Allergic Diseases (Asthma, Allergic Rhinitis, Atopic Dermatitis) and Air Pollution

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Air Pollution and Health".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 5970

Special Issue Editor


E-Mail Website
Guest Editor
Bucheon Hospital, Soonchunhyang University, Asan, Republic of Korea
Interests: asthma; ozone; DEP; PM10; PM2.5; PM0.1; allergic rhinitis; atopic dermatitis; micobiome; biologic contaminants

Special Issue Information

Dear Colleagues,

Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of allergic diseases such as asthma and allergic rhinitis (AR). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms, such as shortness of breath, a tight chest, coughing, and wheezing. AR is a common disease with a significant impact on quality of life and very high management costs. In general, air pollution decreases quality of life and life expectancy. It exacerbates symptoms in patients with allergic diseases and increases the morbidity and risk of hospitalization associated with allergic diseases. Therefore, in this Special Issue, we present the impact of air pollutants on allergic diseases such as asthma and allergic rhinitis on human health and their underlying mechanisms.

Dr. An-Soo Jang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • asthma
  • air pollutants
  • allergic rhinitis
  • atopic dermatitis
  • biologic contaminants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 10935 KiB  
Article
Analyzing the Impact of Diesel Exhaust Particles on Lung Fibrosis Using Dual PCR Array and Proteomics: YWHAZ Signaling
by Byeong-Gon Kim, Pureun-Haneul Lee, Jisu Hong and An-Soo Jang
Toxics 2023, 11(10), 859; https://doi.org/10.3390/toxics11100859 - 13 Oct 2023
Cited by 1 | Viewed by 1585
Abstract
Air pollutants are associated with exacerbations of asthma, chronic bronchitis, and airway inflammation. Diesel exhaust particles (DEPs) can induce and worsen lung diseases. However, there are insufficient data to guide polymerase chain reaction (PCR) array proteomics studies regarding the impacts of DEPs on [...] Read more.
Air pollutants are associated with exacerbations of asthma, chronic bronchitis, and airway inflammation. Diesel exhaust particles (DEPs) can induce and worsen lung diseases. However, there are insufficient data to guide polymerase chain reaction (PCR) array proteomics studies regarding the impacts of DEPs on respiratory diseases. This study was performed to identify genes and proteins expressed in normal human bronchial epithelial (NHBE) cells. MicroRNAs (miRNAs) and proteins expressed in NHBE cells exposed to DEPs at 1 μg/cm2 for 8 h and 24 h were identified using PCR array analysis and 2D PAGE/LC-MS/MS, respectively. YWHAZ gene expression was estimated using PCR, immunoblotting, and immunohistochemical analyses. Genes discovered through an overlap analysis were validated in DEP-exposed mice. Proteomics approaches showed that exposing NHBE cells to DEPs led to changes in 32 protein spots. A transcriptomics PCR array analysis showed that 6 of 84 miRNAs were downregulated in the DEP exposure groups compared to controls. The mRNA and protein expression levels of YWHAZ, β-catenin, vimentin, and TGF-β were increased in DEP-treated NHBE cells and DEP-exposed mice. Lung fibrosis was increased in mice exposed to DEPs. Our combined PCR array–omics analysis demonstrated that DEPs can induce airway inflammation and lead to lung fibrosis through changes in the expression levels of YWHAZ, β-catenin, vimentin, and TGF-β. These findings suggest that dual approaches can help to identify biomarkers and therapeutic targets involved in pollutant-related respiratory diseases. Full article
Show Figures

Figure 1

17 pages, 4427 KiB  
Article
Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits
by Soyeon Lee, Changwan Hyun and Minhyeok Lee
Toxics 2023, 11(8), 719; https://doi.org/10.3390/toxics11080719 - 21 Aug 2023
Cited by 1 | Viewed by 1656
Abstract
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits ( [...] Read more.
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. Full article
Show Figures

Figure 1

16 pages, 3366 KiB  
Article
TiO2-Photocatalyst-Induced Degradation of Dog and Cat Allergens under Wet and Dry Conditions Causes a Loss in Their Allergenicity
by Ryosuke Matsuura, Arisa Kawamura, Rizo Ota, Takashi Fukushima, Kazuhiro Fujimoto, Masato Kozaki, Misaki Yamashiro, Junichi Somei, Yasunobu Matsumoto and Yoko Aida
Toxics 2023, 11(8), 718; https://doi.org/10.3390/toxics11080718 - 21 Aug 2023
Cited by 1 | Viewed by 2383
Abstract
Allergies to dogs and cats can cause enormous damage to human health and the economy. Dog and cat allergens are mainly found in dog and cat dander and are present in small particles in the air and in carpets in homes with dogs [...] Read more.
Allergies to dogs and cats can cause enormous damage to human health and the economy. Dog and cat allergens are mainly found in dog and cat dander and are present in small particles in the air and in carpets in homes with dogs and cats. Cleaning houses and washing pets are the main methods for reducing allergens in homes; however, it is difficult to eliminate them completely. Therefore, we aimed to investigate whether a TiO2 photocatalyst could degrade dog and cat allergens. Under wet conditions, exposure to the TiO2 photocatalyst for 24 h degraded Can f1, which is a major dog allergen extracted from dog dander, by 98.3%, and Fel d1, which is a major cat allergen extracted from cat dander, by 93.6–94.4%. Furthermore, under dry conditions, the TiO2 photocatalyst degraded Can f1 and Fel d1 by 92.8% and 59.2–68.4%, respectively. The TiO2 photocatalyst abolished the binding of dog and cat allergens to human IgE by 104.6% and 108.6%, respectively. The results indicated that the TiO2 photocatalyst degraded dog and cat allergens, causing a loss in their allergenicity. Our results suggest that TiO2 photocatalysis can be useful for removing indoor pet allergens and improving the partnership between humans and pets. Full article
Show Figures

Figure 1

Back to TopTop