Topic Editors

Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
The School of Pharmacy, University of Reading, Reading RG6 6AD, UK

Complementary Strategies in Drug Delivery: From Particle Engineering to System Optimization

Abstract submission deadline
closed (31 October 2025)
Manuscript submission deadline
31 December 2025
Viewed by
10784

Topic Information

Dear Colleagues,

This theme aims to explore the diverse world of drug delivery systems, emphasising the integration of various techniques and approaches to enhance drug efficacy, stability, and patient compliance. It will cover a range of topics, including but not limited to, the following:

  • Advancements in Spray Drying: Focusing on novel techniques using two- and multiple-fluid spray drying to improve drug solubility and bioavailability, particularly for poorly soluble drugs;
  • Innovations in Inhalation Drug Delivery: Highlighting the latest developments in pulmonary drug delivery systems, with a special focus on patient compliance and the role of particle engineering in enhancing drug efficacy;
  • Crystal Engineering in Pharmaceuticals: Discussing the impact of crystal engineering on drug properties, such as solubility, stability, and bioavailability, and its role in overcoming formulation challenges;
  • Emerging Trends in Oral Drug Delivery: Exploring new technologies and approaches in oral drug delivery, including targeted delivery systems and strategies to overcome biological barriers for improved drug absorption;
  • Cross-Disciplinary Approaches: Encouraging submissions that demonstrate the intersection of these areas, such as the use of crystal engineering in inhalation drug delivery or the application of two- and three-fluid spray drying techniques in oral drug formulations.

Prof. Dr. Barbara R. Conway
Dr. Hisham Al-Obaidi
Topic Editors

Keywords

  • drug delivery systems
  • particle engineering
  • spray drying
  • inhalation drug delivery
  • crystal engineering
  • oral drug delivery

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Bioengineering
bioengineering
3.7 5.3 2014 19.2 Days CHF 2700 Submit
Molecules
molecules
4.6 8.6 1996 16.1 Days CHF 2700 Submit
Pharmaceuticals
pharmaceuticals
4.8 7.7 2004 14 Days CHF 2900 Submit
Pharmaceutics
pharmaceutics
5.5 10.0 2009 14.9 Days CHF 2900 Submit
Processes
processes
2.8 5.5 2013 16 Days CHF 2400 Submit
Scientia Pharmaceutica
scipharm
2.5 4.6 1930 38.1 Days CHF 1000 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
46 pages, 3987 KB  
Review
Niosomes as Vesicular Carriers: From Formulation Strategies to Stimuli-Responsive Innovative Modulations for Targeted Drug Delivery
by Andra Ababei-Bobu, Bianca-Ștefania Profire, Andreea-Teodora Iacob, Oana-Maria Chirliu, Florentina Geanina Lupașcu and Lenuța Profire
Pharmaceutics 2025, 17(11), 1473; https://doi.org/10.3390/pharmaceutics17111473 - 14 Nov 2025
Viewed by 623
Abstract
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in [...] Read more.
Niosomes (NIOs), a class of nanovesicular drug delivery system, have garnered significant attention due to their unique architecture, resulting from the self-assembly of non-ionic surfactants (with or without cholesterol) in aqueous media. This bilayered structure enables the encapsulation of both hydrophilic agents in the aqueous core and lipophilic compounds within the lipid bilayer, offering remarkable versatility in therapeutic applications. This article provides an overview of the key principles underlying niosomal formulations, including their composition, preparation methods, formulation conditions and the critical physicochemical parameters influencing vesicle formation and performance. Special emphasis is placed on recent innovations in surface and content modifications that have led to the development of stimuli-responsive niosomal systems, with precise and controlled drug release. These smart carriers are designed to respond to endogenous stimuli (such as pH variations, redox gradients, enzymatic activity, or local temperature changes in pathological sites), as well as to exogenous triggers (including light, ultrasound, magnetic or electric fields, and externally applied hyperthermia), thereby enhancing therapeutic precision. These surface and content modulation strategies effectively transform conventional NIOs into intelligent, stimuli-responsive platforms, reinforcing their innovative role in drug delivery and highlighting their significant potential in the development of smart nanomedicine. Full article
Show Figures

Graphical abstract

18 pages, 1936 KB  
Article
Does a Polycistronic 2A Design Enable Functional FcRn Production for Antibody Pharmacokinetic Studies?
by Valentina S. Nesmeyanova, Nikita D. Ushkalenko, Sergei E. Olkin, Maksim N. Kosenko, Elena A. Rukhlova, Ivan M. Susloparov and Dmitry N. Shcherbakov
Pharmaceutics 2025, 17(11), 1463; https://doi.org/10.3390/pharmaceutics17111463 - 13 Nov 2025
Viewed by 440
Abstract
Background/Objectives: The neonatal Fc receptor (FcRn) is a heterodimeric protein composed of a heavy α-chain with an MHC class I-like fold and β2-microglobulin. It plays a crucial role in maintaining the homeostasis and pharmacokinetics of immunoglobulin G (IgG) and albumin through [...] Read more.
Background/Objectives: The neonatal Fc receptor (FcRn) is a heterodimeric protein composed of a heavy α-chain with an MHC class I-like fold and β2-microglobulin. It plays a crucial role in maintaining the homeostasis and pharmacokinetics of immunoglobulin G (IgG) and albumin through pH-dependent recycling. The production of soluble recombinant FcRn is technically challenging due to its heterodimeric structure and the presence of a transmembrane domain. This study aimed to develop a polycistronic construct enabling the co-expression of FcRn subunits from a single transcript and to evaluate the functional activity of the resulting protein in CHO-K1 cells. Methods: Integration vectors (pComV-FcRn-B2M) were designed to encode FcRn and β2-microglobulin linked via self-cleaving 2A peptides (P2A, E2A, F2A, T2A). Stable producer cell lines were generated using the Sleeping Beauty transposon system. The purified proteins were characterized by SDS-PAGE, Western blotting, and size-exclusion chromatography (SEC). Functional activity was assessed by ELISA and bio-layer interferometry (BLI). Results: Electrophoretic and chromatographic analyses confirmed the expected subunit composition and demonstrated that over 95% of the recombinant protein was monomeric. Functional assays revealed pH-dependent IgG binding, with strong interaction at pH 6.0 and negligible binding at pH 7.5. BLI measurements showed high affinity consistent with native FcRn function (KD = 3.15 nM at pH 6.0). Conclusions: The developed polycistronic construct containing a P2A peptide with a GSG linker enabled efficient production of functional FcRn in CHO-K1 cells (yield up to 2.23 mg/mL). The P2A variant demonstrated the highest efficiency and can serve as a reference system for screening Fc-engineered antibodies with optimized pharmacokinetic properties. Full article
Show Figures

Figure 1

17 pages, 2110 KB  
Article
5-Aminosalicylic Acid Distribution into the Intestinal Membrane Along the Gastrointestinal Tract After Oral Administration in Rats
by Yorinobu Maeda, Yuta Goto, Fumiya Ohnishi, Syoutarou Koga, Satoshi Kawano, Yuhzo Hieda, Takeshi Goromaru and Teruo Murakami
Pharmaceutics 2024, 16(12), 1567; https://doi.org/10.3390/pharmaceutics16121567 - 7 Dec 2024
Cited by 3 | Viewed by 1993
Abstract
Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine. Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA [...] Read more.
Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine. Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA and its N-acetyl metabolite (AC-5-ASA) after the oral administration of 5-ASA were examined in fed rats. 5-ASA was administered as a suspension in water, 0.1 M HCl, or 0.1 M NaOH to untreated rats or as a solution in 5% NaHCO3 to lansoprazole-pretreated rats. Results: 5-ASA solubility in vitro was higher at pH < 2 and pH > 7. In rats, the 5-ASA and AC-5-ASA were detected mostly in the small intestine at 3 h and in the colonic region at 8 h after administration. The dosing vehicle (suspension or solution) and lansoprazole pretreatment did not significantly affect the pH of the luminal fluid in rats or the 5-ASA distribution in membranes. Conclusions: The 5-ASA distribution in membranes in the proximal intestine was found to be restricted by the intrinsic regional luminal pH, low solubility, and saturable membrane permeability. Unabsorbed 5-ASA in the proximal intestine was delivered to the distal intestine. The higher the oral dose of 5-ASA, the more 5-ASA may be delivered to the distal intestine due to the restricted absorption in the small intestine. Full article
Show Figures

Figure 1

25 pages, 4244 KB  
Article
Back to Nature: Development and Optimization of Bioinspired Nanocarriers for Potential Breast Cancer Treatment
by Sally Safwat, Rania M. Hathout, Rania A. H. Ishak and Nahed D. Mortada
Sci. Pharm. 2024, 92(3), 50; https://doi.org/10.3390/scipharm92030050 - 2 Sep 2024
Viewed by 2736
Abstract
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited [...] Read more.
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited for nanoparticle fabrication. The BBD was used, followed by a desirability function to select the optimum formulation. The BBD was adopted as it avoids the runs implemented in extreme conditions, hence making it suitable for proteins. CS NPs were characterized regarding particle size (PS), size distribution (PDI), zeta potential (ZP), drug entrapment, morphology using TEM, differential scanning calorimetry, molecular docking, in vitro release, and cytotoxicity studies. PS, PDI, and ZP had significant responses, while EE% was insignificant. The suggested models were quadratic with high fitting. Optimized NPs showed PS = 110.31 ± 1.02 nm, PDI = 0.331 ± 0.029, ZP = −23.94 ± 1.64 mV, and EE% = 95.4 ± 2.56%. Molecular modeling indicated hydrophobic and electrostatic interactions between CA and CS, accounting for the high EE%. Almost spherical particles were realized with a sustained CA release pattern. Optimized NPs effectively suppressed the growth of MCF-7 cell lines by scoring the lowest IC50 = 78.45 ± 1.7 µg/mL. A novel combination of bioinspired-derived materials was developed for use in breast cancer treatment. Full article
Show Figures

Figure 1

20 pages, 2334 KB  
Article
Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties
by Joanna Czerniel, Aleksandra Gostyńska, Tomasz Przybylski and Maciej Stawny
Sci. Pharm. 2024, 92(3), 48; https://doi.org/10.3390/scipharm92030048 - 30 Aug 2024
Cited by 3 | Viewed by 3250
Abstract
Curcumin is a well-known and widely used substance of natural origin. It has also been found to be helpful in the treatment of liver diseases. Unfortunately, curcumin has very low bioavailability and a sensitivity to external agents. Improving these parameters is the subject [...] Read more.
Curcumin is a well-known and widely used substance of natural origin. It has also been found to be helpful in the treatment of liver diseases. Unfortunately, curcumin has very low bioavailability and a sensitivity to external agents. Improving these parameters is the subject of many studies. One way to overcome these problems may be to use Phosal® Curcumin as a source of curcumin and encapsulate this dispersion into a nanoemulsion using different types and concentrations of surfactants and co-surfactants, thus manipulating the physicochemical parameters of the nanoemulsion. The present study aimed to develop curcumin-loaded nanoemulsions for intravenous administration and to investigate the effect of Kolliphor HS15 concentration on their critical quality attributes. Methods: Phosal® Curcumin-loaded nanoemulsions with different concentrations of Kolliphor HS15 were prepared by high-pressure homogenization. The effect of Kolliphor HS15 on emulsion physicochemical properties such as mean droplet diameter (MDD), polydispersity index (PDI), zeta potential (ZP), osmolality (OSM), and pH, as well as encapsulation efficiency (EE) and retention rate (RR) of curcumin, were determined. Mid-term stability studies and short-term stress tests were conducted to evaluate the impact of Kolliphor HS15 on the critical quality attributes of the curcumin-loaded nanoemulsions stored under various conditions. Results: Five nanoemulsions with increasing Kolliphor HS15 concentrations were developed. Their MDD ranged from 85.2 ± 2.0 to 154.5 ± 5.1 nm, with a PDI from 0.18 ± 0.04 to 0.10 ± 0.01 and ZP from −15.6 ± 0.7 to −27.6 ± 3.4 mV. Depending on the concentration of Kolliphor HS15, the EE ranged from 58.42 ± 1.27 to 44.98 ± 0.97%. Conclusions: The studied parameters of the developed nanoemulsions meet the requirements for formulations for intravenous administration. Using the appropriate concentration of Kolliphor HS15 allows for a formulation that presents a protective effect against both curcumin and emulsion degradation. Full article
Show Figures

Figure 1

Back to TopTop