Previous Issue
Volume 12, May
 
 

Toxics, Volume 12, Issue 6 (June 2024) – 31 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 910 KiB  
Article
Phytochemical Volatiles as Potential Bionematicides with Safer Ecotoxicological Properties
by Tomás Cavaco and Jorge M. S. Faria
Toxics 2024, 12(6), 406; https://doi.org/10.3390/toxics12060406 (registering DOI) - 3 Jun 2024
Abstract
The management of plant-parasitic nematodes (PPNs) still relies on traditional nematicides that threaten the environment and human health. Novel solutions are urgently needed for PPN pest management that are effective while safeguarding non-target organisms. Volatile phytochemicals belong to a structurally diverse group of [...] Read more.
The management of plant-parasitic nematodes (PPNs) still relies on traditional nematicides that threaten the environment and human health. Novel solutions are urgently needed for PPN pest management that are effective while safeguarding non-target organisms. Volatile phytochemicals belong to a structurally diverse group of bioactive metabolites that are believed to hold safer environmental characteristics than synthetic pesticides. Nonetheless, not many studies have analysed the potential environmental benefits of shifting to these novel bionematicides. In the present study, 20 phytochemical volatiles with reported nematicidal activity were compared to traditional pesticides using specific parameters of environmental and human health safety available on applied online databases and predicted in silico through specialised software. Overall, the reviewed nematicidal phytochemicals were reportedly less toxic than synthetic nematicides. They were predicted to disperse to the air and soil environmental compartments and were reported to have a lower toxicity on aquatic organisms. On the contrary, the synthetic nematicides were reportedly toxic to aquatic organisms while showing a predicted high affinity to the water environmental compartment. As alternatives, β-keto or fatty acid derivatives, e.g., aliphatic alcohols or ketones, showed more adequate properties. This study highlights the importance of complementing studies on nematicidal activity with a risk assessment-based analysis to allow for a faster selection of nematicidal phytochemical volatiles and to leverage the development and implementation of bionematicides. Full article
Show Figures

Figure 1

24 pages, 1668 KiB  
Article
Advanced Photocatalytic Degradation of Cytarabine from Pharmaceutical Wastewaters
by Alexandra Berbentea, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Paula Svera (m. Ianasi), Cătălin Ianăşi, Daniel Marius Duda Seiman, Delia Muntean and Estera Boeriu
Toxics 2024, 12(6), 405; https://doi.org/10.3390/toxics12060405 (registering DOI) - 31 May 2024
Abstract
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet [...] Read more.
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g−1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis. Full article
(This article belongs to the Special Issue Techniques and Methods for Toxic Agent Analysis and Removal)
15 pages, 411 KiB  
Article
Particulate Matter (PM) and Parent, Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Emissions of Emulsified Heavy Fuel Oil in Marine Low-Speed Main Engine
by Penghao Su, Hanzhe Zhang, Liming Peng, Lihong Zhu, Tie Li, Xiaojia Tang and Yimin Zhu
Toxics 2024, 12(6), 404; https://doi.org/10.3390/toxics12060404 - 31 May 2024
Abstract
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel [...] Read more.
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel oil (HFO) as a reference. The results demonstrate that EHFO (emulsified heavy fuel oil) exhibits notable abilities to significantly reduce emissions of particulate matter (PM) and low molecular weight PAHs (polycyclic aromatic hydrocarbons) in the gas phase, particularly showcasing maximum reductions of 13.99% and 40.5%, respectively. Nevertheless, burning EHFO could increase the emission of high molecular weight PAHs in fine particles and pose a consequent higher carcinogenic risk for individual particles. The total average (gaseous plus particulate) ΣBEQ of EHFO exhausts (41.5 μg/m3) was generally higher than that of HFO exhausts (18.7 μg/m3). Additionally, the combustion of EHFO (extra-heavy fuel oil) can significantly alter the emission quantity, composition, and particle-size distribution of PAH derivatives. These changes may be linked to molecular structures, such as zigzag configurations in C=O bonds. Our findings may favor the comprehensive environmental assessments on the onboard application of EHFO. Full article
23 pages, 3078 KiB  
Article
Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin
by Rebecca A. Weed, Grace Campbell, Lacey Brown, Katlyn May, Dana Sargent, Emily Sutton, Kemp Burdette, Wayne Rider, Erin S. Baker and Jeffrey R. Enders
Toxics 2024, 12(6), 403; https://doi.org/10.3390/toxics12060403 - 31 May 2024
Abstract
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North [...] Read more.
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis. All samples were processed using weak anion exchange (WAX) solid phase extraction and analyzed using a non-targeted suspect screening approach as well as a quantitative approach that included a panel of 45 PFAS analytes, several of which are specific to chemical industries near the collection site locations. The non-targeted approach, which utilized a suspect screening list (obtained from EPA CompTox database) identified several PFAS compounds at a level two confidence rating (Schymanski scale); compounds identified included a fluorinated insecticide, a fluorinated herbicide, a PFAS used in polymer chemistry, and another that is used in battery production. Notably, at several locations, PFOA (39.8 ng/L) and PFOS (205.3 ng/L) were at levels that exceeded the mandatory EPA maximum contaminant level (MCL) of 4 ng/L. Additionally, several sites had detectable levels of PFAS that are unique to a local chemical manufacturer. These findings were communicated back to the community partners who then disseminated this information to the local residents to help empower and aid in making decisions for reducing their PFAS exposure. Full article
Show Figures

Figure 1

16 pages, 4096 KiB  
Article
Biotransformation of Chlorpyrifos Shewanella oneidensis MR-1 in the Presence of Goethite: Experimental Optimization and Degradation Products
by Shen Tang, Yanhong Li, Zongqiang Zhu, Yaru Wang, Yuqing Peng, Jing Zhang, Peijie Nong, Shufen Pan, Yinming Fan and Yinian Zhu
Toxics 2024, 12(6), 402; https://doi.org/10.3390/toxics12060402 - 31 May 2024
Abstract
In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental [...] Read more.
In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box–Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L−1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments. Full article
(This article belongs to the Topic Removal of Hazardous Substances from Water Resources)
Show Figures

Figure 1

15 pages, 2535 KiB  
Article
An In Vitro Human Skin Test for Predicting Skin Sensitization and Adverse Immune Reactions to Biologics
by Shaheda Sameena Ahmed, Mohammed Mahid Ahmed, Abbas Ishaq, Matthew Freer, Richard Stebbings and Anne Mary Dickinson
Toxics 2024, 12(6), 401; https://doi.org/10.3390/toxics12060401 - 30 May 2024
Abstract
Biologics, including monoclonal antibodies (mAb), have proved to be effective and successful therapeutic agents, particularly in the treatment of cancer and immune-inflammatory conditions, as well as allergies and infections. However, their use carries an inherent risk of an immune-mediated adverse drug reaction. In [...] Read more.
Biologics, including monoclonal antibodies (mAb), have proved to be effective and successful therapeutic agents, particularly in the treatment of cancer and immune-inflammatory conditions, as well as allergies and infections. However, their use carries an inherent risk of an immune-mediated adverse drug reaction. In this study, we describe the use of a novel pre-clinical human in vitro skin explant test for predicting skin sensitization and adverse immune reactions. The skin explant test was used to investigate the effects of therapeutic antibodies, which are known to cause a limited reaction in a small number of patients or more severe reactions. Material and Methods: Immune responses were determined by T cell proliferation and multiplex cytokine analysis, as well as histopathological analysis of skin damage (grades I–IV in increasing severity), predicting a negative (grade I) or positive (grade ≥ II) response for an adverse skin sensitization effect. Results: T cell proliferation responses were significantly increased in the positive group (p < 0.004). Multiplex cytokine analysis showed significantly increased levels of IFNγ, TNFα, IL-10, IL-12, IL-13, IL-1β, and IL-4 in the positive response group compared with the negative response group (p < 0.0001, p < 0.0001, p < 0.002, p < 0.01, p < 0.04, p < 0.006, and p < 0.004, respectively). Conclusions: Overall, the skin explant test correctly predicted the clinical outcome of 13 out of 16 therapeutic monoclonal antibodies with a correlation coefficient of 0.770 (p = 0.0001). This assay therefore provides a valuable pre-clinical test for predicting adverse immune reactions, including T cell proliferation and cytokine release, both associated with skin sensitization to monoclonal antibodies. Full article
(This article belongs to the Special Issue Skin Sensitization Testing Using New Approach Methodologies)
Show Figures

Figure 1

20 pages, 2533 KiB  
Review
The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals
by Wenqi Xiao, Yunfeng Zhang, Xiaodie Chen, Ajia Sha, Zhuang Xiong, Yingyong Luo, Lianxin Peng, Liang Zou, Changsong Zhao and Qiang Li
Toxics 2024, 12(6), 400; https://doi.org/10.3390/toxics12060400 - 30 May 2024
Viewed by 62
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are [...] Read more.
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

14 pages, 2061 KiB  
Article
Multi-Omics Analysis Reveals the Toxicity of Polyvinyl Chloride Microplastics toward BEAS-2B Cells
by Chengzhi Liu, Shuang Chen, Jiangliang Chu, Yifan Yang, Beilei Yuan and Huazhong Zhang
Toxics 2024, 12(6), 399; https://doi.org/10.3390/toxics12060399 - 30 May 2024
Viewed by 156
Abstract
Polyvinyl chloride microplastics (PVC-MPs) are microplastic pollutants widely present in the environment, but their potential risks to human lung health and underlying toxicity mechanisms remain unknown. In this study, we systematically analyzed the effects of PVC-MPs on the transcriptome and metabolome of BEAS-2B [...] Read more.
Polyvinyl chloride microplastics (PVC-MPs) are microplastic pollutants widely present in the environment, but their potential risks to human lung health and underlying toxicity mechanisms remain unknown. In this study, we systematically analyzed the effects of PVC-MPs on the transcriptome and metabolome of BEAS-2B cells using high-throughput RNA sequencing and untargeted metabolomics technologies. The results showed that exposure to PVC-MPs significantly reduced the viability of BEAS-2B cells, leading to the differential expression of 530 genes and 3768 metabolites. Further bioinformatics analyses showed that PVC-MP exposure influenced the expression of genes associated with fluid shear stress, the MAPK and TGF-β signaling pathways, and the levels of metabolites associated with amino acid metabolism. In particular, integrated pathway analysis showed that lipid metabolic pathways (including glycerophospholipid metabolism, glycerolipid metabolism, and sphingolipid metabolism) were significantly perturbed in BEAS-2B cells following PVC-MPs exposure. This study provides new insights and targets for a deeper understanding of the toxicity mechanism of PVC-MPs and for the prevention and treatment of PVC-MP-associated lung diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
Show Figures

Figure 1

14 pages, 725 KiB  
Article
Association of Prenatal Dietary Toxicants and Inorganic Arsenic Exposure with Children’s Emotional and Behavioral Problems: ECLIPSES Study
by Xiruo Kou, Josefa Canals, Monica Bulló, Nerea Becerra-Tomás, Cristina Jardí and Victoria Arija
Toxics 2024, 12(6), 398; https://doi.org/10.3390/toxics12060398 - 29 May 2024
Viewed by 205
Abstract
Prenatal exposure to dietary toxicants is linked to neurocognitive issues, but its effect on early emotional and behavioral development in children is less clear. To explore the relationship between prenatal intake of As, iAs, Cd, MeHg, Pb, PCDD/Fs, DL-PCBs, and NDL-PCBs and emotional [...] Read more.
Prenatal exposure to dietary toxicants is linked to neurocognitive issues, but its effect on early emotional and behavioral development in children is less clear. To explore the relationship between prenatal intake of As, iAs, Cd, MeHg, Pb, PCDD/Fs, DL-PCBs, and NDL-PCBs and emotional and behavioral issues in four-year-old children. This study included 192 mother–child pairs from the ECLIPSES study, assessing prenatal dietary toxicant exposure through a food-frequency questionnaire and Catalan Food Safety Agency data. Children’s emotional and behavioral scores were evaluated using the Child Behavior Checklist for ages 1.5–5 years. Multivariable regression and logistic models were used, focusing on iAs after finding significant preliminary associations. Increased prenatal dietary intake of iAs was associated with internalizing, externalizing, and attention-deficit/hyperactivity problems. Higher iAs levels (>4.16 μg/day) significantly increased the risk of total problems (OR = 2.94) and specific issues like anxious/depressed (OR = 4.88), anxiety (OR = 3.27), and oppositional defiant problems (OR = 4.30). High iAs consumption correlated with the intake of meat, eggs, cereals, tubers, fruits, and pulses Prenatal dietary iAs exposure is associated with various emotional and behavioral problems in children. Monitoring and reducing iAs levels in food are crucial for public health. Full article
(This article belongs to the Special Issue Toxicology Research of Foodborne Contaminants)
Show Figures

Graphical abstract

14 pages, 591 KiB  
Review
A Review of Remediation Strategies for Diphenyl Ether Herbicide Contamination
by Qingqing Fan, Yi Shen, Yong Yang and Qingming Zhang
Toxics 2024, 12(6), 397; https://doi.org/10.3390/toxics12060397 - 29 May 2024
Viewed by 106
Abstract
In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting effect in weed control, they can also be harmful to succeeding crops, as well as to the [...] Read more.
In agriculture, diphenyl ether herbicides are a broad-spectrum family of pesticides mainly used to control annual weeds in agriculture. Although diphenyl ether herbicides have a long-lasting effect in weed control, they can also be harmful to succeeding crops, as well as to the water and soil environment. Residual herbicides can also harm a large number of non-target organisms, leading to the death of pest predators and other beneficial organisms. Therefore, it is of great significance to control and remediate the contamination caused by diphenyl ether herbicide residues for the sake of environmental, nutritional, and biological safety. This review provides an overview of the techniques used for remediating diphenyl ether herbicide contamination, including biological, physical, and chemical remediation. Among these techniques, bioremediation, particularly microbial biodegradation technology, is extensively employed. The mechanisms and influencing factors of different remediation techniques in eliminating diphenyl ether herbicide contamination are discussed, together with a prospect for future development directions. This review serves as a scientific reference for the efficient remediation of residual contamination from diphenyl ether herbicides. Full article
(This article belongs to the Special Issue Ecotoxicity Induced by Pesticides Exposure Volume II)
15 pages, 3355 KiB  
Article
miR-21-Mediated Endothelial Senescence and Dysfunction Are Involved in Cigarette Smoke-Induced Pulmonary Hypertension through Activation of PI3K/AKT/mTOR Signaling
by Bin He, Binxia Shao, Cheng Cheng, Zitong Ye, Yi Yang, Bowen Fan, Haibo Xia, Hao Wu, Qizhan Liu and Jinsong Zhang
Toxics 2024, 12(6), 396; https://doi.org/10.3390/toxics12060396 - 29 May 2024
Viewed by 198
Abstract
Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the [...] Read more.
Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the lung tissue of smoking-induced PH patients, the levels of miR-21 and aging markers (p21 and p16) were upregulated, and the function of pulmonary vascular endothelial cells was also impaired. Exposure of mice to cigarette smoke (CS) for four months caused similar changes in lung tissues and increased pulmonary arterial pressure, which were attenuated by knockout of miR-21. Further, human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) revealed upregulation of miR-21 levels, depression of PTEN, activation of PI3K/AKT/mTOR signaling, an increase in senescence indexes, and enhanced dysfunction. Inhibiting miR-21 overexpression reversed the PTEN-mTOR signaling pathway and prevented senescence and dysfunction of HUVECs. In sum, our data indicate that miR-21-mediated endothelial senescence and dysfunction are involved in CS-induced PH through the activation of PI3K/AKT/mTOR signaling, which suggests that selective miR-21 inhibition offers the potential to attenuate PH. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

19 pages, 875 KiB  
Article
High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies
by Xiao Ning, Lulu Wang, Jia-Sheng Wang, Jian Ji, Shaoming Jin, Jiadi Sun, Yongli Ye, Shenghui Mei, Yinzhi Zhang, Jin Cao and Xiulan Sun
Toxics 2024, 12(6), 395; https://doi.org/10.3390/toxics12060395 - 28 May 2024
Viewed by 238
Abstract
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical [...] Read more.
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001–0.5 μg/L and 0.002–1 μg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7–116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4–129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
11 pages, 1256 KiB  
Perspective
A Review of N-(1,3-Dimethylbutyl)-N′-phenyl-p-Phenylenediamine (6PPD) and Its Derivative 6PPD-Quinone in the Environment
by Yi Li, Jingjing Zeng, Yongjin Liang, Yanlong Zhao, Shujun Zhang, Zhongyan Chen, Jiawen Zhang, Xingze Shen, Jiabin Wang, Ying Zhang and Yuxin Sun
Toxics 2024, 12(6), 394; https://doi.org/10.3390/toxics12060394 - 28 May 2024
Viewed by 279
Abstract
As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-quinone), [...] Read more.
As an antioxidant and antiozonant, N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is predominantly used in the rubber industry to prevent degradation. However, 6PPD can be ozonated to generate a highly toxic transformation product called N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-quinone), which is toxic to aquatic and terrestrial organisms. Thus, 6PPD and 6PPD-quinone, two emerging contaminants, have attracted extensive attention recently. This review discussed the levels and distribution of 6PPD and 6PPD-quinone in the environment and investigated their toxic effects on a series of organisms. 6PPD and 6PPD-quinone have been widely found in air, water, and dust, while data on soil, sediment, and biota are scarce. 6PPD-quinone can cause teratogenic, developmental, reproductive, neuronal, and genetic toxicity for organisms, at environmentally relevant concentrations. Future research should pay more attention to the bioaccumulation, biomagnification, transformation, and toxic mechanisms of 6PPD and 6PPD-quinone. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

15 pages, 1820 KiB  
Article
The Association between Short-Term Exposure to PM1 and Daily Hospital Admission and Related Expenditures in Beijing
by Jingwen Xu, Yan Chen, Feng Lu, Lili Chen and Zhaomin Dong
Toxics 2024, 12(6), 393; https://doi.org/10.3390/toxics12060393 - 28 May 2024
Viewed by 222
Abstract
Ambient particulate matter (PM) pollution is a leading environmental health threat worldwide. PM with an aerodynamic diameter ≤ 1.0 μm, also known as PM1, has been implicated in the morbidity and mortality of several cardiorespiratory and cerebrovascular diseases. However, previous studies [...] Read more.
Ambient particulate matter (PM) pollution is a leading environmental health threat worldwide. PM with an aerodynamic diameter ≤ 1.0 μm, also known as PM1, has been implicated in the morbidity and mortality of several cardiorespiratory and cerebrovascular diseases. However, previous studies have mostly focused on analyzing fine PM (PM2.5) associated with disease metrics, such as emergency department visits and mortality, rather than ultrafine PM, including PM1. This study aimed to evaluate the association between short-term PM1 exposure and hospital admissions (HAs) for all-cause diseases, chronic obstructive pulmonary disease (COPD), and respiratory infections (RIs), as well as the associated expenditures, using Beijing as a case study. Here, based on air pollution and hospital admission data in Beijing from 2015 to 2017, we performed a time-series analysis and meta-analysis. It was found that a 10 μg/m3 increase in the PM1 concentration significantly increased all-cause disease HAs by 0.07% (95% Confidence Interval (CI): [0, 0.14%]) in Beijing between 2015 and 2017, while the COPD and RI-related HAs were not significantly associated with short-term PM1 exposure. Meanwhile, we estimated the attributable number of HAs and hospital expenditures related to all-cause diseases. This study revealed that an average of 6644 (95% CI: [351, 12,917]) cases of HAs were attributable to ambient PM1, which was estimated to be associated with a 106 million CNY increase in hospital expenditure annually (95% CI: [5.6, 207]), accounting for 0.32% (95% CI: [0.02, 0.62%]) of the annual total expenses. The findings reported here highlight the underlying impact of ambient PM pollution on health risks and economic burden to society and indicate the need for further policy actions on public health. Full article
Show Figures

Figure 1

15 pages, 2016 KiB  
Article
Associations of Insecticide Exposure with Childhood Asthma and Wheezing: A Population-Based Cross-Sectional Study in Sanya, China
by Yabin Hu, Guiyan Yang, Dan Wang, Wangyang Gu, Dan Xie, Tingyue Huang, Peng Xue, Jingyi Tang, Hui Wei, Shenghui Li, Shilu Tong and Shijian Liu
Toxics 2024, 12(6), 392; https://doi.org/10.3390/toxics12060392 - 27 May 2024
Viewed by 276
Abstract
Insecticide exposure may affect childhood asthma/wheezing, but evidence is scarce in low- and middle-income countries. We conducted a population-based cross-sectional study in Sanya, China. Generalized linear models were adopted to assess the associations of insecticide exposure with childhood asthma/wheezing, reported as odds ratios [...] Read more.
Insecticide exposure may affect childhood asthma/wheezing, but evidence is scarce in low- and middle-income countries. We conducted a population-based cross-sectional study in Sanya, China. Generalized linear models were adopted to assess the associations of insecticide exposure with childhood asthma/wheezing, reported as odds ratios (ORs) and 95% confidence intervals (CIs). A subgroup analysis was performed to explore the possible effects of sociodemographic and environmental factors on these associations. The median age of the 9754 children was 6.7 years, and 5345 (54.8%) were boys. The prevalences of ever asthma (EA), ever wheezing (EW), and current wheezing (CW) were 7.4%, 5.3%, and 2.9%, respectively. We found a greater prevalence of childhood EA with insecticide exposure (OR = 1.18, 95% CI: 1.00, 1.38). Outdoor insecticide exposure was associated with elevated ORs for EA (1.24, 95% CI: 1.03, 1.50), EW (1.27, 95% CI: 1.03, 1.57), and CW (1.38, 95% CI: 1.04, 1.81). The p for the trend in insecticide exposure frequency was significant for EA (p = 0.001) and CW (p = 0.034). These adverse impacts were pronounced in girls who were exposed to low temperatures. Our findings suggest adverse effects of insecticide use, especially outdoors, on childhood asthma/wheezing. Further studies are warranted to verify this association and develop tailored prevention measures. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Diseases)
Show Figures

Figure 1

20 pages, 12157 KiB  
Review
Global Trends and Hotspots in Research on the Health Risks of Organophosphate Flame Retardants: A Bibliometric and Visual Analysis
by Zhiyuan Du, Yuanyuan Ruan, Jiabin Chen, Jian Fang, Shuo Xiao, Yewen Shi and Weiwei Zheng
Toxics 2024, 12(6), 391; https://doi.org/10.3390/toxics12060391 - 27 May 2024
Viewed by 268
Abstract
Background: Organophosphate flame retardants (OPFRs) are compounds with a wide range of industrial and commercial applications and are mainly used as flame retardants and plasticizers. The global consumption of OPFRs has risen rapidly in recent decades, and they have been widely detected in [...] Read more.
Background: Organophosphate flame retardants (OPFRs) are compounds with a wide range of industrial and commercial applications and are mainly used as flame retardants and plasticizers. The global consumption of OPFRs has risen rapidly in recent decades, and they have been widely detected in environmental media. Unfortunately, OPFRs have been associated with many adverse health outcomes. The issue of the health risks of OPFRs is attracting increasing attention. Therefore, there is a need to review the current state of research and trends in this field to help researchers and policymakers quickly understand the field, identify new research directions, and allocate appropriate resources for further development of the OPFR health risk research field. Methods: This study statistically analyzed 1162 relevant publications included in the Web of Science Core Collection from 2003–2023. The internal and external features of the literature, such as publication trends, countries, authors, journals, and keywords, were quantitatively analyzed and visually presented to identify the research hotspots, compositions, and paradigms of the field and to horizontally and vertically analyze the development trends and structural evolution of the field. Results: The development of the field can be divided into three stages, and the field entered a period of rapid development in 2016. China (649 papers) is the most prolific country, followed by the United States (188 papers). The authors STAPLETON HM and WANG Y have the highest combined impact. International collaboration between countries and researchers still needs to be strengthened. Science of The Total Environment is the most frequently published journal (162 papers), and Environmental Science and Technology is the most frequently cited journal (5285 citations). Endocrine disruption, developmental toxicity, and neurotoxicity are the health effects of greatest interest. Conclusions: Future research is expected to be multidisciplinary, and research hotspots may involve a comprehensive assessment of OPFR exposure in the population, exploration of the mechanisms of endocrine-disrupting effects and in vivo metabolic processes, and examination of the health effects of OPFR metabolites. Full article
Show Figures

Figure 1

12 pages, 2398 KiB  
Article
Temporal and Spatial Variation of Toxic Metal Concentrations in Cultivated Soil in Jiaxing, Zhejiang Province, China: Characteristics and Mechanisms
by Mengzhuo Cao, Yanbo Jia, Xin Lu, Jinfa Huang, Yanlai Yao, Leidong Hong, Weijing Zhu, Weiping Wang, Fengxiang Zhu and Chunlai Hong
Toxics 2024, 12(6), 390; https://doi.org/10.3390/toxics12060390 - 26 May 2024
Viewed by 240
Abstract
The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. [...] Read more.
The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. Industry and urbanization were the main factors causing toxic metal pollution on temporal variation, especially the use of feed containing toxic metals. The soil types and crop cultivation methods are the main factors causing toxic metal pollution on spatial variation. Although the single-factor pollution indices of all the toxic metals were within the safe limits, as per the National Soil Environmental Quality Standard (risk screening value), if the background values of soil elements in Jiaxing City are used as the standard, the pollution index of all the elements surveyed exceeds 1.0, reaching a level of mild pollution. The soil samples investigated were heavily contaminated with toxic metal compounds, and their levels increased over time. This situation poses potential ecological and health risks. Full article
Show Figures

Figure 1

12 pages, 2295 KiB  
Article
Effects of 6PPD-Quinone on Human Liver Cell Lines as Revealed with Cell Viability Assay and Metabolomics Analysis
by Yunqing Qi, Aiqing Qiu, Xinyue Wei, Yiting Huang, Qing Huang and Wei Huang
Toxics 2024, 12(6), 389; https://doi.org/10.3390/toxics12060389 - 26 May 2024
Viewed by 256
Abstract
N-(1,3-Dimethyl butyl)-N′-phenyl-phenylenediamine-quinone (6PPD-Q) is a derivative of the widely used rubber tire antioxidant 6PPD, which was first found to be acutely toxic to coho salmon. Subsequent studies showed that 6PPD-Q had species-specific acute toxicity in fishes and potential hepatotoxicity in [...] Read more.
N-(1,3-Dimethyl butyl)-N′-phenyl-phenylenediamine-quinone (6PPD-Q) is a derivative of the widely used rubber tire antioxidant 6PPD, which was first found to be acutely toxic to coho salmon. Subsequent studies showed that 6PPD-Q had species-specific acute toxicity in fishes and potential hepatotoxicity in mice. In addition, 6PPD-Q has been reported in human urine, demonstrating the potential widespread exposure of humans to this chemical. However, whether 6PPD-Q poses a higher risk to humans than its parent compound, 6PPD, and could cause adverse effects in humans is still unclear. In this study, we utilized two human liver cell models (the human proto-hepatocyte model L02 and the human hepatocellular carcinoma cell line HepG2) to investigate the potentially differential effects of these two chemicals. Cell viability curve analysis showed that 6PPD-Q had lower IC50 values than 6PPD for both liver cell lines, suggesting higher toxicity of 6PPD-Q to human liver cells than 6PPD. In addition, L02 cells are more sensitive to 6PPD-Q exposure, which might be derived from its weaker metabolic transformation of 6PPD-Q, since significantly lower levels of phase I and phase II metabolites were detected in 6PPD-Q-exposed L02 cell culture medium. Furthermore, pathway analysis showed that 6PPD-Q exposure induced changes in phenylalanine, tyrosine, and tryptophan biosynthesis and tyrosine metabolism pathways in L02 cells, which might be the mechanism underlying its liver cell toxicity. Gene expression analysis revealed that exposure to 6PPD-Q induced excessive ROS production in L02 cells. Our results further supported the higher risk of 6PPD-Q than 6PPD and provided insights for understanding the effects of 6PPD-Q on human health. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health)
Show Figures

Graphical abstract

15 pages, 1791 KiB  
Review
Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health
by Fei Qu and Weiwei Zheng
Toxics 2024, 12(6), 388; https://doi.org/10.3390/toxics12060388 - 26 May 2024
Viewed by 318
Abstract
Cadmium (Cd), a prevalent environmental contaminant, exerts widespread toxic effects on human health through various biochemical and molecular mechanisms. This review encapsulates the primary pathways through which Cd inflicts damage, including oxidative stress induction, disruption of Ca2+ signaling, interference with cellular signaling [...] Read more.
Cadmium (Cd), a prevalent environmental contaminant, exerts widespread toxic effects on human health through various biochemical and molecular mechanisms. This review encapsulates the primary pathways through which Cd inflicts damage, including oxidative stress induction, disruption of Ca2+ signaling, interference with cellular signaling pathways, and epigenetic modifications. By detailing the absorption, distribution, metabolism, and excretion (ADME) of Cd, alongside its interactions with cellular components such as mitochondria and DNA, this paper highlights the extensive damage caused by Cd2+ at the cellular and tissue levels. The role of Cd in inducing oxidative stress—a pivotal mechanism behind its toxicity—is discussed with emphasis on how it disrupts the balance between oxidants and antioxidants, leading to cellular damage and apoptosis. Additionally, the review covers Cd’s impact on signaling pathways like Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Tumor Protein 53 (p53) pathways, illustrating how its interference with these pathways contributes to pathological conditions and carcinogenesis. The epigenetic effects of Cd, including DNA methylation and histone modifications, are also explored to explain its long-term impact on gene expression and disease manifestation. This comprehensive analysis not only elucidates the mechanisms of Cd toxicity but also underscores the critical need for enhanced strategies to mitigate its public health implications. Full article
Show Figures

Graphical abstract

13 pages, 2637 KiB  
Article
A Rapid In Vivo Toxicity Assessment Method for Antimicrobial Peptides
by Yulang Chi, Yunhui Peng, Shikun Zhang, Sijia Tang, Wenzhou Zhang, Congjie Dai and Shouping Ji
Toxics 2024, 12(6), 387; https://doi.org/10.3390/toxics12060387 - 25 May 2024
Viewed by 239
Abstract
Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide [...] Read more.
Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity. However, there is no significant difference in the cytotoxicity against human lung epithelial cells between the GF-17 and LL-37 groups, indicating that there are significant differences in the sensitivity of different human cells to GF-17. In this study, LL-37 and GF-17 were administered to mouse lungs via intranasal inoculation. Blood routine examination results showed that LL-37 did not affect the red blood cells, platelet, white blood cells and neutrophil counts, but GF-17 decreased the white blood cells and neutrophil counts with the increasing concentration of peptides. GF-17-treated mice suffer a body weight loss of about 2.3 g on average in 24 h, indicating that GF-17 is highly toxic to mice. The total cell counts in the bronchoalveolar lavage fluid from GF-17-treated mice were 4.66-fold that in the untreated group, suggesting that GF-17 treatment leads to inflammation in the lungs of mice. Similarly, the histological results showed the infiltration of neutrophils in the lungs of GF-17-treated mice. The results suggest that the administration of GF-17 in the lungs of mice does not affect the red blood cells and platelet counts in the blood but promotes neutrophil infiltration in the lungs, leading to an inflammatory response. Therefore, we established a mouse acute lung injury model to preliminarily evaluate the in vivo toxicity of AMPs. For AMPs with a clinical application value, systematic research is still needed to evaluate their acute and long-term toxicity. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
16 pages, 9914 KiB  
Article
miR–122–5p Promotes Cowshed Particulate Matter2.5-Induced Apoptosis in NR8383 by Targeting COL4A1
by Yize Sun, Ke Sun, Zhenhua Ma, Xiqing Zhang, Xiaohui Du, Yunna Jia, Yanbin Zhu, Muhammad Inam, Yunhang Gao and Wangdui Basang
Toxics 2024, 12(6), 386; https://doi.org/10.3390/toxics12060386 - 25 May 2024
Viewed by 229
Abstract
It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular [...] Read more.
It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR–122–5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR–122–5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR–122–5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl–xL/Bcl–2 and activation of cleaved caspase–3 while inhibiting the anti-apoptotic protein B–cell lymphoma–2. The experimental data indicate that miR–122–5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF–κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

12 pages, 3044 KiB  
Article
Machine Learning to Predict Drug-Induced Liver Injury and Its Validation on Failed Drug Candidates in Development
by Fahad Mostafa, Victoria Howle and Minjun Chen
Toxics 2024, 12(6), 385; https://doi.org/10.3390/toxics12060385 - 24 May 2024
Viewed by 386
Abstract
Drug-induced liver injury (DILI) poses a significant challenge for the pharmaceutical industry and regulatory bodies. Despite extensive toxicological research aimed at mitigating DILI risk, the effectiveness of these techniques in predicting DILI in humans remains limited. Consequently, researchers have explored novel approaches and [...] Read more.
Drug-induced liver injury (DILI) poses a significant challenge for the pharmaceutical industry and regulatory bodies. Despite extensive toxicological research aimed at mitigating DILI risk, the effectiveness of these techniques in predicting DILI in humans remains limited. Consequently, researchers have explored novel approaches and procedures to enhance the accuracy of DILI risk prediction for drug candidates under development. In this study, we leveraged a large human dataset to develop machine learning models for assessing DILI risk. The performance of these prediction models was rigorously evaluated using a 10-fold cross-validation approach and an external test set. Notably, the random forest (RF) and multilayer perceptron (MLP) models emerged as the most effective in predicting DILI. During cross-validation, RF achieved an average prediction accuracy of 0.631, while MLP achieved the highest Matthews Correlation Coefficient (MCC) of 0.245. To validate the models externally, we applied them to a set of drug candidates that had failed in clinical development due to hepatotoxicity. Both RF and MLP accurately predicted the toxic drug candidates in this external validation. Our findings suggest that in silico machine learning approaches hold promise for identifying DILI liabilities associated with drug candidates during development. Full article
(This article belongs to the Collection Predictive Toxicology)
Show Figures

Figure 1

16 pages, 3907 KiB  
Article
GC/MS-Based Metabolomic Analysis of A549 Cells Exposed to Emerging Organophosphate Flame Retardants
by Mengyao Sun, Xiao Chang, Ying Gao, Sisi Zou, Shaomin Wang and Hongmin Liu
Toxics 2024, 12(6), 384; https://doi.org/10.3390/toxics12060384 - 24 May 2024
Viewed by 322
Abstract
Emerging organophosphate flame retardants (eOPFRs) have attracted attention in recent times and are expected to gain extensive usage in the coming years. However, they may have adverse effects on organisms. Due to their novel nature, there are few relevant articles dealing with toxicological [...] Read more.
Emerging organophosphate flame retardants (eOPFRs) have attracted attention in recent times and are expected to gain extensive usage in the coming years. However, they may have adverse effects on organisms. Due to their novel nature, there are few relevant articles dealing with toxicological studies of the above eOPFRs, especially their information on the perturbation of cellular metabolism, which is, thus far, marginally understood. Our research initially assessed the cytotoxicity of eOPFRs, which include compounds like cresyl diphenyl phosphate (CDP), resorcinol bis(diphenyl phosphate) (RDP), triallyl phosphate (TAP), and pentaerythritol phosphate alcohol (PEPA). This evaluation was conducted using the methyl thiazolyl tetrazolium (MTT) assay. Subsequently, we utilized a gas chromatography/mass spectrometry (GC/MS)-based metabolomic approach to investigate the metabolic disruptions induced by these four eOPFRs in A549 cells. The MTT results showed that, at high concentrations of 1 mM, their cytotoxicity was ranked as CDP > TAP > RDP > PEPA. In addition, metabolic studies at low concentrations of 10 μM showed that the metabolic interference of CDP, TAP, and PEPA focuses on oxidative stress, amino acid metabolism, and energy metabolism, while RDP mainly affects energy metabolism—galactose metabolism and gluconeogenesis. Therefore, from the perspective of cytotoxicity and metabolic analysis, RDP may be a more promising alternative. Our experiments provide important insights into the possible metabolic effects of potential toxic substances and complement the evidence on the human health risks of eOPFRs. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

14 pages, 5966 KiB  
Article
A Simple, Ecofriendly, and Fast Method for Nitrate Quantification in Bottled Water Using Visible Spectrophotometry
by Wellington Diego da Ascenção, Caroline Cristine Augusto, Vitor Hugo Soares de Melo and Bruno Lemos Batista
Toxics 2024, 12(6), 383; https://doi.org/10.3390/toxics12060383 - 23 May 2024
Viewed by 370
Abstract
There are many works associating the presence of nitrate in water and the occurrence of cancer in humans. The most common method for quantifying nitrate in water is based on the use of toxic cadmium as a reductant. In this work, a new [...] Read more.
There are many works associating the presence of nitrate in water and the occurrence of cancer in humans. The most common method for quantifying nitrate in water is based on the use of toxic cadmium as a reductant. In this work, a new approach was developed for the quantification of nitrate in bottled water with indirect spectrophotometry using Zn0 as a reductant. Nitrate is reduced to nitrite using Zn0 in a buffered medium (acetate/acetic acid) and quantified with visible spectrophotometry using the Griess reaction between sulfanilamide and N-(1-naphthyl)-ethylenediamine. The influence of pH, buffer solution (constitution and concentration), Zn0 (mass and granulometry), and agitation time on the efficiency of nitrite generation was evaluated. The optimal conditions were an acetate–acetic acid buffer solution with a concentration and pH of 0.75 mol L−1 and 6.00, respectively, and a Zn0 particle size of 20 MESH and Zn0 mass of 300 mg. The limits of detection and quantification (LoD and LoQ) were 0.024 and 0.08 mg L−1, respectively. The method’s accuracy and precision were evaluated using the analysis of commercial bottled water. In conclusion, the use of Zn0 instead of cadmium provided a green method with excellent LoD/LoQ. Further, the method proved to be simple and easy to apply during outdoor analysis. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

16 pages, 5830 KiB  
Article
A Modified Model for Quantitative Heavy Metal Source Apportionment and Pollution Pathway Identification
by Maodi Wang, Pengyue Yu, Zhenglong Tong, Xingyuan Shao, Jianwei Peng, Yasir Hamid and Ying Huang
Toxics 2024, 12(6), 382; https://doi.org/10.3390/toxics12060382 - 23 May 2024
Viewed by 416
Abstract
Current source apportionment models have successfully identified emission sources and quantified their contributions. However, when being utilized for heavy metal source apportion in soil, their accuracy needs to be improved, regarding migration patterns. Therefore, this work intended to improve the pre-existing principal component [...] Read more.
Current source apportionment models have successfully identified emission sources and quantified their contributions. However, when being utilized for heavy metal source apportion in soil, their accuracy needs to be improved, regarding migration patterns. Therefore, this work intended to improve the pre-existing principal component analysis and multiple linear regression with distance (PCA-MLRD) model to effectively locate pollution pathways (traffic emissions, irrigation water, atmospheric depositions, etc.) and achieve a more precise quantification. The dataset of soil heavy metals was collected from a typical area in the Chang-Zhu-Tan region, Hunan, China in 2021. The identification of the contribution of soil parent material was accomplished through enrichment factors and crustal reference elements. Meanwhile, the anthropogenic emission was identified with principal component analysis and GeoDetector. GeoDetector was used to accurately point to the pollution source from a spatial differentiation perspective. Subsequently, the pollution pathways linked to the identified sources were determined. Non-metal manufacturing factories were found to be significant anthropogenic sources of local soil contamination, mainly through rivers and atmospheric deposition. Furthermore, the influence of irrigation water on heavy metals showed a more pronounced effect within a distance of 1000 m, became weaker after that, and then gradually disappeared. This model may offer improved technical guidance for practical production and the management of soil heavy metal contamination. Full article
Show Figures

Graphical abstract

14 pages, 1892 KiB  
Article
Associations between PM2.5 Components and Mortality of Ischemic Stroke, Chronic Obstructive Pulmonary Disease and Diabetes in Beijing, China
by Hao Feng, Yisen Yang, Hong Ye, Jing Xu, Meiduo Zhao, Ye Jin and Shuyang Zhang
Toxics 2024, 12(6), 381; https://doi.org/10.3390/toxics12060381 - 23 May 2024
Viewed by 365
Abstract
Ischemic stroke (IS), chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) account for a large burden of premature deaths. However, few studies have investigated the associations between fine particular matter (PM2.5) components and mortality of IS, COPD and DM. We [...] Read more.
Ischemic stroke (IS), chronic obstructive pulmonary disease (COPD) and diabetes mellitus (DM) account for a large burden of premature deaths. However, few studies have investigated the associations between fine particular matter (PM2.5) components and mortality of IS, COPD and DM. We aimed to examine these associations in Beijing, China. Data on daily mortality, air pollutants and meteorological factors from 2008 to 2011 in Beijing were collected. Daily concentrations of five PM2.5 components, namely, sulfate ion (SO42−), ammonium ion (NH4+), nitrate ion (NO3), organic matter (OM) and black carbon (BC), were obtained from the Tracking Air Pollution (TAP) database in China. The association between PM2.5 components and daily deaths was explored using a quasi-Poisson regression with the distributed lag nonlinear model (DLNM). The average daily concentrations of SO42−, NH4+, NO3, OM and BC were 11.24, 8.37, 12.00, 17.34 and 3.32 μg/m3, respectively. After adjusting for temperature, relative humidity, pressure, particulate matter less than 10 μm in aerodynamic diameter (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2), an IQR increase in OM at lag day 2 and lag day 6 was associated with an increased DM mortality risk (RR 1.038; 95% CI: 1.005–1.071) and COPD mortality risk (RR 1.013; 95% CI: 1.001–1.026). An IQR increase in BC at lag day 0 and lag day 6 was associated with increased COPD mortality risk (RR 1.228; 95% CI: 1.017–1.48, RR 1.059; 95% CI: 1.001–1.121). Cumulative exposure to SO42− and NH4+ was associated with an increased mortality risk for IS, with the highest effect found for lag of 0–7 days (RR 1.085; 95% CI: 1.010–1.167, RR 1.083; 95% CI: 1.003–1.169). These effects varied by sex and age group. This study demonstrated associations of short-term exposure to PM2.5 components with increased risk of IS, COPD and DM mortality in the general population. Our study also highlighted susceptible subgroups. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

18 pages, 6218 KiB  
Article
Utilization of Peptidoglycans from Lactic Acid Bacterial Cell Walls for the Mitigation of Acrylamide and 5-Hydroxymethylfurfural
by Hui Yang, Xue Zhang, Yadong Zhu, Bo Zhang, Junfeng Fan, Hongfei Zhao and Bolin Zhang
Toxics 2024, 12(6), 380; https://doi.org/10.3390/toxics12060380 - 23 May 2024
Viewed by 298
Abstract
Acrylamide (AA) and 5-hydroxymethylfurfural (HMF), which are potentially carcinogenic to humans, are often produced during the hot processing of foods. This study first used a molecular docking model to simulate the binding behavior of four lactic acid bacteria peptidoglycans (PGNs) to AA/HMF, and [...] Read more.
Acrylamide (AA) and 5-hydroxymethylfurfural (HMF), which are potentially carcinogenic to humans, are often produced during the hot processing of foods. This study first used a molecular docking model to simulate the binding behavior of four lactic acid bacteria peptidoglycans (PGNs) to AA/HMF, and the binding rate of LAB-based PGNs to AA/HMF was evaluated in vitro. In silico results show that interaction energy is the driving force responsible for the adsorption of LAB-derived PGNs to AA/HMF. In vitro results showed that the PGN of B. lactis B1-04 bound the most AA (28.7%) and HMF (48.0%), followed by L. acidophilus NCFM, B. breve CICC 6079, and L. plantarum CICC 22135. Moreover, an AA/HMF-bound layer on the cell surface of B. lactis B1-04 was observed via AFM and SEM due to adsorption. XPS analysis indicated the removal rate of AA/HMF by selected strains was positively correlated with the proportion of C-O, C=O, and N-H groups of PGNs. The atoms O1, O2, O3, O4, N1, N2, N3, H1, and H2 are involved in the adsorption of LAB-based PGNs to AA/HMF. Thus, the PGNs derived from these four Lactobacillus strains can be regarded as natural adsorbents for the binding of AA/HMF. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

11 pages, 1346 KiB  
Article
Bisphenol Chemicals in Surface Soil from E-Waste Dismantling Facilities and the Surrounding Areas: Spatial Distribution and Health Risk
by Lei Zhao, Fengli Zhou, Shuyue Wang, Yan Yang, Haojia Chen, Xufang Ma and Xiaotu Liu
Toxics 2024, 12(6), 379; https://doi.org/10.3390/toxics12060379 - 23 May 2024
Viewed by 296
Abstract
Electronic waste (e-waste) dismantling facilities are well-known bisphenol chemical (BP) sources. In this study, non-targeted screening combined with targeted analysis of BPs in surface soil from e-waste dismantling facilities and their surroundings revealed their presence, distribution, and exposure risk. A total of 14 [...] Read more.
Electronic waste (e-waste) dismantling facilities are well-known bisphenol chemical (BP) sources. In this study, non-targeted screening combined with targeted analysis of BPs in surface soil from e-waste dismantling facilities and their surroundings revealed their presence, distribution, and exposure risk. A total of 14 BPs were identified including bisphenol A (BPA) and its novel structural analogs and halogenated BPs. The total concentrations of BPs ranged from 963 to 47,160 ng/g (median: 6970 ng/g) in e-waste soil, higher than those measured in surface soil from surrounding areas, i.e., 10–7750 ng/g (median 197 ng/g). BPA, tetrabromobisphenol A (TBBPA), and bisphenol F (BPF) were the dominant ones from the two areas. Concentrations of TBBPA and its debromination product from the surrounding area significantly decreased with increasing distances from the e-waste dismantling facilities. Estimation of daily intake via oral ingestion of soil suggests that current contamination scenarios are unlikely to pose health risks for e-waste dismantling workers and adults and toddlers living in the surrounding areas, with their intakes generally well below the tolerable daily intakes proposed for several BPs. However, the BPA intakes of workers exceeded the more strict tolerable daily intake for BPA established recently, which merits continuous environmental surveillance. Full article
Show Figures

Figure 1

17 pages, 7667 KiB  
Article
The Protective Effects of Ganoderma lucidum Active Peptide GLP4 on Lung Injury Induced by Cadmium Poisoning in Mice
by Shirong Zhu, Xiaoling Wang and Gaoqiang Liu
Toxics 2024, 12(6), 378; https://doi.org/10.3390/toxics12060378 - 22 May 2024
Viewed by 334
Abstract
Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced [...] Read more.
Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

16 pages, 3277 KiB  
Article
Exploring the Burden of PM2.5-Related Deaths and Economic Health Losses in Beijing
by Xiaoqi Wang, Bart Julien Dewancker, Dongwei Tian and Shao Zhuang
Toxics 2024, 12(6), 377; https://doi.org/10.3390/toxics12060377 - 21 May 2024
Viewed by 358
Abstract
Air pollution is one of the major global public health challenges. Using annual fine particulate matter (PM2.5) concentration data from 2016 to 2021, along with the global exposure mortality model (GEMM), we estimated the multi-year PM2.5-pollution-related deaths divided by different age groups and [...] Read more.
Air pollution is one of the major global public health challenges. Using annual fine particulate matter (PM2.5) concentration data from 2016 to 2021, along with the global exposure mortality model (GEMM), we estimated the multi-year PM2.5-pollution-related deaths divided by different age groups and diseases. Then, using the VSL (value of statistical life) method, we assessed corresponding economic losses and values. The number of deaths attributed to PM2.5 in Beijing in 2021 fell by 33.74 percent from 2016, while health economic losses would increase by USD 4.4 billion as per capita disposable income increases year by year. In 2021, the average annual concentration of PM2.5 in half of Beijing’s municipal administrative districts is less than China’s secondary ambient air quality standard (35 μg/m3), but it can still cause 48,969 deaths and corresponding health and economic losses of USD 16.31 billion, equivalent to 7.9 percent of Beijing’s GDP. Therefore, it is suggested that more stringent local air quality standards should be designated to protect public health in Beijing. Full article
(This article belongs to the Special Issue Toxicity and Human Health Assessment of Air Pollutants)
Show Figures

Figure 1

Previous Issue
Back to TopTop