Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

22 pages, 3398 KiB  
Article
Performing Multi-Objective Optimization Alongside Dimension Reduction to Determine Number of Clusters
by Melisa Mollaian, Gyula Dörgő and Ahmet Palazoglu
Processes 2022, 10(5), 893; https://doi.org/10.3390/pr10050893 - 1 May 2022
Viewed by 1398
Abstract
One of the consequences of the widespread automation of manufacturing operations has been the proliferation and availability of historical databases that can be exploited by analytical methods to improve process understanding. Data science tools such as dimension reduction and clustering are among many [...] Read more.
One of the consequences of the widespread automation of manufacturing operations has been the proliferation and availability of historical databases that can be exploited by analytical methods to improve process understanding. Data science tools such as dimension reduction and clustering are among many such approaches that can aid in the identification of unique process features and patterns that can be associated with faulty states. However, determining the number of such states still requires significant engineering knowledge and insight. In this study, a new unsupervised method is proposed that reveals the number of classes in a data set. The method utilizes a variety of dimension reduction techniques to create projections of a data set and performs multiple clustering operations on the lower-dimensional data as well as the original data. The relevant internal clustering metrics are incorporated into a multi-objective optimization problem to determine the solutions that simultaneously optimize all metrics. The cluster number that shows Pareto optimality based on the performance metrics is selected as the final one. The method is tested on three data sets with distinct features. The results demonstrate the ability of the proposed method to correctly identify the expected number of clusters. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

20 pages, 4460 KiB  
Article
The Effects of Logistics Websites’ Technical Factors on the Optimization of Digital Marketing Strategies and Corporate Brand Name
by Damianos P. Sakas, Dimitrios P. Reklitis, Panagiotis Trivellas, Costas Vassilakis and Marina C. Terzi
Processes 2022, 10(5), 892; https://doi.org/10.3390/pr10050892 - 1 May 2022
Cited by 22 | Viewed by 3406
Abstract
In a world overwhelmed with unstructured information, logistics companies increasingly depend on their websites to acquire new customers and maintain existing ones. Following this rationale, a series of technical elements may set the ground for differentiating one logistics website from another. Nevertheless, a [...] Read more.
In a world overwhelmed with unstructured information, logistics companies increasingly depend on their websites to acquire new customers and maintain existing ones. Following this rationale, a series of technical elements may set the ground for differentiating one logistics website from another. Nevertheless, a suitable digital marketing strategy should be adopted in order to build competitive advantage. In this paper, the authors attempt to respond by implementing an innovative methodology building on web analytics and big data. The first phase of the research collects data for 180 days from 7 world-leading logistics companies. The second phase presents the statistical analysis of the gathered data, including regression, correlations, and descriptive statistics. Subsequently, Fuzzy Cognitive Mapping (FCM) was employed to illustrate the cause-and-effect links among the metrics in question. Finally, a predictive simulation model is developed to show the intercorrelation among the metrics studied as well as various optimization strategies. Research findings reveal a significant correlation between the logistics websites’ technical factors and the growth of the corporate brand name. Full article
Show Figures

Figure 1

23 pages, 3412 KiB  
Article
Integrating Triple Bottom Line in Sustainable Chemical Supplier Selection: A Compromise Decision-Making-Based Spherical Fuzzy Approach
by Chia-Nan Wang, Chien-Chang Chou, Thanh-Tuan Dang, Hoang-Phu Nguyen and Ngoc-Ai-Thy Nguyen
Processes 2022, 10(5), 889; https://doi.org/10.3390/pr10050889 - 30 Apr 2022
Cited by 8 | Viewed by 2712
Abstract
As a consequence of increased awareness of environmental preservation and the associated rigorous regulations, the adoption of sustainable practices has become a crucial element for corporate organizations in regard to their supply chains. In the chemical industry, which is characterized by high risks, [...] Read more.
As a consequence of increased awareness of environmental preservation and the associated rigorous regulations, the adoption of sustainable practices has become a crucial element for corporate organizations in regard to their supply chains. In the chemical industry, which is characterized by high risks, high pollution, and high efficiency, these characteristics can help businesses analyze their long-term development and sustainability. The goal of this research is to analyze and choose possible suppliers based on their sustainability performance in the chemical sector. A methodology based on multi-criteria decision making (MCDM) is proposed for this evaluation, using spherical fuzzy analytical hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) methods, in which the novel spherical fuzzy sets theory is employed to present the ambiguous linguistic preferences of experts. In the first stage, an evaluation criteria system is identified through literature review and experts’ opinions. The SF-AHP is used to determine the criteria weights, while the CoCoSo method is utilized to select the right sustainable supplier. A case study in the chemical industry in Vietnam is presented to demonstrate the effectiveness of the proposed approach. From the SF-AHP findings, “equipment system and technology capability”, “flexibility and reliability”, “logistics cost”, “green materials and technologies”, and “on-time delivery” were ranked as the five most important criteria. From the CoCoSo analysis, Vietnam National Chemical Group (CHE-05) was found to be the best supplier. A sensitivity study and a comparison analysis of methods were also conducted to verify the robustness of the proposed model, and the priority rankings of the best suppliers were very similar. To the best of our knowledge, this is the first study that has proposed SF-AHP and CoCoSo to prioritize SSS evaluation criteria and determine the best alternatives. The suggested method and findings can be used to make well-informed decisions that help businesses to achieve supply chain sustainability, capture opportunities, and maintain competitiveness through reconfiguring resources. The method could be useful for case studies in other countries and for other sustainability problems. Full article
Show Figures

Figure 1

16 pages, 3017 KiB  
Article
Evaluation of Inhibitory Activities of Sophora flavescens and Angelica gigas Nakai Root Extracts against Monoamine Oxidases, Cholinesterases, and β-Secretase
by Jong Eun Park, Seul-Ki Mun, Sung-Tae Yee and Hoon Kim
Processes 2022, 10(5), 880; https://doi.org/10.3390/pr10050880 - 29 Apr 2022
Cited by 4 | Viewed by 1804
Abstract
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water [...] Read more.
In this study, Sophora flavescens (SF) from Yeongcheon (YSF) and Mt. Jiri (JiSF), and Angelica gias (AG) from Yeongcheon (YAG), Mt. Jiri (JiAG), and Jecheon (JeAG) were extracted using three concentrations of ethanol, 95% (95Et), 70% (70Et), and 50% (50Et), and hot water (DW) to evaluate the inhibitions of monoamine oxidases (MAOs; MAO-A and B), cholinesterases (ChEs; AChE and BChE) and β-secretase (BACE1) for targeting depression and neurodegenerative diseases. There were no significant differences in constituent compounds depending on herbal origins, except that YSF-95Et and JiSF-95Et showed a distinct non-polar spot upper maackiain position, and JiAG and JeAG showed a higher amount of decursin than YAG. Ethanolic YAG and JeAG extracts showed the highest MAO-A inhibition, and YSF-95Et mostly inhibited MAO-B. JiSF-95Et showed the highest AChE inhibition and YSF-70Et, JiSF-95Et, and -70Et showed the highest BChE inhibition. Interestingly, ethanolic AG extracts showed extremely potent BACE1 inhibition, especially for JiAG-95Et and JeAG-50Et, whereas there have been no reports about BACE1 inhibition of decursin, the major compound, or AG extracts in other studies. All extracts were nontoxic to MDCK and SH-SY5Y with a low toxicity to HL-60. The results showed a different pattern of inhibitory activities of the extracts toward target enzymes depending on the origins, and multi-target abilities, especially for MAO-B and BChE by YSF-95Et, for AChE and BChE by JiSF-95Et, and for MAO-B and BACE1 by JiAG-95Et. It is suggested that those extracts are potential candidates for finding novel compounds with multi-target inhibitory activities, and herbal origin is an important factor to be considered in selection of the plants. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

28 pages, 29500 KiB  
Article
Designing Robust Biotechnological Processes Regarding Variabilities Using Multi-Objective Optimization Applied to a Biopharmaceutical Seed Train Design
by Tanja Hernández Rodríguez, Anton Sekulic, Markus Lange-Hegermann and Björn Frahm
Processes 2022, 10(5), 883; https://doi.org/10.3390/pr10050883 - 29 Apr 2022
Cited by 5 | Viewed by 1860
Abstract
Development and optimization of biopharmaceutical production processes with cell cultures is cost- and time-consuming and often performed rather empirically. Efficient optimization of multiple objectives such as process time, viable cell density, number of operating steps & cultivation scales, required medium, amount of product [...] Read more.
Development and optimization of biopharmaceutical production processes with cell cultures is cost- and time-consuming and often performed rather empirically. Efficient optimization of multiple objectives such as process time, viable cell density, number of operating steps & cultivation scales, required medium, amount of product as well as product quality depicts a promising approach. This contribution presents a workflow which couples uncertainty-based upstream simulation and Bayes optimization using Gaussian processes. Its application is demonstrated in a simulation case study for a relevant industrial task in process development, the design of a robust cell culture expansion process (seed train), meaning that despite uncertainties and variabilities concerning cell growth, low variations of viable cell density during the seed train are obtained. Compared to a non-optimized reference seed train, the optimized process showed much lower deviation rates regarding viable cell densities (<10% instead of 41.7%) using five or four shake flask scales and seed train duration could be reduced by 56 h from 576 h to 520 h. Overall, it is shown that applying Bayes optimization allows for optimization of a multi-objective optimization function with several optimizable input variables and under a considerable amount of constraints with a low computational effort. This approach provides the potential to be used in the form of a decision tool, e.g., for the choice of an optimal and robust seed train design or for further optimization tasks within process development. Full article
Show Figures

Figure 1

13 pages, 2957 KiB  
Article
A Generalized View of Longwall Emergency Stop Prevention (Ukraine)
by Sergey Vlasov, Yevhen Moldavanov, Roman Dychkovskyi, Edgar Cabana, Natalia Howaniec, Katarzyna Widera, Andrzej Bąk and Adam Smoliński
Processes 2022, 10(5), 878; https://doi.org/10.3390/pr10050878 - 29 Apr 2022
Cited by 4 | Viewed by 1303
Abstract
Based on both theoretical and practical experiences, the measures aimed at controlling emergency shutdowns of stopes have been highlighted. These stopes are connected with the emergency rigid settlements of powered complexes. In terms of the Western Donbas mines, there are certain risks of [...] Read more.
Based on both theoretical and practical experiences, the measures aimed at controlling emergency shutdowns of stopes have been highlighted. These stopes are connected with the emergency rigid settlements of powered complexes. In terms of the Western Donbas mines, there are certain risks of a shutdown of stopping operations within the zone of primary roof caving. Thus, the causes of emergency rigid settlements of the support may include the following: layers of the main roof rocks are hanging and not timely delaminated; sudden changes in lithology; hydraulic overloading of the main roof; structural flaws of support under certain conditions of its use, etc. In this paper, the theoretical method of scientific cognition was applied, which, with its help, makes it possible to switch from single low-efficiency measures to a set of actions aimed at preventing any uncontrolled situation. Obtaining certain generalized knowledge means obtaining a much deeper representation of reality, penetrating into its essence. The study also involves statistical analysis, being the basis for outlining a zone of primary caving where a high degree of risk is observed. Certainly, the generalization of these measures does not solve the problem completely. Consequently, there will be further attempts to search for and achieve principal new solutions in the future. Full article
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
Coating Process of Honeycomb Cordierite Support with Ni/Boehmite Gels
by Vincent Claude, Julien G. Mahy, Timothée Lohay, Jérémy Geens and Stéphanie D. Lambert
Processes 2022, 10(5), 875; https://doi.org/10.3390/pr10050875 - 28 Apr 2022
Cited by 5 | Viewed by 2032
Abstract
This study presents the development of a method for the washcoating of Ni/boehmite gels, prepared by the sol–gel process, onto the surface of a commercial ceramic monolith. Indeed, a cordierite monolith in a honeycomb shape was used as the substrate for the Ni/Al [...] Read more.
This study presents the development of a method for the washcoating of Ni/boehmite gels, prepared by the sol–gel process, onto the surface of a commercial ceramic monolith. Indeed, a cordierite monolith in a honeycomb shape was used as the substrate for the Ni/Al2O3 deposition. An experimental assembly was made in order to apply the coating on the cordierite surface. Different suspensions were used with various viscosities, and multiple coating parameters were tested as the withdrawal speed, or the number of impregnations. It was observed that the simple deposition of the Ni/boehmite gel led to the formation of coating. Different morphologies were observed, and defects were highlighted as cracks, coating-free areas or aggregates. Among the various parameters studied, the pH of the sol appeared to play a role even more important than the viscosity. Indeed, the sol acidified with nitric acid showed a coating which was almost free of cracks or of large aggregates. Moreover, the use of a slurry mix of calcined alumina particles and colloidal boehmite appeared also as an interesting path. The beneficial influence of the slurry was attributed to a better resistance of the coating against the stresses induced during drying, and a deviation of the cracks in the gels by slurry grains. Full article
(This article belongs to the Special Issue Advances in Sol-Gel Processes)
Show Figures

Figure 1

12 pages, 513 KiB  
Article
Assessing Functionality of Alternative Sweeteners in Rolled “Sugar” Cookies
by Melanie L. Heermann, Janae Brown, Kelly J. K. Getty and Umut Yucel
Processes 2022, 10(5), 868; https://doi.org/10.3390/pr10050868 - 28 Apr 2022
Cited by 1 | Viewed by 3112
Abstract
Sucrose contributes to the key physical and sensory characteristics of cookies. Due to the negative health effects associated with excess sucrose consumption, the replacement of sucrose in baking applications is of interest. In this study, nine variations of rolled cookies were prepared ( [...] Read more.
Sucrose contributes to the key physical and sensory characteristics of cookies. Due to the negative health effects associated with excess sucrose consumption, the replacement of sucrose in baking applications is of interest. In this study, nine variations of rolled cookies were prepared (n = 3) using a sucrose control (C), Splenda for baking (SB), Equal for baking (EB), Truvia (TR), Sweet’N Low (SNL), and 1:1 (wt%) mixtures of sweeteners and sucrose (S). The cookies were characterized by a width-to-thickness (W/T) ratio, moisture loss, color, hardness, and fracturability. The W/T ratios of TR (5.7) and TR + sucrose (6.6) were similar, the closest to C (7.7), and bigger than (p < 0.05) all other treatments. Color was not affected (p > 0.05) by the sugar type or concentration. C showed the greatest hardness (5268 N), and SNL had the greatest fracturability (8667 N). Overall, regarding physiochemical characteristics, TR + sucrose (1:1 replacement) and SB (100% replacement) were the closest to the control. Full article
(This article belongs to the Special Issue Processing and Properties Analysis of Grain Foods)
Show Figures

Figure 1

19 pages, 4494 KiB  
Article
Development and Application of SONIC Divertor Simulation Code to Power Exhaust Design of Japanese DEMO Divertor
by Nobuyuki Asakura, Kazuo Hoshino, Yuki Homma, Yoshiteru Sakamoto and Joint Special Design Team for Fusion DEMO
Processes 2022, 10(5), 872; https://doi.org/10.3390/pr10050872 - 28 Apr 2022
Cited by 2 | Viewed by 1722
Abstract
An integrated divertor simulation code, SONIC, has been developed in order to predict a self-consistent transport solution of the plasma, neutral and impurities in the scrape-off layer (SOL) and divertor. SONIC code has contributed to determining the divertor design and power handling scenarios [...] Read more.
An integrated divertor simulation code, SONIC, has been developed in order to predict a self-consistent transport solution of the plasma, neutral and impurities in the scrape-off layer (SOL) and divertor. SONIC code has contributed to determining the divertor design and power handling scenarios for the Japanese (JA) fusion demonstration (DEMO) reactor. Radiative cooling scenario of Ar impurity seeding and the divertor performance have been demonstrated to evaluate the power exhaust scenarios with Psep = 230–290 MW. The simulation identified the decay length of the total parallel heat flux profile as being broader than the electron one, because of the ion convective transport from the outer divertor to the upstream SOL, produced by the plasma flow reversal. The flow reversal also reduced the impurity retention in the outer divertor, which may produce the partial detachment. Divertor operation margin of key power exhaust parameters to satisfy the peak qtarget ≤ 10 MWm−2 was determined in the low nesep of 2 − 3 × 1019 m−3 under severe conditions such as reducing radiation loss fraction, i.e., f*raddiv = (Pradsol + Praddiv)/Psep and diffusion coefficients (χ and D). The divertor geometry and reference parameters (f*raddiv ~ 0.8, χ = 1 m2s−1, D = 0.3 m2s−1) were consistent with the low nesep operation of the JA DEMO concepts. For either severe assumption of f*raddiv ~ 0.7 or χ and D to their half values, higher nesep operation was required. In addition, recent investigations of physics models (temperature-gradient force on impurity, photon transport, neutral–neutral collision) under the DEMO relevant SOL and divertor condition are presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) Simulations for Fusion Reactors)
Show Figures

Figure 1

14 pages, 3628 KiB  
Article
Solutions of Feature and Hyperparameter Model Selection in the Intelligent Manufacturing
by Chung-Ying Wang, Chien-Yao Huang and Yen-Han Chiang
Processes 2022, 10(5), 862; https://doi.org/10.3390/pr10050862 - 27 Apr 2022
Cited by 3 | Viewed by 1730
Abstract
In the era of Industry 4.0, numerous AI technologies have been widely applied. However, implementation of the AI technology requires observation, analysis, and pre-processing of the obtained data, which takes up 60–90% of total time after data collection. Next, sensors and features are [...] Read more.
In the era of Industry 4.0, numerous AI technologies have been widely applied. However, implementation of the AI technology requires observation, analysis, and pre-processing of the obtained data, which takes up 60–90% of total time after data collection. Next, sensors and features are selected. Finally, the AI algorithms are used for clustering or classification. Despite the completion of data pre-processing, the subsequent feature selection and hyperparameter tuning in the AI model affect the sensitivity, accuracy, and robustness of the system. In this study, two novel approaches of sensor and feature selecting system, and hyperparameter tuning mechanisms are proposed. In the sensor and feature selecting system, the Shapley Additive ExPlanations model is used to calculate the contribution of individual features or sensors and to make the black-box AI model transparent, whereas, in the hyperparameter tuning mechanism, Hyperopt is used for tuning to improve model performance. Implementation of these two new systems is expected to reduce the problems in the processes of selection of the most sensitive features in the pre-processing stage, and tuning of hyperparameters, which are the most frequently occurring problems. Meanwhile, these methods are also applicable to the field of tool wear monitoring systems in intelligent manufacturing. Full article
(This article belongs to the Special Issue New Frontiers in Magnetic Polishing and Electrochemical Technology)
Show Figures

Figure 1

22 pages, 9489 KiB  
Article
Digital Twin for HIV-Gag VLP Production in HEK293 Cells
by Alina Hengelbrock, Heribert Helgers, Axel Schmidt, Florian Lukas Vetter, Alex Juckers, Jamila Franca Rosengarten, Jörn Stitz and Jochen Strube
Processes 2022, 10(5), 866; https://doi.org/10.3390/pr10050866 - 27 Apr 2022
Cited by 16 | Viewed by 2530
Abstract
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics [...] Read more.
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics and inflexible process set points is one of the great challenges in modern biotechnology. Virus-like particles (VLPs) are part of a line of innovative drug substances (DS). VLPs, especially those based on human immunodeficiency virus (HIV), HIV-1 Gag VLPs, have very high potential as a versatile vaccination platform, allowing for pseudotyping with heterologous envelope proteins, e.g., the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As enveloped VLPs, optimal process control with minimal hold times is essential. This study demonstrates, for the first time, the use of a digital twin for the overall production process of HIV-1 Gag VLPs from cultivation, clarification, and purification to lyophilization. The accuracy of the digital twins is in the range of 0.8 to 1.4% in depth filtration (DF) and 4.6 to 5.2% in ultrafiltration/diafiltration (UFDF). The uncertainty due to variability in the model parameter determination is less than 4.5% (DF) and less than 3.8% (UFDF). In the DF, a prediction of the final filter capacity was demonstrated from as low as 5.8% (9mbar) of the final transmembrane pressure (TMP). The scale-up based on DT in chromatography shows optimization potential in productivity up to a factor of 2. The schedule based on DT and PAT for APC has been compared to conventional process control, and hold-time and process duration reductions by a factor of 2 have been achieved. This work lays the foundation for the short-term validation of the DT and PAT for APC in an automated S7 process environment and the conversion from batch to continuous production. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

22 pages, 3360 KiB  
Article
Large-Scale Production of Size-Adjusted β-Cell Spheroids in a Fully Controlled Stirred-Tank Reactor
by Florian Petry and Denise Salzig
Processes 2022, 10(5), 861; https://doi.org/10.3390/pr10050861 - 27 Apr 2022
Cited by 6 | Viewed by 2452
Abstract
For β-cell replacement therapies, one challenge is the manufacturing of enough β-cells (Edmonton protocol for islet transplantation requires 0.5–1 × 106 islet equivalents). To maintain their functionality, β-cells should be manufactured as 3D constructs, known as spheroids. In this study, we investigated [...] Read more.
For β-cell replacement therapies, one challenge is the manufacturing of enough β-cells (Edmonton protocol for islet transplantation requires 0.5–1 × 106 islet equivalents). To maintain their functionality, β-cells should be manufactured as 3D constructs, known as spheroids. In this study, we investigated whether β-cell spheroid manufacturing can be addressed by a stirred-tank bioreactor (STR) process. STRs are fully controlled bioreactor systems, which allow the establishment of robust, larger-scale manufacturing processes. Using the INS-1 β-cell line as a model for process development, we investigated the dynamic agglomeration of β-cells to determine minimal seeding densities, spheroid strength, and the influence of turbulent shear stress. We established a correlation to exploit shear forces within the turbulent flow regime, in order to generate spheroids of a defined size, and to predict the spheroid size in an STR by using the determined spheroid strength. Finally, we transferred the dynamic agglomeration process from shaking flasks to a fully controlled and monitored STR, and tested the influence of three different stirrer types on spheroid formation. We achieved the shear stress-guided production of up to 22 × 106 ± 2 × 106 viable and functional β-cell spheroids per liter of culture medium, which is sufficient for β-cell therapy applications. Full article
Show Figures

Figure 1

26 pages, 18091 KiB  
Article
Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions
by Takahiro Ishigami, Motoki Irikura and Takahiro Tsukahara
Processes 2022, 10(5), 860; https://doi.org/10.3390/pr10050860 - 26 Apr 2022
Cited by 5 | Viewed by 2039
Abstract
Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to [...] Read more.
Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance. Full article
(This article belongs to the Special Issue Advances in Statistical Description of Scalar Turbulence)
Show Figures

Figure 1

22 pages, 2750 KiB  
Article
Technical and Economical Assessment of CO2 Capture-Based Ammonia Aqueous
by Nela Slavu, Adrian Badea and Cristian Dinca
Processes 2022, 10(5), 859; https://doi.org/10.3390/pr10050859 - 26 Apr 2022
Cited by 10 | Viewed by 2196
Abstract
In the context of climate change and the reduction in CO2 emissions from fossil fuel combustion, the integration of CO2 capture technologies in steam power plants is a key solution. The aim of this study was to analyze the use of [...] Read more.
In the context of climate change and the reduction in CO2 emissions from fossil fuel combustion, the integration of CO2 capture technologies in steam power plants is a key solution. The aim of this study was to analyze the use of ammonia, at different mass concentrations, in capturing post-combustion CO2 in a coal-fired power station and comparing it with the reference 30% MEA case. In this regard, a multi-criteria model was developed to establish the optimal solvent used, considering the least impact on technical performance, economic, and environmental indicators. As a result, the lowest CO2 capture cost was obtained for the CO2 capture process based on 7% NH3, with 59.07 €/tCO2. Integration of the CO2 capture process is more economically viable when the CO2 emissions tax is higher than 70 €/tCO2 for 7% NH3 and 15% NH3, 80 €/tCO2 for 5% NH3 and 30% MEA, and 90 €/tCO2 for 2% NH3. Regarding the overall efficiency, the energy penalty associated with the CO2 capture process integration varied between 15 and 35%, and the lowest value was obtained for 15% NH3. The GWP indicator ranged between 113 and 149 kg_CO2_eq/MWh for NH3 compared to MEA 133 kg_CO2_eq/MWh and the case with no CO2 capture was 823 kg_CO2_eq/MWh. Full article
(This article belongs to the Special Issue Advances in Deep Eutectic Solvents: New Green Solvents)
Show Figures

Figure 1

18 pages, 2683 KiB  
Article
A Lean Manufacturing Progress Model and Implementation for SMEs in the Metal Products Industry
by Chien-Yi Huang, Dasheng Lee, Shu-Chuan Chen and William Tang
Processes 2022, 10(5), 835; https://doi.org/10.3390/pr10050835 - 24 Apr 2022
Cited by 10 | Viewed by 8745
Abstract
The manufacturing industry faces the challenge of small and diversified customer orders. To meet this challenge, strong internal production capabilities are required. A lean manufacturing process that uses fewer resources and offers greater process improvement will help SMEs to continue to contribute to [...] Read more.
The manufacturing industry faces the challenge of small and diversified customer orders. To meet this challenge, strong internal production capabilities are required. A lean manufacturing process that uses fewer resources and offers greater process improvement will help SMEs to continue to contribute to the global economy. Though SMEs provide most employment opportunities, previous studies have focused on large companies in auto-manufacturing-related industries. With the commitment and support of the management, and the application of a value stream map (VSM) and related improvement tools, we produced a practical process improvement model for a lean manufacturing system in an SME. With the commitment and support of the management and the joint efforts of the project improvement staff, the 10 improvement projects over a six-month period all achieved their goals: reduction in lead time from 26 days to 19.5 days, improvement of welding per people per hour (PPH) efficiency by 28.3%, improvement of packaging PPH efficiency by 64.1%, improvement of working in process (WIP) efficiency at the production site by 83.84%, and improvement of raw material storage by 83.84%. The efficiency of the raw material warehouse inventory was improved by 58.63%, and the efficiency of the shipment completion rate was improved by 14.5%. Full article
Show Figures

Figure 1

10 pages, 1465 KiB  
Article
Feasibility of a Complex Optimized Process for the Treatment of Patients Receiving Hip and Knee Endoprostheses in Most Different Settings in Germany—Results from the PROMISE Trial
by Ulrich Betz, Laura Langanki, Florian Heid, Lukas Schollenberger, Kai Kronfeld, Matthias Büttner, Britta Büchler, Lukas Eckhard, Thomas Klonschinski and Philipp Drees
Processes 2022, 10(5), 824; https://doi.org/10.3390/pr10050824 - 22 Apr 2022
Cited by 1 | Viewed by 1243
Abstract
Background: While there is evidence on the effectiveness of optimized treatment processes for patients receiving hip and knee endoprostheses, feasibility in various settings has not been adequately investigated. The multicenter PROMISE Trial (Process optimization by interdisciplinary and cross-sectoral care using the example of [...] Read more.
Background: While there is evidence on the effectiveness of optimized treatment processes for patients receiving hip and knee endoprostheses, feasibility in various settings has not been adequately investigated. The multicenter PROMISE Trial (Process optimization by interdisciplinary and cross-sectoral care using the example of patients with hip and knee prostheses) was set up to fill this gap. Methods: A complex optimized process was implemented in three German hospitals offering different levels of care and five cooperating rehabilitation centers. For the feasibility question, data on 19 parameters characterizing the defined process were collected. The extent of cross-sectoral collaboration was a special focus. Results: The data show, for almost all parameters in all facilities, an implementation rate of more than 80% with missing data below 5%, n = 1887 study participants. A total of 96.8% attended a rehabilitation program, and for 29.2% rehabilitation took place in a PROMISE-collaborating facility. Conclusions: Adherence to the defined and well-documented process was very high in all three organizationally very different hospitals, so that feasibility is given and transferability of the concept can be assumed. An exception was the targeted integration of rehabilitation into the treatment process. The goal of cross-sectoral networking could only be partially achieved. Full article
Show Figures

Figure 1

19 pages, 3482 KiB  
Article
Recovery of Mineral Wool Waste and Recycled Aggregates for Use in the Manufacturing Processes of Masonry Mortars
by Daniel Ferrández, Manuel Álvarez, Pablo Saiz and Alicia Zaragoza-Benzal
Processes 2022, 10(5), 830; https://doi.org/10.3390/pr10050830 - 22 Apr 2022
Cited by 3 | Viewed by 1556
Abstract
The environmental problems caused by industrial waste are of a universal nature. In this sense, achieving an adequate management of construction and demolition waste has become one of the great challenges of today’s society. This work studies the possibility of recovering mineral wool [...] Read more.
The environmental problems caused by industrial waste are of a universal nature. In this sense, achieving an adequate management of construction and demolition waste has become one of the great challenges of today’s society. This work studies the possibility of recovering mineral wool thermal insulation waste for its reincorporation into the manufacturing process of masonry mortar. To this end, an experimental campaign has been conducted with mortars made with natural aggregate and two types of recycled aggregates: concrete and mixed ceramic, in which mineral wool fibers are incorporated as a partial replacement of sand in percentages of 0%, 10% and 20%. The results show that, although the traditional mortars offer better technical performance, the mortars made with recycled aggregate present adequate viability for use on-site. Furthermore, it has been concluded that the incorporation of recycled mineral wool fibers in the mortar matrix decreases the thermal conductivity and shrinkage during the setting of these materials, increasing their mechanical flexural strength and durability. Full article
Show Figures

Figure 1

15 pages, 16124 KiB  
Article
Shear Strength of Adhesive Bonding of Plastics Intended for High Temperature Plastic Radiators
by Ilya Astrouski, Tereza Kudelova, Josef Kalivoda and Miroslav Raudensky
Processes 2022, 10(5), 806; https://doi.org/10.3390/pr10050806 - 20 Apr 2022
Cited by 3 | Viewed by 4119
Abstract
The use of adhesive joints has increased in recent decades due to their competitive features in comparison with other joining methods. They can be used in specific applications where there is no possibility to use alternative connection techniques. Adhesive bonding was used to [...] Read more.
The use of adhesive joints has increased in recent decades due to their competitive features in comparison with other joining methods. They can be used in specific applications where there is no possibility to use alternative connection techniques. Adhesive bonding was used to assemble the prototype of a high-temperature car radiator (operated up to 125 °C) with a total of 12,240 plastic tubes. This work aims to estimate the shear strength of different adhesives intended for bonding the plastics used to assemble the above-mentioned high-temperature radiator. Fourteen commercial adhesives were tested with one thermoset plastic (G11 glass fabric epoxy sheets) and two glass-reinforced thermoplastics (polyamide PA66-GF30 and polyphenylene sulfide PPS-GF40). Tests were conducted according EN 1465 to determine tensile lap-shear strength of bonding. Testing showed that only 4 of the 14 adhesives tested exhibit substantial bonding strength at temperatures above 120 °C and only one is resistant at 180 °C. The AS60/AW60 adhesive showed the best results for all three substrates: 1.6 MPa for epoxy sheets and PA66-GF, and 1.4 MPa for PPS-GF40. Additionally, the influence of the surface treatment with cold plasma was evaluated on a clean and activated bonding surface, causing a 30% increase in the shear strength. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer and Fluid Flow)
Show Figures

Figure 1

16 pages, 10283 KiB  
Article
Interpretation of Chemical Analyses and Cement Modules in Flysch by (Geo)Statistical Methods, Example from the Southern Croatia
by Nikolina Bralić and Tomislav Malvić
Processes 2022, 10(5), 813; https://doi.org/10.3390/pr10050813 - 20 Apr 2022
Cited by 1 | Viewed by 1399
Abstract
This study included the testing of normal (Gaussian) distribution of input data and, consequently, spatially interpolating maps of chemical components and cement modules in the flysch. This deposit contains the raw material for cement production. The researched area is located in southern Croatia, [...] Read more.
This study included the testing of normal (Gaussian) distribution of input data and, consequently, spatially interpolating maps of chemical components and cement modules in the flysch. This deposit contains the raw material for cement production. The researched area is located in southern Croatia, near Split, as part of the exploited field “St. Juraj–St. Kajo”. There are six lithological units: (1) alternation of marls and sandstones with inclusions of conglomerates, (2) marl, (3) calcsiltite, (4) calcarenite, (5) marl with nummulites, (6) debrites, and (7) clayey marl. All of them are deposited in the (a) northern and (b) southern beds. Only debrites are divided into the (a) western and (b) eastern layers. Those lithological units were divided technologically based on their cement modules (lime saturation factor (LSF), silicate module (SM), and aluminate module (AM)). The average thicknesses were analysed, followed by normality tests (Kolmogorov–Smirnov (K–S) and Shapiro–Wilk (S–W)) of the chemical analyses: CaO, SiO2, Al2O3, Fe2O3, MgO, SO3, Na2O, K2O, CaCO3 (%) and three cement modules (LSF, SM, AM), available in the six lithological units. The normality tests were applied based on a number of input data. The further interpolation was performed using two methods, kriging and inverse distance weighting, mapping CaO (%), SiO2 (%), and LSF (−) in three different lithological units. The interpolation methods were selected based on two criteria: (a) normality test pass or fail and (b) the amount of data. In total, 144 tests were calculated, including sets from 7 to 36 points. The results show the current situation in the quarry, after decades of production, making reliable the future predictions of cement raw material exploitation. Full article
Show Figures

Figure 1

19 pages, 4573 KiB  
Article
Digital Twins for scFv Production in Escherichia coli
by Heribert Helgers, Alina Hengelbrock, Axel Schmidt, Florian Lukas Vetter, Alex Juckers and Jochen Strube
Processes 2022, 10(5), 809; https://doi.org/10.3390/pr10050809 - 20 Apr 2022
Cited by 11 | Viewed by 2133
Abstract
Quality-by-Design (QbD) is demanded by regulatory authorities in biopharmaceutical production. Within the QbD frame advanced process control (APC), facilitated through process analytical technology (PAT) and digital twins (DT), plays an increasingly important role as it can help to assure to stay within the [...] Read more.
Quality-by-Design (QbD) is demanded by regulatory authorities in biopharmaceutical production. Within the QbD frame advanced process control (APC), facilitated through process analytical technology (PAT) and digital twins (DT), plays an increasingly important role as it can help to assure to stay within the predefined proven acceptable range (PAR).This ensures high product quality, minimizes failure and is an important step towards a real-time-release testing (RTRT) that could help to accelerate time-to-market of drug substances, which is becoming even more important in light of dynamical pandemic situations. The approach is exemplified on scFv manufacturing in Escherichia coli. Simulation results from digital twins are compared to experimental data and found to be accurate and precise. Harvest is achieved by tangential flow filtration followed by product release through high pressure homogenization and subsequent clarification by tangential flow filtration. Digital twins of the membrane processes show that shear rate and transmembrane pressure are significant process parameters, which is in line with experimental data. Optimized settings were applied to 0.3 bar and a shear rate of 11,000 s−1. Productivity of chromatography steps were 5.3 g/L/d (Protein L) and 2167 g/L/d (CEX) and the final product concentration was 8 g/L. Based on digital twin results, an optimized process schedule was developed that decreased purification time to one working day, which is a factor-two reduction compared to the conventional process schedule. This work presents the basis for future studies on advanced process control and automation for biologics production in microbials in regulated industries. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

16 pages, 3764 KiB  
Article
Study of Gas-to-Liquid Heat Pipe Heat Exchanger
by Pratik Prakash Gupta, Sundararaj Senthilkumar and Shung-Wen Kang
Processes 2022, 10(5), 808; https://doi.org/10.3390/pr10050808 - 20 Apr 2022
Cited by 1 | Viewed by 2696
Abstract
This study is focused on the study and development of a gas-to-liquid heat pipe heat exchanger (HPHE) based on numerical and experimental analysis. Stainless steel heat pipes were installed inside the heat exchanger in the form of three equilateral triangles, staggered into a [...] Read more.
This study is focused on the study and development of a gas-to-liquid heat pipe heat exchanger (HPHE) based on numerical and experimental analysis. Stainless steel heat pipes were installed inside the heat exchanger in the form of three equilateral triangles, staggered into a hexagonal configuration to simulate the waste heat recovery from hot exhaust gas to a water flow. The first main aim of this study was focused on 3D design and numerical analysis, which were used to create and calculate the effect of similar input conditions on the overall system. The system was tested for the overall heat transfer by measuring the temperature change in both fluids. The heat transfer and overall average temperature were used to calculate the effectiveness of the system. In the second part of this study, a test of the waste heat recovery was undertaken with this setup, using water as the cooling fluid. The study was conducted with different input velocities and temperatures of waste hot air, controlled simultaneously by the input fan and air heater, whereas the cooling water was kept at a steady state of 30 °C and 0.0156 kg/s at the input. The hot air velocity was controlled by fans with different inlet air velocities of 0.3 m/s, 0.5 m/s, and 0.7 m/s. Moreover, the temperature of the air was changed from 150 °C to 250 °C with a step of 25 °C. The increase in temperature and the velocity of air was directly proportional to the amount of heat transferred from the air to the cooling water, and the effectiveness was also found to be inversely proportional to both of the varying input parameters. The numerical study showed a maximum increase of 12% in the heat transfer. The output temperatures of hot and cold fluids showed maximum increases of 7 K and 3 K, respectively. The numerical system with such input parameters can be evaluated further to predict the behavior of changes in the design and parameters. Full article
Show Figures

Figure 1

11 pages, 3307 KiB  
Article
Adjusting the Structure of a Peptide Nucleic Acid (PNA) Molecular Beacon and Promoting Its DNA Detection by a Hybrid with Quencher-Modified DNA
by Hajime Shigeto, Takamasa Kishi, Koki Ishii, Takashi Ohtsuki, Shohei Yamamura and Mizuki Kitamatsu
Processes 2022, 10(4), 722; https://doi.org/10.3390/pr10040722 - 8 Apr 2022
Cited by 1 | Viewed by 1941
Abstract
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we [...] Read more.
In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we investigated their fluorescence changes (F1/1/F0) with and without full-match DNA. As the numbers of Glu/Lys or Dab increased, the F1/1/F0 tended to decrease. Among the different beacons, the PNA beacon with one Glu and one Lys (P1Q1) showed the largest F1/1/F0. On the other hand, a relatively large F1/1/F0 was obtained when the number of Glu/Lys and the number of Dab were the same, and the balance between the numbers of Glu/Lys and Dab seemed to affect the F1/1/F0. We also investigated the DNA detection by the prehybrid of P1Q1, which consists of the T790M base sequence, [P1Q1(T790M)], with quencher-modified DNA (Q-DNA). We examined the DNA detection with single-base mismatch by P1Q1(T790M), and we clarified that there was difficulty in detecting the sequence with P1Q1 alone, but that the sequence was successfully detected by the prehybrid of P1Q1 with the Q-DNA. Full article
(This article belongs to the Special Issue The Amazing World of Peptide Engineering)
Show Figures

Figure 1

21 pages, 4407 KiB  
Article
Transfer of Potentially Toxic Elements in the Soil-Plant System in Magnesite Mining and Processing Areas
by Lenka Štofejová, Juraj Fazekaš and Danica Fazekašová
Processes 2022, 10(4), 720; https://doi.org/10.3390/pr10040720 - 8 Apr 2022
Cited by 3 | Viewed by 1433
Abstract
Mining activities, ore concentrations, and transport processes generate large amounts of pollutants, including hazardous elements, which are released into the environment. This work presents the results of experimental research aimed at evaluating the environmental risks of soil and plant contamination in two magnesite [...] Read more.
Mining activities, ore concentrations, and transport processes generate large amounts of pollutants, including hazardous elements, which are released into the environment. This work presents the results of experimental research aimed at evaluating the environmental risks of soil and plant contamination in two magnesite mining and processing areas in the Slovak Republic, and assesses the phytoremediation potential of dominant plant species. Eleven potentially toxic elements in the soil were investigated using X-ray fluorescence spectrometry (Cd, Pb, Cr, Zn, Cu, As, Ni, Mn, Mg, Fe) and atomic absorption spectrometry (Hg). In plants, potentially toxic elements were investigated using inductively coupled plasma mass spectrometry (Cu, As, Cd, Pb) and inductively coupled plasma atomic emission spectrometry (Cr, Zn, Mn, Mg). Selected soil parameters (pH, redox potential, and soil organic matter) were also investigated. Soil contamination was evaluated using environmental indices (geoaccumulation index—Igeo, enrichment factor—EF, contamination factor—Cf, degree of contamination—Cd). The phytoremediation potential of plants was evaluated using the bioconcentration factor (BCF) and the translocation factor (TF). The soil reaction in the studied areas indicated a strong alkalization of the soil. The soils in Jelšava-Lubeník were significantly contaminated with Cr, As, Mn, and Mg. The most significant enrichment based on the average values of EF was found to be in the order of Cd > Mg > Zn > Cu > As > Cr > Ni > Pb > Fe > Hg > Mn. The observed values of Cf and Cd indicated a high degree of soil contamination. In Košice, the soils were found to be significantly contaminated with Cr, Mn, Mg, and Ni. The most significant enrichment was found in the order of Cd > Mn > Ni > Pb > Zn > Mg > Cu > As > Fe > Cr > Hg. Very high Cf was found for Pb and Cr. The results of correlation and hierarchical cluster analyses suggest a similar origin of pollutants caused by significant anthropogenic interventions due to magnesite mining and processing. The investigated dominant plant species, Phragmites australis, Agrostis stolonifera, Elytrigia repens, and Taraxacum officinale are able to accumulate high concentrations of the monitored potentially toxic elements without more serious load or damage. The results of BCF and TF confirmed that P. australis and T. officinale appeared to be suitable accumulators in the phytoextraction process. In the case of E. repens and A. stolonifera it was confirmed that they accumulate and immobilize high concentrations of potentially toxic elements, especially in the roots, establishing the suitability of their use in phytostabilization processes. Full article
(This article belongs to the Special Issue Innovative Treatments for the Improvement of Bioremediation Processes)
Show Figures

Figure 1

8 pages, 1464 KiB  
Article
Need for a Next Generation of Chromatography Models—Academic Demands for Thermodynamic Consistency and Industrial Requirements in Everyday Project Work
by Florian Lukas Vetter and Jochen Strube
Processes 2022, 10(4), 715; https://doi.org/10.3390/pr10040715 - 7 Apr 2022
Cited by 3 | Viewed by 1688
Abstract
Process chromatography modelling for process development, design, and optimization as well as process control has been under development for decades. Still, the discussion of scientific potential and industrial applications needs is open to innovation. The discussion of next-generation modelling approaches starting from Langmuirian [...] Read more.
Process chromatography modelling for process development, design, and optimization as well as process control has been under development for decades. Still, the discussion of scientific potential and industrial applications needs is open to innovation. The discussion of next-generation modelling approaches starting from Langmuirian to steric mass action and multilayer or thermodynamic consistent real and ideal adsorption theory or colloidal particle adsorption approaches is continued. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

26 pages, 9138 KiB  
Article
A Machine Learning Approach for Phase-Split Calculations in n-Octane/Water and PASN/Water Systems
by Sandra Lopez-Zamora, Salvador Escobedo and Hugo de Lasa
Processes 2022, 10(4), 710; https://doi.org/10.3390/pr10040710 - 6 Apr 2022
Viewed by 2073
Abstract
Flash calculations, including phase split and phase classification for both n-octane/water blends and paraffinic aromatic synthetic naphtha (PASN)/water blends present significant computational challenges. Calculations to establish the two-phase and three-phase regions, as well as the transitions between regions, were addressed by a phase [...] Read more.
Flash calculations, including phase split and phase classification for both n-octane/water blends and paraffinic aromatic synthetic naphtha (PASN)/water blends present significant computational challenges. Calculations to establish the two-phase and three-phase regions, as well as the transitions between regions, were addressed by a phase classification method proposed in a recent contribution involving machine learning (ML). This work focusses on the phase-split calculations, considering (a) the lack of numerical convergence of the traditional calculations and their related numerical issues for water/n-octane and PASN/water systems based on the Rachford–Rice derived surfaces and (b) the successful implementation of an ML approach based on a K-nearest-neighbor (KNN) algorithm, which uses the abundant experimental data obtained in a CREC-VL cell. Full article
(This article belongs to the Special Issue Calculating Generalized Thermodynamic Equilibrium)
Show Figures

Graphical abstract

12 pages, 2134 KiB  
Article
The Volume Stability of Alkali-Activated Electric Arc Furnace Ladle Slag Mortar and Its Performance at High Temperatures
by Tung-Hsuan Lu, Ying-Liang Chen, Hong-Paul Wang and Juu-En Chang
Processes 2022, 10(4), 700; https://doi.org/10.3390/pr10040700 - 5 Apr 2022
Viewed by 1404
Abstract
In this study, the engineering properties of Ordinary Portland Cement (OPC) and alkali-activated slag (AAS) mortar with electric arc furnace ladle slag (EAFLS) were investigated to reveal the effects of EAFLS on the expansion of cementitious mortars. Additionally, the effects of these two [...] Read more.
In this study, the engineering properties of Ordinary Portland Cement (OPC) and alkali-activated slag (AAS) mortar with electric arc furnace ladle slag (EAFLS) were investigated to reveal the effects of EAFLS on the expansion of cementitious mortars. Additionally, the effects of these two types of mortar were explored based on their compressive strength, especially at high temperatures. EAFLS in OPC mortars significantly reduced the compressive strength and caused serious soundness problems in the mortars after autoclaving due to the presence of free-CaO and free-MgO in the EAFLS slag. On the other hand, the AAS mortars produced with EAFLS had compressive strength comparable to ordinary OPC mortars and maintained soundness after autoclaving. During a 550 °C heat treatment, the OPC mortar cracked and lost residual strength, but the AAS mortar retained more than 90% of its residual strength. Even after an 800 °C heat treatment, the AAS mortar maintained 14% of its residual strength (about 4 MPa), sufficient to prevent the collapse of the specimen structure. The main reason is that alkali-activated technology can accelerate the hydration process and solve the delayed hydration problem. The results of this study indicated that EAFLS is suitable to partially replace the binder used in the production of AAS mortars, and the resulting AAS mortars have high volume stability, high compression strength, and good high temperature resistance. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Artificial Neural Network for Fast and Versatile Model Parameter Adjustment Utilizing PAT Signals of Chromatography Processes for Process Control under Production Conditions
by Mourad Mouellef, Glaenn Szabo, Florian Lukas Vetter, Christian Siemers and Jochen Strube
Processes 2022, 10(4), 709; https://doi.org/10.3390/pr10040709 - 5 Apr 2022
Cited by 9 | Viewed by 2006
Abstract
Preparative chromatography is a well-established operation in chemical and biotechnology manufacturing. Chromatography achieves high separation performances, but often has to deal with the yield versus purity trade-off as the optimization criterium regarding through-put. The initial trade-off is often disturbed by the well-known phenomenon [...] Read more.
Preparative chromatography is a well-established operation in chemical and biotechnology manufacturing. Chromatography achieves high separation performances, but often has to deal with the yield versus purity trade-off as the optimization criterium regarding through-put. The initial trade-off is often disturbed by the well-known phenomenon of chromatogram shifts over process lifetime, and has to be corrected by operators via adjustment of peak fraction cutting. Nevertheless, with regard to autonomous operation and batch to continuous processing modes, an advanced process control strategy is needed to identify and correct shifts from the optimal operation point automatically. Previous studies have already presented solutions for batch-to-batch variance and process control options with the aid of rigorous physico-chemical process modeling. These models can be implemented as distinct digital twins as well as statistical process operation data analyzers. In order to utilize such models for advanced process control (APC), the model parameters have to be updated with the aid of inline Process Analytical Technology (PAT) data to describe the actual operational status. This updating process also includes any operational change phenomena that occur, and its relation to their physico-chemical root cause. Typical phenomena are fluid dynamic changes due to packing breakage, channelling or compression as well as mass transfer and phase equilibrium-related separation performance decrease due to adsorbent aging or feed and buffer composition changes. In order to track these changes, an Artificial Neural Network (ANN) is trained in this work. The ANN training is in this first step, based on the simulation results of a distinct and previously experimentally validated process model. The model is implemented in the open source tool CasADi for Python. This allows the implementation of interfaces to process control systems, among others, with relatively low effort. Therefore, PAT signals can easily be incorporated for sufficient adjustment of the process model for appropriate process control. Further steps would be the implementation of optimization routines based on PAT and ANN predictions to derive optimal operation points with the model. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

10 pages, 2428 KiB  
Article
A Substrate Integrated Waveguide Resonator Sensor for Dual-Band Complex Permittivity Measurement
by Qian Chen, Zhuo Long, Naoki Shinohara and Changjun Liu
Processes 2022, 10(4), 708; https://doi.org/10.3390/pr10040708 - 5 Apr 2022
Cited by 8 | Viewed by 1572
Abstract
This paper presents a novel dual-band substrate integrated waveguide (SIW) sensor that is designed to measure the complex permittivities of liquids or solid powders at two industrial, scientific, and medical (ISM) frequencies simultaneously. Resonant frequencies and quality factors are obtained from S-parameter measurements [...] Read more.
This paper presents a novel dual-band substrate integrated waveguide (SIW) sensor that is designed to measure the complex permittivities of liquids or solid powders at two industrial, scientific, and medical (ISM) frequencies simultaneously. Resonant frequencies and quality factors are obtained from S-parameter measurements with the proposed SIW sensor, and applied to reconstructing the permittivities of materials under test through an artificial neural network. The water–ethanol mixed liquids were measured with the proposed sensor. The maximum deviations of the measured permittivities at 2.45 and 5.8 GHz are within 3% of literature results. The measurement by the proposed SIW sensor with artificial neural network reconstruction is accurate and efficient. Full article
(This article belongs to the Special Issue Microwave Applications in Chemistry and Materials Processing)
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
A Multi-Physic Modelling Insight into the Differences between Microwave and Conventional Heating for the Synthesis of TiO2 Nanoparticles
by Giulia Poppi, Elena Colombini, Diego Salvatori, Alessio Balestri, Giovanni Baldi, Cristina Leonelli and Paolo Veronesi
Processes 2022, 10(4), 697; https://doi.org/10.3390/pr10040697 - 3 Apr 2022
Cited by 1 | Viewed by 1829
Abstract
Microwave-assisted synthesis of nanoparticles usually leads to a smaller and more uniformly distributed particle size compared to conventional heating (e.g., oil bath). Numerical simulation can help to obtain a better insight into the process in terms of temperature distribution or to evidence existing [...] Read more.
Microwave-assisted synthesis of nanoparticles usually leads to a smaller and more uniformly distributed particle size compared to conventional heating (e.g., oil bath). Numerical simulation can help to obtain a better insight into the process in terms of temperature distribution or to evidence existing different temperature profiles and heating rates between the two techniques. In this paper multi-physics numerical simulation is used to investigate the continuous flow synthesis of titanium oxide nanoparticles starting from alkoxide precursors. Temperature-dependent permittivity of reactants has been measured, including the effects of permanence at the maximum synthesis temperature. A temperature homogeneity index has been defined to compare microwave and conventional heating. Results show that when using microwave heating at 2450 MHz, in the investigated conditions, a much higher temperature homogeneity of the reactants is reached. Moreover, reactants experience different heating rates, depending on their position inside the microwave applicator, while this is almost negligible in the case of conventional heating. Full article
(This article belongs to the Special Issue Microwave Applications in Chemistry and Materials Processing)
Show Figures

Figure 1

20 pages, 3078 KiB  
Article
Characterization of Stressing Conditions in a High Energy Ball Mill by Discrete Element Simulations
by Christine Friederike Burmeister, Moritz Hofer, Palanivel Molaiyan, Peter Michalowski and Arno Kwade
Processes 2022, 10(4), 692; https://doi.org/10.3390/pr10040692 - 1 Apr 2022
Cited by 7 | Viewed by 2864
Abstract
The synthesis of sulfide solid electrolytes in ball mills by mechanochemical routes not only is efficient but also can enable the upscaling of material synthesis as required for the commercialization of solid-state battery materials. On a laboratory scale, the Emax high energy ball [...] Read more.
The synthesis of sulfide solid electrolytes in ball mills by mechanochemical routes not only is efficient but also can enable the upscaling of material synthesis as required for the commercialization of solid-state battery materials. On a laboratory scale, the Emax high energy ball mill accounts for high stresses and power densities, as well as for temperature control, to prevent damage to the material and equipment even for long process times. To overcome the merely phenomenological treatment, we characterized the milling process in an Emax by DEM simulations, using the sulfide solid electrolyte LPS as a model material for the calibration of input parameters to the DEM, and compared it to a planetary ball mill for a selected parameter set. We derived mechanistic model equations for the stressing conditions depending on the operation parameters of rotational speed, media size and filling ratio. The stressing conditions are of importance as they determine the outcome of the mechanochemical milling process, thus forming the basis for evaluating and interpreting experiments and for establishing scaling rules for the process transfer to larger mills. Full article
(This article belongs to the Special Issue Chemical Process Modelling and Simulation)
Show Figures

Graphical abstract

25 pages, 6256 KiB  
Article
Model-Based Analysis for Ethylene Carbonate Hydrogenation Operation in Industrial-Type Tubular Reactors
by Hai Huang, Chenxi Cao, Yue Wang, Youwei Yang, Jianning Lv and Jing Xu
Processes 2022, 10(4), 688; https://doi.org/10.3390/pr10040688 - 31 Mar 2022
Cited by 1 | Viewed by 2805
Abstract
Hydrogenation of ethylene carbonate (EC) to co-produce methanol (MeOH) and ethylene glycol (EG) offers an atomically economic route for CO2 utilization. Herein, aided with bench and pilot plant data, we established engineering a kinetics model and multiscale reactor models for heterogeneous EC [...] Read more.
Hydrogenation of ethylene carbonate (EC) to co-produce methanol (MeOH) and ethylene glycol (EG) offers an atomically economic route for CO2 utilization. Herein, aided with bench and pilot plant data, we established engineering a kinetics model and multiscale reactor models for heterogeneous EC hydrogenation using representative industrial-type reactors. Model-based analysis indicates that single-stage adiabatic reactors, despite a moderate temperature rise of 12 K, suffer from a narrow operational window delimited by EC condensation at lower temperatures and intense secondary EG hydrogenation at higher temperatures. Boiling water cooled multi-tubular reactors feature near-isothermal operation and exhibit better operability, especially under high pressure and low space velocity. Conduction oil-cooled reactors show U-type axial temperature profiles, rendering even wider operational windows regarding coolant temperatures than the water-cooled reactor. The revelation of operational characteristics of EC hydrogenation under industrial conditions will guide further improvement in reactor design and process optimization. Full article
Show Figures

Graphical abstract

27 pages, 27937 KiB  
Article
Heat-Integration of Solar-Heated Membrane Distillation and Fuel Cell for Desalination System Based on the Dynamic Optimization Approach
by Yu-Hsin Liu, Vincentius Surya Kurnia Adi and Shing-Yi Suen
Processes 2022, 10(4), 663; https://doi.org/10.3390/pr10040663 - 29 Mar 2022
Cited by 2 | Viewed by 1607
Abstract
The heat integration feasibility of the proton exchange membrane fuel cell (PEMFC) coupled with the solar-heated direct contact membrane distillation (DCMD) module is evaluated in this study. The additional waste heat from the PEMFC increases the DCMD system’s ability to produce fresh water [...] Read more.
The heat integration feasibility of the proton exchange membrane fuel cell (PEMFC) coupled with the solar-heated direct contact membrane distillation (DCMD) module is evaluated in this study. The additional waste heat from the PEMFC increases the DCMD system’s ability to produce fresh water and electricity. Two systems units to be assessed mainly include a flat plate solar collector, a heat storage tank with an internal heat exchanger, and the DCMD module with and without the PEMFC module. The importance of daily operation continuity is emphasized through a preliminary dynamic simulation and proper sizing of the solar-heated DCMD distillation. Sensitivity analysis is implemented to analyze the relationship between the essential variables and the daily freshwater production. The design variables of both configurations are rigorously optimized in terms of minimum unit production cost (UPC). The proposed heat integration feasibility is evaluated to obtain critical insights on the design strategy of the hybrid systems. Full article
(This article belongs to the Special Issue Design and Optimization in Process Engineering)
Show Figures

Graphical abstract

11 pages, 1628 KiB  
Article
Diffusion of Ethanol in Supercritical Carbon Dioxide—Investigation of scCO2-Cosolvent Mixtures Used in Pharmaceutical Applications
by Cecília I. A. V. Santos, Marisa C. F. Barros and Ana C. F. Ribeiro
Processes 2022, 10(4), 660; https://doi.org/10.3390/pr10040660 - 29 Mar 2022
Cited by 4 | Viewed by 2242
Abstract
Diffusion coefficients, D, for ethanol in supercritical carbon dioxide (scCO2) were measured in the temperature range 306.15–331.15 K and along the 10.5 MPa isobar, using the Taylor dispersion technique. The obtained diffusivities ranged from 1.49 × 10−8 to 2.98 [...] Read more.
Diffusion coefficients, D, for ethanol in supercritical carbon dioxide (scCO2) were measured in the temperature range 306.15–331.15 K and along the 10.5 MPa isobar, using the Taylor dispersion technique. The obtained diffusivities ranged from 1.49 × 10−8 to 2.98 × 10−8 m2 s−1, an order of magnitude higher than in usual liquids. The dependence of D on temperature and solvent density was examined. Various correlation models based in the hydrodynamic theory were assessed to estimate the diffusion coefficients, with reasonable results obtained for the Wilke–Chang and Lai–Tan models. Full article
(This article belongs to the Special Issue Drug Delivery Systems: Theory, Methods and Applications)
Show Figures

Figure 1

16 pages, 4189 KiB  
Article
Coprocessing Corn Germ Meal for Oil Recovery and Ethanol Production: A Process Model for Lipid-Producing Energy Crops
by Yuyao Jia, Deepak Kumar, Jill K. Winkler-Moser, Bruce Dien, Kent Rausch, Mike E. Tumbleson and Vijay Singh
Processes 2022, 10(4), 661; https://doi.org/10.3390/pr10040661 - 29 Mar 2022
Cited by 3 | Viewed by 2577
Abstract
Efforts to engineer high-productivity crops to accumulate oils in their vegetative tissue present the possibility of expanding biodiesel production. However, processing the new crops for lipid recovery and ethanol production from cell wall saccharides is challenging and expensive. In a previous study using [...] Read more.
Efforts to engineer high-productivity crops to accumulate oils in their vegetative tissue present the possibility of expanding biodiesel production. However, processing the new crops for lipid recovery and ethanol production from cell wall saccharides is challenging and expensive. In a previous study using corn germ meal as a model substrate, we reported that liquid hot water (LHW) pretreatment enriched the lipid concentration by 2.2 to 4.2 fold. This study investigated combining oil recovery with ethanol production by extracting oil following LHW and simultaneous saccharification and co-fermentation (SSCF) of the biomass. Corn germ meal was again used to model the oil-bearing energy crops. Pretreated germ meal hydrolysate or solids (160 and 180 °C for 10 min) were fermented, and lipids were extracted from both the spent fermentation whole broth and fermentation solids, which were recovered by centrifugation and convective drying. Lipid contents in spent fermentation solids increased 3.7 to 5.7 fold compared to the beginning germ meal. The highest lipid yield achieved after fermentation was 36.0 mg lipid g−1 raw biomass; the maximum relative amount of triacylglycerol (TAG) was 50.9% of extracted oil. Although the fermentation step increased the lipid concentration of the recovered solids, it did not improve the lipid yields of pretreated biomass and detrimentally affected oil compositions by increasing the relative concentrations of free fatty acids. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

23 pages, 2990 KiB  
Article
Main Technical and Economic Guidelines to Implement Wind/Solar-Powered Reverse-Osmosis Desalination Systems
by Vicente J. Subiela-Ortín, Baltasar Peñate-Suárez and Juan A. de la Fuente-Bencomo
Processes 2022, 10(4), 653; https://doi.org/10.3390/pr10040653 - 28 Mar 2022
Cited by 11 | Viewed by 3363
Abstract
The use of renewable energy for desalination started in the 1980s, in order to provide a sustainable water supply in windy/sunny areas with water shortages. Nevertheless, this initiative has been generally limited to the R&D field and prototypes, with few units operating under [...] Read more.
The use of renewable energy for desalination started in the 1980s, in order to provide a sustainable water supply in windy/sunny areas with water shortages. Nevertheless, this initiative has been generally limited to the R&D field and prototypes, with few units operating under real conditions. The research tradition in this field carried out by the Canary Islands Institute of Technology, based on pilot facilities, resulted in wide expertise on practical issues, as well as a deep knowledge on the state of the art. This paper deals with the most relevant technical aspects to be considered in the optimal design and operation of wind/photovoltaic (PV)-powered reverse-osmosis (RO) systems, focusing on practical indications: appropriate pre-treatment, the use and selection of the RO energy recovery system (ERD), the selection of an energy storage system, key recommendations for the O&M actions in wind- and PV-powered RO systems (extracted from the experience of operating different units in remote locations (PV and RO) and coastal areas (wind and RO)), and an identification of the pros and cons of hybrid systems. A selection of economic data is given, indicating the main aspects of the minimization of the cost of water. Finally, the paper mentions the latest advances in the involved technologies. Full article
(This article belongs to the Special Issue Desalination Processes by Renewable Energy (RE))
Show Figures

Figure 1

29 pages, 6834 KiB  
Article
Advanced Dynamics Processes Applied to an Articulated Robot
by Florian Ion Tiberiu Petrescu
Processes 2022, 10(4), 640; https://doi.org/10.3390/pr10040640 - 24 Mar 2022
Cited by 5 | Viewed by 3718
Abstract
The paper presents the dynamics of a 2R planar articulated robot, developed by two original methods. One is the classical “Lagrangian” adapted by the author, and the second method is absolutely original. The dynamics of the robot are based in both cases on [...] Read more.
The paper presents the dynamics of a 2R planar articulated robot, developed by two original methods. One is the classical “Lagrangian” adapted by the author, and the second method is absolutely original. The dynamics of the robot are based in both cases on the variation of the inertial forces in the mechanism, or practically on the influence of the masses of the moving elements of the robot. The influence of external loads, weights and the load to be transported is also taken into account. Another original element of the work is the choice of speeds in such a way that they correspond to an optimum necessary for the inverse kinematics imposed on the robot. For this reason, the dynamic operation will be quiet and without large variations or vibrations. If the speeds of the two electric motors (preferably stepper motors) areadapted to those recommended by the author, the controller (PID) used will have a very light load. It is even possible to eliminate it if the adjustment of the two stepper motors (actuators) is performed according to the speeds indicated by the author of the paper. The kinematic motion imposed by the indicated optimal speeds is dynamically and successfully checked by both methods used. Full article
(This article belongs to the Special Issue Advanced Processes Creating New Technologies in Tomorrow's Industry)
Show Figures

Figure 1

13 pages, 4954 KiB  
Article
Development of Prediction Models for Pressure Loss and Classification Efficiency in Classifiers
by Michael Betz, Hermann Nirschl and Marco Gleiss
Processes 2022, 10(4), 627; https://doi.org/10.3390/pr10040627 - 23 Mar 2022
Viewed by 1505
Abstract
This paper presents the development of prediction models for pressure loss and classification efficiency in classifiers. Classifiers belong to one of the most important classification devices in gas particle processing and a fast and accurate determination of pressure loss and cut size is [...] Read more.
This paper presents the development of prediction models for pressure loss and classification efficiency in classifiers. Classifiers belong to one of the most important classification devices in gas particle processing and a fast and accurate determination of pressure loss and cut size is of great interest. The first model developed in this work allows the calculation of pressure loss as a function of geometric and operational parameters. It is based on a number of measured values that are obtained from previous numerical simulations (CFD). The maximum deviation of the model is less than 20% and the model operates in real time. However, the model requires calibration for each type of classifier. The second model for classification efficiency is based on a simplified two-dimensional approach in which the flow profile and particle trajectories are determined exclusively for the area between two classifier blades. The model is applicable for all geometrical and operational parameters and calculates the desired parameters within a few minutes, with a maximum error rate of 25%. In combination, the two models allow for the process optimization of classifiers in complete systems. Full article
Show Figures

Figure 1

16 pages, 2222 KiB  
Article
Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications
by Pravin Dudhagara, Jemisha Alagiya, Chintan Bhagat, Dushyant Dudhagara, Anjana Ghelani, Jigna Desai, Rajesh Patel, Ashaka Vansia, Dao Ngoc Nhiem, Yih-Yuan Chen and Douglas J. H. Shyu
Processes 2022, 10(4), 623; https://doi.org/10.3390/pr10040623 - 23 Mar 2022
Cited by 5 | Viewed by 2202
Abstract
To evaluate silver nanoparticles’ (AgNPs) therapeutic and clinical potentials, antibacterial action, blood compatibility, and antiplatelet activities are the main concerns for toxicity profiling. Heat-denatured lysozyme-mediated formulation stabilized the AgNPs, thereby providing more bactericidal activity and blood compatibility. The study of the synthesis of [...] Read more.
To evaluate silver nanoparticles’ (AgNPs) therapeutic and clinical potentials, antibacterial action, blood compatibility, and antiplatelet activities are the main concerns for toxicity profiling. Heat-denatured lysozyme-mediated formulation stabilized the AgNPs, thereby providing more bactericidal activity and blood compatibility. The study of the synthesis of AgNPs suggests the rapid and cost-effective formulation of AgNPs by one-step reaction using a 10:1 ratio of silver nitrate and lysozyme by incubating at 60 °C for two hours. Characterization of AgNPs was analyzed by UV–Visible spectroscopy, DLS, TEM, EDX, XRD, AFM, and FTIR, followed by antibacterial, hemocompatibility, and platelet aggregation testing. The average size of synthesized AgNPs was found to be 94.10 nm with 0.45 mV zeta potential and 0.293 polydispersity index by DLS. The TEM and EXD results indicated homogeneously 28.08 nm spherical-shaped pure formations of AgNPs. The XRD peaks showed the synthesis of small AgNPs with a crystallite size of 22.88 nm, while the AFM confirmed the homogeneity and smoothness of the monodispersed AgNPs. The FTIR spectra specified the coating of the lysozyme-derived amide group on the AgNPs surface, which provides stability and functionality of nanoparticles. The antibacterial activity of AgNPs was remarkable against six pathogenic bacteria and three multidrug resistance (MDR) strains (i.e., Escherichia coli, Klebsiella aerogenes, and Pseudomonas aeruginosa), which exhibited inhibition zones with diameters ranging between 13.5 ±  0.2 mm to 19.0 ±  0.3 mm. The non-hemolytic nature of the AgNPs was calculated by percentage hemolysis with four concentrations. The negative result of platelet aggregation using platelet-rich plasma suggests the antiplatelet effect of AgNPs. Only minor hemolysis of 6.17% in human erythrocytes and mild platelet aggregation of 1.98% were induced, respectively, by the use of 1000 µL of 1 mM AgNPs, which contains approximately 107.8 μg silver. The results indicated that the antiplatelet potency and non-hemolytic nature with the antibacterial action of the lysozyme functionalized AgNPs have a good chance to be used to solve in-stent restenosis and thrombosis issues of the coronary stent and may also have a possibility to use in vaccination to resolve the blood clotting problem. So, the optimized biogenic formulation of AgNPs offers promising opportunities to be used as a therapeutic agent. Full article
(This article belongs to the Special Issue Green Synthesis of Metallic Nanomaterials and Their Applications)
Show Figures

Figure 1

21 pages, 5237 KiB  
Article
Catalytic Properties of Free-Base Porphyrin Modified Graphite Electrodes for Electrochemical Water Splitting in Alkaline Medium
by Bogdan-Ovidiu Taranu and Eugenia Fagadar-Cosma
Processes 2022, 10(3), 611; https://doi.org/10.3390/pr10030611 - 21 Mar 2022
Cited by 8 | Viewed by 2319
Abstract
Hydrogen generation via electrochemical water splitting is considered an eco-friendly pathway for obtaining this desired alternative energy source, and it has triggered an intensive search for low cost and efficient catalysts. Within this context, four free-base porphyrins were studied as heterogeneous catalysts for [...] Read more.
Hydrogen generation via electrochemical water splitting is considered an eco-friendly pathway for obtaining this desired alternative energy source, and it has triggered an intensive search for low cost and efficient catalysts. Within this context, four free-base porphyrins were studied as heterogeneous catalysts for the oxygen and hydrogen evolution reactions (OER and HER) in alkaline aqueous solutions. TEM and STEM analyses of samples obtained by drop-casting the porphyrins from different organic solvents on TEM grids revealed a rich variety of aggregates due to the self-assembling property of the porphyrin molecules. Modified electrodes were manufactured by applying the four tetrapyrrolic macrocycles from various solvents on the surface of graphite supports, in one or more layers. Experiments performed in 0.1 M and 1 M KOH electrolyte solutions allowed the identification of the most electrocatalytically active electrodes for the OER and HER, respectively. In the first case, the electrode was manufactured by applying three layers of 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)porphyrin on the graphite substrate from N,N-dimethylformamide solution was identified as overall catalytically superior. In the second case, the electrode obtained by applying one layer of 5,10,15,20-tetrakis(4-allyloxyphenyl)-porphyrin from benzonitrile solution displayed an HER overpotential value of 500 mV at i = −10 mA/cm2 and a Tafel slope of 190 mV/dec. Full article
(This article belongs to the Special Issue From Small Molecules to High-Value Chemicals: Theory and Practice)
Show Figures

Graphical abstract

28 pages, 9781 KiB  
Article
Origin of Steam Contaminants and Degradation of Solid-Oxide Electrolysis Stacks
by Dominik Schäfer, Larissa Queda, Volker Nischwitz, Qingping Fang and Ludger Blum
Processes 2022, 10(3), 598; https://doi.org/10.3390/pr10030598 - 19 Mar 2022
Cited by 4 | Viewed by 2484
Abstract
Two once-through steam generators and a combination of a steam generator and a gas preheater for supplying feed gases to solid-oxide electrolysis stacks were evaluated for their carryover characteristics of contaminants from the feed-water into the steam phase. The concentrations of various trace [...] Read more.
Two once-through steam generators and a combination of a steam generator and a gas preheater for supplying feed gases to solid-oxide electrolysis stacks were evaluated for their carryover characteristics of contaminants from the feed-water into the steam phase. The concentrations of various trace impurities in the steam were determined by sampling the steam condensates and screening them with inductively coupled plasma–mass spectrometry for 19 elements and liquid ion chromatography and continuous flow analysis for chloride and ammonium. Steam-soluble species such as boric acid undergo complete volatilization and transfer into the steam phase. During unstable evaporation in the steam generators an extensive physical carryover of alloying metal species was observed. At realistic operation conditions for steam electrolysis, the gas preheater caused a considerable release of silicon into the steam phase. Two stack experiments were performed with common preheater temperatures and showed largely increased cell voltage degradation at higher operation temperatures. The post-test chemical analysis of cell samples revealed significant concentrations of silicon in the samples that are regarded as primary cause for increased degradation. These findings could partially explain the wide spread of degradation rates reported for solid-oxide steam electrolysis experiments. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 5954 KiB  
Article
Application of Nanodiamonds in Modelled Bioremediation of Phenol Pollution in River Sediments
by Ivaylo Yotinov, Mihaela Belouhova, Anna Foteva, Nora Dinova, Yovana Todorova, Irina Schneider, Elmira Daskalova and Yana Topalova
Processes 2022, 10(3), 602; https://doi.org/10.3390/pr10030602 - 19 Mar 2022
Cited by 2 | Viewed by 2264
Abstract
The pollution of aquatic ecosystems is a big problem that has its impact on river sediments. In recent decades, an effective solution to this problem has been the application of bioremediation technologies. Nanoremediation is an innovative part of these technologies. We still know [...] Read more.
The pollution of aquatic ecosystems is a big problem that has its impact on river sediments. In recent decades, an effective solution to this problem has been the application of bioremediation technologies. Nanoremediation is an innovative part of these technologies. We still know little about the efficiency of nanoparticles, especially nanodiamonds, in modelled conditions. The aim of the present study is to investigate the effect of nanodiamonds on the key parameters of modelled bioremediation of river sediments that are polluted with phenol, as well their effect on the structures and functions of microbial communities. An important indicative mechanism that was used is the application of fluorescent in situ hybridization for sediment microbial communities. The results of this study revealed the positive role of nanodiamonds that is associated with their intoxication with high concentrations of phenol. Readaptation was also found, in which the xenobiotic biodegradation potential evolved by increasing the relative proportions of non-culturable bacteria, namely Acinetobacter (at the 144th hour) and Pseudomonas (at the 214th hour). The results can help to find an effective solution to the question of how information from such precise molecular methods and the application of nanodiamonds can be translated into the accessible language of management and bioremediation technologies. Full article
Show Figures

Graphical abstract

17 pages, 3651 KiB  
Article
Cladium mariscus Saw-Sedge versus Sawdust—Efficient Biosorbents for Removal of Hazardous Textile Dye C.I. Basic Blue 3 from Aqueous Solutions
by Przemysław Bartczak, Monika Wawrzkiewicz, Sławomir Borysiak and Teofil Jesionowski
Processes 2022, 10(3), 586; https://doi.org/10.3390/pr10030586 - 17 Mar 2022
Cited by 5 | Viewed by 1574
Abstract
Bio-based waste materials are more often used as effective and cheap adsorbents to remove toxic organic compounds such dyes. Batch adsorption of C.I. Basic Blue 3 (BB3) onto Cladium mariscus saw-sedge was studied in comparison with sawdust obtained from various species of wood [...] Read more.
Bio-based waste materials are more often used as effective and cheap adsorbents to remove toxic organic compounds such dyes. Batch adsorption of C.I. Basic Blue 3 (BB3) onto Cladium mariscus saw-sedge was studied in comparison with sawdust obtained from various species of wood in order to explore their potential application as low-cost sorbents for basic dye removal from wastewaters. The effect of phase contact time (1–240 min), initial dye concentration (50–200 mg/L), and the auxiliaries presence (10–60 g/L NaCl and 0.1–0.75 g/L anionic surfactant) on BB3 uptake was investigated. The adsorption kinetic data followed the pseudo-second order equation rather than pseudo-first order one. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The monolayer sorption capacities decreased from 44.29 to 42.07 mg/g for Cladium mariscus saw-sedge and from 28.69 to 27.5 mg/g for sawdust with temperature increasing from 20 to 50 °C. The thermodynamic parameters such as the change in free energy (∆), enthalpy (∆), and entropy (∆) were calculated, too. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

15 pages, 1405 KiB  
Article
Phytosterol, Tocopherol and Carotenoid Retention during Commercial Processing of Brassica napus (Canola) Oil
by Clare L. Flakelar, Randy Adjonu, Gregory Doran, Julia A. Howitt, David J. Luckett and Paul D. Prenzler
Processes 2022, 10(3), 580; https://doi.org/10.3390/pr10030580 - 16 Mar 2022
Cited by 10 | Viewed by 2753
Abstract
Brassica napus (canola) seed is a rich source of phytosterols, tocopherols and carotenoids, which all have recognized health benefits, although these are reduced or lost during crude oil refinement. Many studies are now outdated, so new research to monitor bioactive retention through current [...] Read more.
Brassica napus (canola) seed is a rich source of phytosterols, tocopherols and carotenoids, which all have recognized health benefits, although these are reduced or lost during crude oil refinement. Many studies are now outdated, so new research to monitor bioactive retention through current processing techniques is warranted. In this work, canola seed, in-process seed, and oil samples were collected from the major stages of five commercial canola oil processes. Analysis of phytosterols, tocopherols and carotenoids indicated seed pre-treatment enhanced bioactive concentrations in the crude oil. Although the bleaching step in each process eliminated all carotenoids, high concentrations of phytosterols and tocopherols remained in the refined oil across all processes, with losses notably lower than those found in previous reports. Moreover, crude oil samples from a two-stage cold pressing process showed greatly enriched concentrations of tocopherols (+122%), sterols (+140%) and carotenoids (+217%). The results show that modern Australian canola oil processing retains high phytosterol and tocopherol concentrations and warrants further investigation into bioactive enrichment strategies. Given the growing interest in health-enhanced foods, this study provides opportunities for nutrition and health-enhanced oil products and the potential for adding value in the edible oil industry. Full article
Show Figures

Figure 1

18 pages, 5821 KiB  
Article
Influence of Materials Parameters of the Coil Sheet on the Formation of Defects during the Manufacture of Deep-Drawn Cups
by Wojciech Baran, Krzysztof Regulski and Andrij Milenin
Processes 2022, 10(3), 578; https://doi.org/10.3390/pr10030578 - 16 Mar 2022
Cited by 1 | Viewed by 2188
Abstract
During the process of deep drawing of cylindrical thin-walled products from aluminum sheets, the occurrence of product defects in the form of breaking the material continuity is observed. This has a very large impact on the efficiency of production lines and the number [...] Read more.
During the process of deep drawing of cylindrical thin-walled products from aluminum sheets, the occurrence of product defects in the form of breaking the material continuity is observed. This has a very large impact on the efficiency of production lines and the number of generated scraps. The number of defects depends on many factors, including the material and the process properties. Because the problem appears after changing one material to another, while the process parameters do not change, it was assumed that the material has the main influence on the number of defects. To reduce the number of defects, a tool is needed to predict threats to the process. Decision tree models were used for this purpose. Using the tree interaction algorithms, the influence of the chemical composition and strength parameters of the 3xxx series aluminum alloy on the number of generated defects was investigated. Increased Silicon (Si) and Iron (Fe) values generated a higher number of defects. Increased yield strength (YS) and decreased elongation (E) also generated a higher number of defects. Based on the results, a defect prediction tool was created, where after entering the parameters of the material, it is possible to predict production hazards. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Fast Electrochemical Measurement of Laccase Activity for Monitoring Grapes’ Infection with Botrytis cinerea
by Andreea Catalina Lulea, Robert Ruginescu, Roberta Maria Banciu, Catalina Pantazi, Elena Brinduse, Marian Ion, Silvia Quintela, Edurne Elejalde, Laura Fernández-de-Castro, Maria Carmen Villarán, Zuria Ruiz-de-Vergara, Cristobal Ruíz, Petru Epure, Cristina Purcarea and Alina Vasilescu
Processes 2022, 10(3), 575; https://doi.org/10.3390/pr10030575 - 15 Mar 2022
Cited by 3 | Viewed by 2593
Abstract
Grapes’ infection with the fungi Botrytis cinerea is one of the major causes of economic loss in the winemaking sector worldwide. The laccase activity of grapes is considered an appropriate indicator of this type of fungal infection, and enzymatic activity higher than 3 [...] Read more.
Grapes’ infection with the fungi Botrytis cinerea is one of the major causes of economic loss in the winemaking sector worldwide. The laccase activity of grapes is considered an appropriate indicator of this type of fungal infection, and enzymatic activity higher than 3 U/mL indicates a high risk of irreversibly damaged grape must due to enzymatic browning. This work describes a fast test for the measurement of laccase activity based on a dual optical and electrochemical detection method. A paper sensor impregnated with the enzymatic substrate dye 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) provides a semi-quantitative optical measurement. While the paper sensor can be used independently, when combined with a screen-printed electrode and amperometry measurements, it enables the quantitative detection of laccase activities down to 0.4 U/mL in only 5 min. The method was applied for monitoring the artificial infection of white, rosé, and red grapes with different strains of Botrytis cinerea. The results were confirmed by parallel analysis using the spectrophotometric method of laccase activity determination based on syringaldazine. The influence of the fungal strain and type of grape on laccase activity levels is reported. The demonstrated robustness, simplicity, and versatility of the developed method make it ideal for application on-site in the vineyard or at grape processing points. Full article
(This article belongs to the Special Issue Recent Research on Electrochemical Bioassays)
Show Figures

Graphical abstract

18 pages, 4283 KiB  
Article
Analysis and Implementation of a Bidirectional Converter with Soft Switching Operation
by Bor-Ren Lin
Processes 2022, 10(3), 561; https://doi.org/10.3390/pr10030561 - 13 Mar 2022
Cited by 4 | Viewed by 1927
Abstract
This paper presents a soft switching direct current (DC) converter, with the benefits of bidirectional power conversion and wide-ranging voltage operation for battery charging and discharging capability. A series resonant circuit with variable switching frequency modulation is used to achieve the advantages of [...] Read more.
This paper presents a soft switching direct current (DC) converter, with the benefits of bidirectional power conversion and wide-ranging voltage operation for battery charging and discharging capability. A series resonant circuit with variable switching frequency modulation is used to achieve the advantages of soft switching turn-on or turn-off of semiconductor devices. Therefore, the switching power losses in power devices can be reduced. A symmetric resonant circuit topology with a capacitor–inductor–inductor–capacitor (CLLC) structure is adopted to achieve a bidirectional power conversion capability for battery storage units in electric vehicle applications. Due to the symmetric circuit structure on both input and output sides, the converter has similar voltage gains for each power flow operation. In order to overcome the drawback of narrow voltage range operation in conventional resonant converters, a variable transformer turns ratio is adopted in the circuit, to achieve wide output voltage operation (150–450 V) for battery charging applications. To demonstrate the converter performance, a 1-kW laboratory prototype was constructed and tested. Experimental results are provided, to verify the effectiveness of the studied circuit. Full article
(This article belongs to the Special Issue Power Electronic for Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 2784 KiB  
Article
Comparison of Knudsen Diffusion and the Dusty Gas Approach for the Modeling of the Freeze-Drying Process of Bulk Food Products
by Patrick Levin, Moritz Buchholz, Vincent Meunier, Ulrich Kessler, Stefan Palzer and Stefan Heinrich
Processes 2022, 10(3), 548; https://doi.org/10.3390/pr10030548 - 11 Mar 2022
Cited by 1 | Viewed by 2215
Abstract
Freeze-drying is generally used to achieve high quality products and preserve thermal sensitive components; however, it is also considered as a high energy and costly process. Modeling of the process can help to optimize the process to reduce these drawbacks. In this work, [...] Read more.
Freeze-drying is generally used to achieve high quality products and preserve thermal sensitive components; however, it is also considered as a high energy and costly process. Modeling of the process can help to optimize the process to reduce these drawbacks. In this work, a mathematical model is presented to predict the heat and mass transfer behavior for freeze-drying of porous frozen food particles during freeze-drying to optimize the process. For the mass transfer, a comparison between Knudsen diffusion and the more complex dusty-gas approach is performed. Simulation results of a single particle are validated by experiments of single-layer drying to extend the usage of this model from a single particle to a particle bed. For the moisture transfer, adaption parameters are introduced and evaluated. A comparison shows a good agreement of the model with experimental results. The results furthermore suggest a strong correlation of the drying kinetics with pore size and particle porosity. An increase in the pore diameter strongly improves the overall mass transfer rates and hence is a suitable parameter for an effective increase of the drying rates in freeze-drying. Full article
(This article belongs to the Special Issue Advanced in Dewatering and Drying Processes)
Show Figures

Graphical abstract

18 pages, 12124 KiB  
Article
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders
by Alexandra Damerau, Frank Buttgereit and Timo Gaber
Processes 2022, 10(3), 550; https://doi.org/10.3390/pr10030550 - 11 Mar 2022
Cited by 2 | Viewed by 1937
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and [...] Read more.
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies. Full article
(This article belongs to the Special Issue Bioactive Composites for Bone Substitution)
Show Figures

Figure 1

30 pages, 1064 KiB  
Article
The Product Customization Process in Relation to Industry 4.0 and Digitalization
by Martin Pech and Jaroslav Vrchota
Processes 2022, 10(3), 539; https://doi.org/10.3390/pr10030539 - 9 Mar 2022
Cited by 26 | Viewed by 11922
Abstract
Today’s customer no longer wants one-size-fits-all products but expects products and services to be as tailored as possible. Mass customization and personalization are becoming a trend in the digitalization strategy of enterprises and manufacturing in Industry 4.0. The purpose of the paper is [...] Read more.
Today’s customer no longer wants one-size-fits-all products but expects products and services to be as tailored as possible. Mass customization and personalization are becoming a trend in the digitalization strategy of enterprises and manufacturing in Industry 4.0. The purpose of the paper is to develop and validate a conceptual model for leveraging Industry 4.0 and digitalization to support product customization. We explored the implications and impacts of Industry 4.0 and digitalization on product customization processes and determine the importance of variables. We applied structural equation modeling (SEM) to test our hypotheses regarding the antecedents and consequences of digitalization and Industry 4.0. We estimated the process model using the partial least squares (PLS) method, and goodness of fit measures show acceptable values. The proposed model considers relationships between technology readiness, digitalization, internal and external integration, internal value chain, and customization. The results show the importance of digitalization and technology readiness for product customization. The results reveal that the variable of internal integration plays a crucial mediating role in applying new technologies and digitalization for customization. The paper’s main contribution is the conclusion that, for successful implementation of the customization process, models are required to focus on the internal and external factors of the business environment. Our findings are supported by various practical applications of possible product customization. Full article
(This article belongs to the Special Issue Manufacturing Industry 4.0: Trends and Perspectives)
Show Figures

Graphical abstract

19 pages, 419 KiB  
Article
Predicting the Solubility of Nonelectrolyte Solids Using a Combination of Molecular Simulation with the Solubility Parameter Method MOSCED: Application to the Wastewater Contaminants Monuron, Diuron, Atrazine and Atenolol
by Rachel C. Ollier, Thomas Nguyen, Hrithik Agarwal, Jeremy R. Phifer, Larissa Ferreira da Silva, Gabriel Gonçalves Nogueira, Ana Karolyne Pereira Barbosa, Ryan T. Ley, Elizabeth J. O’Loughlin, Brett T. Rygelski, Spencer J. Sabatino and Andrew S. Paluch
Processes 2022, 10(3), 538; https://doi.org/10.3390/pr10030538 - 9 Mar 2022
Cited by 2 | Viewed by 2114
Abstract
Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable for early-stage process development, design, and feasibility studies. Conventional analytic methods typically require reference data to regress parameters, which may not be available or limited for novel systems. Molecular simulation is a [...] Read more.
Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable for early-stage process development, design, and feasibility studies. Conventional analytic methods typically require reference data to regress parameters, which may not be available or limited for novel systems. Molecular simulation is a promising alternative, but is computationally intensive. Here, we demonstrate the ability to use a small number of molecular simulation free energy calculations to generate reference data to regress model parameters for the analytical MOSCED (modified separation of cohesive energy density) model. The result is an efficient analytical method to predict the equilibrium solubility of nonelectrolyte solids. The method is demonstrated for the wastewater contaminants monuron, diuron, atrazine and atenolol. Predictions for monuron, diuron and atrazine are in reasonable agreement with MOSCED parameters regressed using experimental solubility data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted molecular models, or the solvents selected to generate the necessary reference data. Full article
(This article belongs to the Special Issue Thermodynamics: Modeling and Simulation)
Show Figures

Figure 1

Back to TopTop