You are currently viewing a new version of our website. To view the old version click .

Processes

Processes is an international, peer-reviewed, open access journal on processes/systems in chemistry, biology, material, energy, environment, food, pharmaceutical, manufacturing, automation control, catalysis, separation, particle and allied engineering fields published semimonthly online by MDPI.
The Brazilian Association of Chemical Engineering (ABEQ) is affiliated with Processes and its members receive discounts on the article processing charges. Please visit Society Collaborations for more details.
Quartile Ranking JCR - Q3 (Engineering, Chemical)

All Articles (18,807)

Hazardous gas leaks are a major trigger of chemical incidents. If not handled in time, they can easily lead to secondary disasters such as fires and explosions. In recent years, with the construction of hazardous chemical monitoring and early-warning systems in China, large volumes of field operating data from flammable and toxic gas sensors have been accumulated, providing a data foundation for leak-pattern studies grounded in real-world scenarios. In this study, 56 leak samples verified by site feedback were selected. Time-aware interpolation and Z-score normalization were used for preprocessing, and time-series features—including standard deviation of first differences, autocorrelation coefficients, and frequency-domain energy—were extracted. Leak patterns were then identified using two unsupervised approaches: K-Means clustering and a 1D-CNN autoencoder. Results show that K-Means effectively distinguishes macro-patterns such as sustained leaks, instantaneous leaks, fluctuating leaks, and interrupted leaks, while the autoencoder demonstrates stronger capability in extracting temporal features, revealing leak evolution and transition characteristics. The two methods are complementary and together provide a viable route to developing an end-to-end model for leak scenario identification and risk discrimination. This work not only verifies the feasibility of conducting leak-pattern recognition using real GDS data but also offers technical guidance for the intelligent upgrading of hazardous chemical monitoring and early-warning systems.

28 December 2025

Schematic of on-site sensor placement requirements.
  • Feature Paper
  • Article
  • Open Access

Feedstock quality has been proven to be the single variable that most affects fluid catalytic cracking (FCC) unit performance, but catalyst characteristics have also been reported in the literature to have a considerable effect on cracking process performance. How these two main variables of the FCC process complement each other in the search for ways to optimize the performance of the FCC unit is the subject of current research. Twenty-one feedstocks with KW-characterizing factors ranging from 11.08 to 12.06, Conradson carbon contents ranging from 0.05 to 12.8 wt.%, and nitrogen contents ranging from 800 to 3590 ppm (wt/wt) (basic nitrogen from 172 to 1125 ppm (wt/wt)) were cracked on 21 catalysts with micro-activity between 67% and 76% (wt/wt) in a laboratory-based advanced catalytic evaluation (ACE) unit at a reaction temperature of 527ׄ °C, catalyst–to-oil ratios between 3.5 and 12.0 wt/wt, and a catalyst time on stream of 30 s. Some of the feeds and catalysts tested in the laboratory FCC ACE unit were also examined in a commercial short-contact-time FCC unit resembling a UOP side-by-side design. It was found that conversion can be very well predicted in both the laboratory ACE and the commercial FCC units using multiple linear correlations developed in this work from information about the following feed properties: KW-characterizing factor, nitrogen content, and micro-activity of the catalyst. The coke on the catalyst that controls the catalyst-to-oil ratio and the regenerator temperature in the commercial FCC unit could be calculated using the correlations developed in this work for the laboratory ACE and commercial FCC units, based on feed characteristics and catalyst micro-activity. Due to the greater slope of the Δ coke/Δ micro-activity dependence observed in the ACE FCC unit, the more active catalysts show weaker results compared to the less active catalysts at a constant coke yield. In contrast, catalysts with higher activity are preferable for operation in the commercial FCC plant because they provide higher conversion at the same coke yield due to the lower slope of the Δ coke/Δ micro-activity relationship.

28 December 2025

The transition to a circular economy and the pursuit of environmental sustainability are driving humanity to develop alternative technologies for producing a range of bioproducts. In this context, microbial-mediated fermentation processes have gained prominence. Although yeasts are well known for their ability to produce alcohols, they can also generate a wide range of value-added bioproducts. At the same time, microalgae emerge as an advantageous unconventional raw material, as their cultivation does not require arable land, thus avoiding competition with food production. To meet this demand, this study aimed to produce biocomposites through submerged fermentation using biomass from the microalgae Chlorella sp. Enzymatic hydrolysis was optimized using a 22 Central Composite Rotational Design (CCRD), with algal biomass and enzyme mass as independent variables. This step was followed by fermentation with the yeast Wickerhamomyces sp. UFFS-CE-3.1.2. The enzyme alpha amylase employed is of commercial origin, commonly used in the brewing industry, characterized by its easy accessibility and lower environmental impact compared to chemical hydrolysis methods. The results demonstrated that the combination of microalgae biomass with the enzyme preparation led to the production of several compounds of interest, such as highly active enzymes, mainly protease (560 U/mL), catalase (3381 U/mL), and peroxidase (277 U/mL), as well as other compounds, such as glycerol (32.5 g/L) and acetic acid (22.8 g/L). These products have wide industrial applications and a strong market demand, reinforcing the potential of the yeast–microalgae synergy for the sustainable production of high-value biocompounds, which represents a matrix of environmentally friendly products.

28 December 2025

Enhancing the Production of Milk and Milk Derivatives: A Case Study of Romania

  • Cristina Coculescu,
  • Ana Maria Mihaela Iordache and
  • Ioan Codruț Coculescu

Milk and its by-products offer a concentrated source of proteins and nutrients that are essential for life and that can be challenging to obtain from other foods. There has been growing interest in the production, enhancement, and effective utilization of milk over time. The objective of this research paper is to contribute to ongoing efforts to enhance the production and collection of milk and dairy derivatives in Romania. In a study analyzing the dairy industry in the European Union, various indicators were examined with the aim of classifying countries and determining Romania’s position. To gain a comprehensive understanding of the dairy industry in the European Union, several indicators were considered, including milk production; different dairy products, such as butter and cheese; and data on bovine populations in various age groups. To efficiently classify the countries and identify Romania’s position, advanced data mining techniques were employed, including cluster analysis and neural network training. To enhance and advance the dairy industry in Romania, this study proposes the exploration of the potential advantages of implementing Industry 4.0 solutions, particularly on a larger scale, with Enterprise Resources Planning (ERP) software.

28 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advances in Remediation of Contaminated Sites
Reprint

Advances in Remediation of Contaminated Sites

2nd Edition
Editors: Guining Lu, Zenghui Diao, Yaoyu Zhou, Kaibo Huang
2nd Edition of Innovation in Chemical Plant Design
Reprint

2nd Edition of Innovation in Chemical Plant Design

Editors: Roberta Campardelli, Paolo Trucillo

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Processes - ISSN 2227-9717