feces and
serum metabolites, with each point representing a metabolite. The x-axis represents the p-value
from the t-test between metabolite groups, while the y-axis represents the VIP value of metabo-
lites after PLS-DA analysis. The blue lines represent the screening thresholds, where VIP > 1 and
p-value < 0.05. Red indicates upregulation in the AML group, while green indicates downregulation
in the AML group.

After the multivariate statistical analysis, t-tests, the differences and importance distri-
butions of the two groups of metabolites were displayed using VIP-p plots (Figure 1C,D).
Using a criterion of VIP > 1 and p < 0.05, a total of seven different metabolites were screened
in the feces, including Xanthurenic acid, Pyridoxamine, Indole, and 5-Methylcytosine,
which decreased in the AML group, and L-Histidine, N-Acetyl-L-methionine, and Glu-
conolactone, which increased in the AML group (Figure S2A). In the serum, a total of nine
different metabolites were screened, including Cytidine and Capric acid, which decreased
in the AML group, and Glucosamine 6-phosphate, L-Carnitine, Leucinic acid, L-Glutamic
acid, N-Glycolylneuraminic acid, Glucose 6-phosphate, and Carnosine, which increased in
the AML group (Figure S2B).

These results indicated that serum and fecal metabolites, as representatives of host
and microbial metabolism, represented more sensitive changes in AML compared to
liver metabolism.
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In order to further understand the role of these metabolites in AML, we conducted
administration experiments of Celastrol, which is an agent that can inhibit the proliferation
of HL-60 cells. As shown in Figure 2, Celastrol exhibited inhibitory effects on tumor growth.
There was a statistically significant difference in tumor volume and weight between the
AML group and the treatment group (Figure 2A,B). After analyzing the metabolic changes
in feces, we found that the level of 5-Methylcytosine decreased in the feces of the AML
group, but it returned to normal after high-dose Celastrol treatment (Figure 2C). On the
other hand, the level of L-Histidine in the feces of the AML group increased significantly,
but it returned to normal after Celastrol treatment (Figure 2D). Interestingly, L-Histidine
serves as a downstream metabolite in the aforementioned Carnosine metabolic pathway,
suggesting that the Carnosine–Histidine pathway could potentially play a role in the
initiation and advancement of AML.

Toxics 2024, 12, x FOR PEER REVIEW 7 of 17 
 

 

nine different metabolites were screened, including Cytidine and Capric acid, which de-
creased in the AML group, and Glucosamine 6-phosphate, L-Carnitine, Leucinic acid, L-
Glutamic acid, N-Glycolylneuraminic acid, Glucose 6-phosphate, and Carnosine, which 
increased in the AML group (Figure S2B). 

These results indicated that serum and fecal metabolites, as representatives of host 
and microbial metabolism, represented more sensitive changes in AML compared to liver 
metabolism. 

In order to further understand the role of these metabolites in AML, we conducted 
administration experiments of Celastrol, which is an agent that can inhibit the prolifera-
tion of HL-60 cells. As shown in Figure 2, Celastrol exhibited inhibitory effects on tumor 
growth. There was a statistically significant difference in tumor volume and weight be-
tween the AML group and the treatment group (Figure 2A,B). After analyzing the meta-
bolic changes in feces, we found that the level of 5-Methylcytosine decreased in the feces 
of the AML group, but it returned to normal after high-dose Celastrol treatment (Figure 
2C). On the other hand, the level of L-Histidine in the feces of the AML group increased 
significantly, but it returned to normal after Celastrol treatment (Figure 2D). Interestingly, 
L-Histidine serves as a downstream metabolite in the aforementioned Carnosine meta-
bolic pathway, suggesting that the Carnosine–Histidine pathway could potentially play a 
role in the initiation and advancement of AML. 

 
Figure 2. Reversal effect of Celastrol on metabolism in AML mouse model. (A,B) Box plots showing 
tumor volume (mm3) and weight (g) in mice after Celastrol treatment, color-coded by group; The 
black dots represent outliers; * indicates p < 0.05, and ** indicates p < 0.01. (C,D) Box plots showing 
levels of 5-Methylcytosine and L-Histidine in mice after Celastrol treatment, with the mean of the 
control group as the reference, color-coded by group; The black dots represent outliers; * indicates 
p < 0.05. 

3.1.2. Consistent Metabolic Changes in AML in Humans and Mice: Validation of Carno-
sine as a Key Metabolite 

To further investigate AML-related metabolic changes, we conducted a study on 
blood metabolism in human populations to compare and validate the findings from the 
mouse model. We collected both serum and plasma samples to obtain comprehensive met-
abolic information. The study on human blood metabolism included 35 patients with 
AML and 19 healthy participants. Table 1 presents the demographic characteristics of the 
two groups, including gender, age, and blood type. After propensity score matching 
(PSM), the variables between the case and control groups in serum and plasma were bal-
anced (p > 0.05). 

Figure 2. Reversal effect of Celastrol on metabolism in AML mouse model. (A,B) Box plots showing
tumor volume (mm3) and weight (g) in mice after Celastrol treatment, color-coded by group; The
black dots represent outliers; * indicates p < 0.05, and ** indicates p < 0.01. (C,D) Box plots showing
levels of 5-Methylcytosine and L-Histidine in mice after Celastrol treatment, with the mean of the
control group as the reference, color-coded by group; The black dots represent outliers; * indicates
p < 0.05.

3.1.2. Consistent Metabolic Changes in AML in Humans and Mice: Validation of Carnosine
as a Key Metabolite

To further investigate AML-related metabolic changes, we conducted a study on blood
metabolism in human populations to compare and validate the findings from the mouse
model. We collected both serum and plasma samples to obtain comprehensive metabolic
information. The study on human blood metabolism included 35 patients with AML
and 19 healthy participants. Table 1 presents the demographic characteristics of the two
groups, including gender, age, and blood type. After propensity score matching (PSM),
the variables between the case and control groups in serum and plasma were balanced
(p > 0.05).
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Table 1. Study population features.

AML HC Overall p-Value
(N = 19) (N = 35) (N = 54)

Sex
Female 11 (57.9%) 19 (54.3%) 30 (55.6%)

1Male 8 (42.1%) 16 (45.7%) 24 (44.4%)
Age (year)
Mean (SD) 56.3 (16.9) 52.8 (17.8) 54.0 (17.4)

0.474Median [Min, Max] 58.0 [14.0, 80.0] 62.0 [22.0, 75.0] 58.5 [14.0, 80.0]
Type

Plasma 14 (73.7%) 10 (28.6%) 24 (44.4%)
Serum 5 (26.3%) 25 (71.4%) 30 (55.6%)

Using the described metabolomics approach, a total of 186 endogenous metabolites
were detected in the human blood samples. The PLS-DA models (Figure 3A,B) showed clear
separation between the AML and control groups in both serum and plasma samples, with
estimated predictive abilities (Q2(cum)) of 0.867 and 0.687, respectively, and statistically
significant permutation test p-values. This indicated that AML could also affect blood
metabolism in human populations. These data could be utilized for a subsequent further
analysis to investigate in depth the relationship between metabolism and AML.
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Figure 3. Shared differential metabolites between AML groups and control groups in mice and hu-
mans. (A,B) PLS-DA score plots of human population serum and plasma, with each point repre-
senting a sample and colored by group. Red represents the AML group, while blue represents the 
control group. (C,D) Histograms showing the shared differential metabolites in each tissue between 
groups in humans and mice. Considering the differences in metabolism between species and com-
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Figure 3. Shared differential metabolites between AML groups and control groups in mice and
humans. (A,B) PLS-DA score plots of human population serum and plasma, with each point
representing a sample and colored by group. Red represents the AML group, while blue represents
the control group. (C,D) Histograms showing the shared differential metabolites in each tissue
between groups in humans and mice. Considering the differences in metabolism between species
and complexity in human population study, we used a threshold of p < 0.1 for human population and
a criterion of VIP > 1 and p < 0.05 for mice. The x-axis represents the shared differential metabolites,
and the y-axis represents the log2FC values of metabolite levels. * indicates significance, color-coded
by group.

Next, we compared the metabolites in the samples of both groups to identify com-
monalities in AML metabolic changes in humans and mice. As shown in Figure 3C,D,
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significantly increased levels of Carnosine, Glucosamine 6-phosphate, Glucose 6-phosphate,
and L-Carnitine were observed in the differential metabolites of both mice and human
populations in the AML group (Figure S3). This suggests that AML has a certain degree of
consistency about metabolism in humans and mice. Notably, Carnosine increased in both
human serum and plasma, and mice serum. Through validation in humans and animals,
we successfully identified Carnosine as the key metabolite.

3.2. Alterations in Diversity, Composition, and Functionality of Gut Microbiota in AML Mice
3.2.1. Satisfactory Sequencing Depth and Coverage in Amplicon Sequencing

After amplicon sequencing of mouse fecal samples, a total of 297,507 and 310,818 raw
sequences were obtained for the control and AML groups, respectively, with an average
sequence length of 464 bp, which is close to the length of V3–V4 region sequences. After
data optimization and removal of noise, a total of 297,465 and 310,773 clean sequences were
obtained. The number of sequences, base pairs, and average sequence length before and
after optimization for each sample are shown in Table S1. There was no statistically signifi-
cant difference in the number of sequences between the two groups (p > 0.05) (Figure 4A,B).
Based on 97% nucleotide sequence similarity, a total of 742 high-abundance operational
taxonomic units (OTUs) were identified (control = 711, AML = 738), with 707 shared OTUs
between the control and AML groups (Figure 4C).

Toxics 2024, 12, x FOR PEER REVIEW 9 of 17 
 

 

Next, we compared the metabolites in the samples of both groups to identify com-
monalities in AML metabolic changes in humans and mice. As shown in Figure 3C,D, 
significantly increased levels of Carnosine, Glucosamine 6-phosphate, Glucose 6-phos-
phate, and L-Carnitine were observed in the differential metabolites of both mice and hu-
man populations in the AML group (Figure S3). This suggests that AML has a certain de-
gree of consistency about metabolism in humans and mice. Notably, Carnosine increased 
in both human serum and plasma, and mice serum. Through validation in humans and 
animals, we successfully identified Carnosine as the key metabolite. 

3.2. Alterations in Diversity, Composition, and Functionality of Gut Microbiota in AML Mice 
3.2.1. Satisfactory Sequencing Depth and Coverage in Amplicon Sequencing 

After amplicon sequencing of mouse fecal samples, a total of 297,507 and 310,818 raw 
sequences were obtained for the control and AML groups, respectively, with an average 
sequence length of 464 bp, which is close to the length of V3–V4 region sequences. After 
data optimization and removal of noise, a total of 297,465 and 310,773 clean sequences 
were obtained. The number of sequences, base pairs, and average sequence length before 
and after optimization for each sample are shown in Table S1. There was no statistically 
significant difference in the number of sequences between the two groups (p > 0.05) (Fig-
ure 4A,B). Based on 97% nucleotide sequence similarity, a total of 742 high-abundance 
operational taxonomic units (OTUs) were identified (control = 711, AML = 738), with 707 
shared OTUs between the control and AML groups (Figure 4C). 

 
Figure 4. Sequencing depth and coverage of gut microbiota amplicon sequencing. (A,B) Box plots 
of raw and clean sequence reads in AML and control groups. The black dots represent outliers. (C) 
Venn diagram showing the number of OTUs after clustering the sequencing data in AML and con-
trol groups. (D) Accumulated species abundance curve, with the x-axis representing the number of 
randomly sampled samples and the y-axis representing the Sobs index at the OTU level after clus-
tering. The black dots represent outliers. 

Figure 4. Sequencing depth and coverage of gut microbiota amplicon sequencing. (A,B) Box plots
of raw and clean sequence reads in AML and control groups. The black dots represent outliers.
(C) Venn diagram showing the number of OTUs after clustering the sequencing data in AML and
control groups. (D) Accumulated species abundance curve, with the x-axis representing the number
of randomly sampled samples and the y-axis representing the Sobs index at the OTU level after
clustering. The black dots represent outliers.

To demonstrate that the sequencing depth and richness of all samples reached a
satisfactory level, species accumulation curves were generated by resampling and counting
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the clustered OTUs. The species accumulation curves showed that the number of discovered
species gradually approached a plateau as the number of sampled sequences increased
(Figure 4D), indicating that the sequencing sample size was reasonable and that a larger
sample size would only yield a small number of new species. Therefore, the sequencing
sample size was sufficiently large to reflect the majority of microbial species composition in
the gut.

3.2.2. Stable Gut Microbiota Diversity but Decreased Firmicutes Abundance in AML

To further assess the richness and evenness of the gut microbiota community, we
calculated multiple indices. The results showed no significant differences in the five
diversity indices between the two groups (p > 0.05, Figure 5A), indicating that there was
no significant difference in α diversity between the two groups. However, the standard
deviation and range of diversity indices in the AML group (Table S2) were larger than those
in the control group, suggesting that the diversity indices of samples in the AML group
were more dispersed and had greater variation. For β diversity, we used the Weighted
UniFrac distance algorithm to construct a hierarchical clustering tree to visually display the
distance between sample branches (Figure 5B). The samples from both groups clustered
well, indicating high within-group similarity and low between-group similarity.
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Figure 5. Analysis of gut microbiota diversity, composition, and differences in mice. (A) Box plots
of α-diversity indices, including Sobs index, Chao1 index, Shannon index, Simpson index, and PD
index, comparing AML group and control group. t-Test was used to determine the significance of
differences between groups, and no significant differences were observed among the indices. The
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black dots represent outliers. (B) Circular dendrogram of hierarchical clustering of samples, with
shorter branches indicating higher similarity in species composition. The red color represents the
AML group, while the blue color represents the control group. (C) Taxonomic-group-sample circle
plot at the phylum level. The left side of the outer circle represents taxonomic groups, while the
right side represents sample groups. The length of the arcs represents the relative proportions. The
inner circle shows the group proportions of taxonomic groups and the taxonomic group proportions
of sample groups, connected by colored ribbons. (D) Volcano plot of microbial community at the
family level. The y-axis represents the negative logarithm (base 10) of p-values obtained from DESeq2
analysis, while the x-axis represents the logarithm (base 2) of the fold change. Each point represents a
specific type of microorganism, with red indicating increased abundance in AML and green indicating
decreased abundance in AML.

To investigate the changes in gut microbiota composition under AML conditions,
we used a taxon sample circle plot (Figure 5C) and a hierarchical sample circle plot
(Figures S4 and S5) to illustrate the gut microbiota composition and its relationship with
samples at different taxonomic levels. At the phylum level, the dominant taxa in the
AML group were Firmicutes (54%) and Bacteroidetes (35%), while in the control group, the
dominant taxa were Firmicutes (71%) and Bacteroidales (19%). The proportion of Firmicutes
and Bacteroidales in the AML group decreased compared to the control group. The changes
in dominant taxa at different taxonomic levels were mainly characterized by a decrease in
the abundance of Firmicutes and its corresponding taxonomic levels, as well as an increase
in the abundance of Bacteroidetes and its corresponding taxonomic levels.

To further analyze the differences in species abundance between the two groups,
identify significantly different species, and examine the consistency of these differences,
we conducted a DESeq2 analysis on the microbial community at the family level. The
analysis revealed significant differences in abundance between the AML group and the
control group for certain microbial taxa. Using a significance threshold of p < 0.05 and a fold
change > 2 or fold change < −2, we identified 12 differentially abundant taxa. Specifically,
Bacteroidaceae, Marinifilaceae, Bacteroidales_uncultured, and Rikenellaceae showed increased
abundance in the AML group, while Atopobiaceae, Campylobacteraceae, Coriobacteriales Incertae
Sedis, Peptococcaceae, Erysipelotrichaceae, WCHB1-41_Other, Eggerthellaceae, and Pasteurellaceae
showed decreased abundance in the AML group.

3.2.3. Functional Analysis of Gut Microbiota Suggests Consistent Metabolic Changes with
the Host

Using PICRUSt2 based on the IMG microbiome genome database, gene prediction
was performed on the 16S sequencing results. The predicted results were then annotated
using the MetaCyc database to obtain functional predictions for the 16S rRNA amplicon
sequencing. After annotating all metabolic pathways, differences in pathway functionality
between groups were analyzed using Welch’s t-test and a fold change analysis, as shown in
Figure S6. The PCA plot (Figure S6A) demonstrated that when using predicted pathway
abundances for dimension reduction, the separation between the first and second principal
components of the two groups was more pronounced compared to using OTU abundances.
This indicates that there are differences in bacterial genome composition and metabolic
functionality among different taxa, and these differences are better manifested at the
functional level than at the species level.

The predicted analysis using PICRUSt2 revealed that the 16S rRNA gene sequences of
bacteria in the samples corresponded to a total of 330 metabolic pathways. The statistical
analysis identified 11 significantly different metabolic pathways (Figure S6B) between the
two groups. Overall, these differential metabolisms involve various aspects of metabolism,
including amino acid metabolism, vitamin metabolism, and carbohydrate and polysaccha-
ride metabolism. These metabolic changes in the microbial communities are somewhat
consistent with the host’s metabolism.
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3.3. Peptococcaceae and Campylobacteraceae were Key Families Related to Carnosine Metabolism

To further investigate the role of gut microbiota in AML-related metabolic changes, we
first utilized the MetOrigin website to identify the sources of detected metabolites in mouse
samples. The results revealed that out of all the detected metabolites, 7 were independently
metabolized by the host, 14 were independently metabolized by the microbiota, and 102
were co-metabolized by both the host and the microbiota (Figure S7). These findings
clearly demonstrated the significant role of gut microbiota in host metabolism, although
the underlying correlations require further investigation.

In order to gain a deeper understanding of the association between gut microbiota
and metabolites in mice, we conducted a Spearman correlation analysis to determine
the correlation coefficients between differentially abundant microbial taxa at the family
level and differentially abundant metabolites across various sample types. Based on
the pathway associations between metabolites, we constructed a metabolite–microbiota
network, as shown in Figure 6. It is worth noting that there was a significant negative
correlation between serum Carnosine levels and the abundance of Peptococcaceae and
Campylobacteraceae, and in the AML group, Carnosine levels increased while the abundance
of these two gut microbial taxa decreased compared to the control group. In fecal samples,
there was a significant positive correlation between Indole levels and the abundance of
Coriobacteriales Incertae Sedis and Atopobiaceae, and in the AML group, both Indole levels
and the abundance of these two microbial taxa decreased. These relationships might play
an important role in maintaining the homeostasis of the mouse gut microbiota.
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Figure 6. Association between differential metabolites and microbial communities. Network diagram
shows the association between differential metabolites and differential microbial communities in mice.
Squares represent microbial communities, circles represent metabolites, and the color of the circles
represents the source of the differential metabolites. The lines connecting microbial communities and
metabolites represent their correlation, with red indicating positive correlation and green indicating
negative correlation. Upward arrows indicate an increase in the level of metabolites or microbial
communities in the AML group, while downward arrows indicate a decrease.

4. Discussion

The metabolic profile of various tissues in an organism reflects its activity processes
and outcomes, providing valuable information. Given the significant impact of the gut
microbiota on host health and their ability to produce metabolites through their large
genome [25,26], it is crucial to investigate changes in host metabolism and gut microbiota
composition, as well as their interrelationships with host diseases. AML is a malignant
disease with poor outcomes, and current treatment methods still require significant im-
provements to encompass a broader range of patients [27]. With the continuous advance-
ment of science, technology, and the field of medicine, there is an increasing focus on the
prevention and intervention of such serious diseases. This study utilized metabolomics
and microbiome sequencing to uncover key host metabolism and gut microbiota in AML.
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The metabolic profiles of serum and feces in mice are indicative of the metabolism of
the host and gut microbiota, respectively. Significant differences in the serum and fecal
metabolomes were observed between the AML group and control group of mice, and
the PLS-DA model successfully distinguished between the two sample groups. These
findings suggested a potential link between AML and alterations in both host and gut
microbiota metabolism. Furthermore, our cross-species comparisons have revealed that
AML also affects human blood metabolism, exhibiting similarities to the metabolic changes
observed in mice. Notably, AML-related metabolic changes primarily involved amino acid
metabolism and glucose metabolism.

In terms of amino acid metabolism, we observed a significant increase in Carnosine
levels in the blood of AML mice and patients with AML. Carnosine is a dipeptide com-
posed of β-alanine and Histidine. A study that constructed a cancer cachexia diagnostic
model through metabolomics demonstrated that Carnosine, as a potential biomarker, was
increased in cachexia patients [28]. Additionally, elevated levels of fecal L-Histidine, a
downstream metabolite of Carnosine, were also observed in AML mice. In the Celastrol re-
versal model, a decrease in fecal L-Histidine levels with the dose was found. These findings
suggested that the Carnosine–Histidine metabolism pathway might have a potential role
in the occurrence and development of AML. Furthermore, L-Histidine serves as a donor
of one-carbon (1C) units, which cancer cells could utilize for nucleotide synthesis, methy-
lation modifications, and the generation of reducing cofactors. Upregulation of 1C-unit
metabolism might provide metabolic flexibility to cancer cells, allowing them to sustain
proliferation under stress conditions [29]. However, the levels of L-Histidine returned to
control group levels under the reversal effect of Celastrol. Therefore, L-Histidine might
play a role as a pro-cancer factor in AML. Moreover, an analysis of AML-related metabolic
genes in the population had also shown that amino acid metabolism, including Histidine,
was more active in the high-risk subgroup [30]. This is consistent with our study, indicating
that changes in amino acid metabolism, represented by the Carnosine–Histidine–1C-unit
pathway, might play a crucial role in AML.

Our research findings suggested that the majority of metabolites detected in the mouse
samples were produced through the combined metabolism of the host and the microbiota
(Figure S7). We specifically focused on metabolites and microbiota associated with the AML
disease state, as there is a close relationship between them. Through a correlation analysis,
we observed a significant negative correlation between the key metabolite Carnosine
mentioned earlier and the families Peptococcaceae and Campylobacteraceae. The abundance
of these two gut microbial taxa decreased compared to the control group. Peptococcaceae
and Campylobacteraceae are also the common bacteria shared by gut microbiota of mice and
humans [31,32]. The family Pedococaceae is classified under the phylum Firmicutes, which
was found to exhibit a decreasing trend in the gut (Figure 5). Consistent with our findings,
previous population studies had also reported a decrease in the abundance of Firmicutes
in the gut of patients with AML [33]. Many bacteria belonging to the phylum Firmicutes,
which have the potential to act as probiotics [34], and playing a role in alleviating intestinal
inflammation and combating specific microorganisms, were significantly reduced in the
AML group. Another bacterium, Campylobacteraceae, which was related to Carnosine and
exhibited decreased abundance, belongs to the phylum Epsilonbacteraeota and is derived
from the former class ε-Proteobacteria [35]. It is a native bacterium in the human gut. The
microbiota that reside in the human gut for an extended period and coexist with the host
play a role in maintaining the stability of the gut microbiome.

Our analysis also revealed a decrease in Coriobacteriales Incertae Sedis and Atopobiaceae,
which belong to Actinobacteria, a Gram-positive bacterium, and its associated amino acid
metabolite Indole. Indole, a tryptophan degradation product of bacteria, exhibits various
biological activities in the human body, including the regulation of the immune system [36],
inhibition of inflammation [37], and modulation of tumor cell growth and apoptosis.
We observed a significant decrease in Indole levels in mouse feces. The reduction in
indole levels might weaken immune surveillance ability, rendering leukemia cells more
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susceptible to evading the immune system’s attack. Additionally, decreased Indole levels
might exacerbate intestinal inflammation, thereby accelerating the development of AML.

In terms of metabolism, we observed an increase in the concentrations of Glucose
6-phosphate and Glucosamine 6-phosphate in both human and mice models. Glucose
6-phosphate is a primary product of glycolysis and antioxidant pathways, and its elevation
might reflect enhanced activity of the glycolytic pathway to generate more ATP to meet the
energy demands of cancer cells. Additionally, Glucose 6-phosphate could participate in
the pentose phosphate pathway to produce NADPH, which is an important component in
maintaining the reducing capacity of glutathione and involved in scavenging free radicals
and inhibiting lipid peroxidation to counteract the oxidative environment of cancer cells.
Glucosamine 6-phosphate is an intermediate product in the metabolism of amino sugars. Its
synthesis is the initial step in the hexosamine biosynthetic pathway (HBP). The final product
of this pathway is UDP-GlcNAc, which plays a role in the post-translational modification
of intracellular proteins involved in regulating nutrient sensing and stress response [38].
UDP-GlcNAc is the donor sugar for O-GlcNAcylation, and studies had shown that in-
creased O-GlcNAcylation could promote the progression of hepatocellular carcinoma [39].
In addition, the synthesis enzyme of Glucosamine 6-phosphate, Glucosamine-6-phosphate
synthetase, is also considered a potential carcinofetal marker [40] and a promising target
for antimicrobial and antidiabetic drugs [41]. Therefore, the alterations in AML glucose
metabolism primarily manifest as enhanced glycolysis, antioxidant activity, and glyco-
sylation modifications. These changes confer protective and promotive effects on cancer
cells, enhancing their metastasis and dissemination. These alterations serve as potential
preventive and therapeutic targets.

5. Conclusions

This study investigated alterations in the levels of multiple metabolites in human and
mouse tissue samples under conditions of AML. Through cross-species validation in mice and
humans, as well as reversal validation using Celastrol, we identified the potential involvement
of the Carnosine–Histidine metabolic pathway in the development and progression of AML.
Importantly, the key metabolite Carnosine might be affected by the gut microbiota including
families Peptococcaceae and Campylobacteraceae. These findings provide a deeper understanding
of AML from the perspective of metabolite–gut-microbiota interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics12010014/s1, Figure S1: Bar graph of mouse body weight
during grouping, p > 0.05. Figure S2: Differential metabolite heatmap in mouse samples. Figure
S3: Differential metabolite heatmap in human samples. Figure S4: Hierarchical sample circle plot
of gut microbiota in AML group mice; Figure S5: Hierarchical sample circle plot of gut microbiota
in control group mice; Figure S6: Picrust2 analysis results of mouse gut microbiota. (A) PCA score
plots of predicted pathway abundance. The top left plot shows the first principal component (PC1)
and the second principal component (PC2), the top right plot shows PC2 and the third principal
component (PC3), and the bottom left plot shows PC1 and PC3. Each point represents a sample,
color-coded by group. (B) Extended error bar plots of pathway, showing only items with p-value
< 0.05 and fold change > 2, color-coded by group. Figure S7: Bar chart showing the sources of all
detected metabolites in the mouse samples; Table S1: Quality information for amplified sub-sequence
raw data and clean data; Table S2: Comparison of five alpha-diversity indices between AML group
and control group.
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