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Abstract: One of the consequences of the widespread automation of manufacturing operations has
been the proliferation and availability of historical databases that can be exploited by analytical
methods to improve process understanding. Data science tools such as dimension reduction and
clustering are among many such approaches that can aid in the identification of unique process
features and patterns that can be associated with faulty states. However, determining the number
of such states still requires significant engineering knowledge and insight. In this study, a new
unsupervised method is proposed that reveals the number of classes in a data set. The method
utilizes a variety of dimension reduction techniques to create projections of a data set and performs
multiple clustering operations on the lower-dimensional data as well as the original data. The
relevant internal clustering metrics are incorporated into a multi-objective optimization problem to
determine the solutions that simultaneously optimize all metrics. The cluster number that shows
Pareto optimality based on the performance metrics is selected as the final one. The method is tested
on three data sets with distinct features. The results demonstrate the ability of the proposed method
to correctly identify the expected number of clusters.

Keywords: multi-objective optimization; data clustering; dimension reduction; Pareto solution

1. Introduction

Constant monitoring of operational variables throughout the systems of manufactur-
ing processes results in massively archived databases. As this historical record of operations
is high-dimensional and complex, it presents a valuable opportunity to discover operational
patterns and behaviors, and, as a result, to detect possible faults and anomalous behaviors.
In most cases, an adequate analysis of anomalies is only possible after the event; therefore,
carrying out a post mortem study of historical data becomes critical. As a result, many
fault detection methods utilizing high-dimensional historical data have been developed
throughout the years [1,2].

The historical data collected as such contains (or at least is expected to contain) infor-
mation that can be exploited for modeling, prediction and anomaly detection/isolation in
various industries. Depending on the size and the complexity of operations, such data can
be low-dimensional or high-dimensional, where in the latter case the process of information
extraction becomes more challenging. Hence, big data analysis has drawn more attention
in the search for ways to facilitate knowledge discovery [3]. The approach presented in
this study is generic and can be applied to historical data sets from a variety of industries
and systems.

Two tools that are frequently used in information extraction from and the visualization
of complex data sets are dimension reduction and clustering methods. Over the years,
a variety of approaches have been developed for each of these tools, and one needs to
be cognizant of the underlying science that makes them appropriate for some data sets
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and not necessarily others. Often, a certain amount of insight is required to select the
best-performing method; however, this becomes problematic in many real-life cases. Hence,
understanding the approach behind each technique can help in guiding the analyst to-
wards the appropriate selection from the available methods. This lack of clarity has led
to the use of these methods often in an unsupervised manner [4]. Dimension reduction
(DR) techniques are one category of highly useful tools that can transform the original
high-dimensional data set to a data set with lower (thus, more manageable) dimensions
by preserving specific characteristics of the original data, with the goal of retaining the
most important features and information. In [5], the authors have presented a compre-
hensive review of the most widely used DR techniques and offer a thoughtful analysis
of their performance. The other aforementioned tool—clustering—serves the purpose of
information extraction by finding particular groupings (or clusters) within the data (classi-
fication). These clusters of data points are identified based on the similar characteristics
of their members, where each cluster would represent a physically meaningful class. The
definition of similarity for clustering the points varies among different approaches. The
review article presented by [6] discusses clustering analysis and a number of algorithms
thoroughly. Separate studies of each of these tools have also been carried out in the context
of practical applications, and they have been evaluated based on their success in class
representation. They have proven to be beneficial in developing data-driven methods for
process monitoring and fault detection/diagnosis as compiled by [7,8]. Furthermore, the
performance of and the synergy between DR techniques and clustering methods have been
studied considering various combinations and permutations, and a detailed analysis has
been presented by [9]. However, the matter of obtaining optimal results (combinations)
is a subject that requires further discussion, especially if these methods are used in cases
without any prior knowledge about the data.

2. State-of-the-Art Techniques

The most common observation in performing clustering analysis on a data set is
that the odds of obtaining satisfactory results are low, especially if there is not enough
prior knowledge about the data set. This is an outcome of the parametric dependence
of the clustering methods on data features. In addition, as in most real-life scenarios,
since a priori information is not available, performance evaluation can only be conducted
using internal metrics. Most of these validation metrics optimize parameters, which is
also the objective of the clustering methods [10], so these metrics might not offer a true
representation of the data under scrutiny. For example, the Silhouette coefficient is more
compatible with k-means, and the Density-Based Clustering Validation (DBCV) index is
more compatible with HDBSCAN (a detailed discussion of these metrics are presented later
in Section 3.4). Therefore, evaluating internal validation criteria is a matter that has been
examined through various studies to measure the ability of these metrics in representing
the success of clustering results [11].

Multiple studies have been performed in the last few decades addressing the per-
formance of internal validation criteria, each focusing on different information to report,
such as the ability to identify the correct number of clusters, assessing the correct grouping
of data points and selecting the best parameter settings for each algorithm [11]. One of
the first studies was carried out by [12], and 108 small, artificial data sets were used to
identify the correct number of clusters for hierarchical clustering. They reported that the
Calinski–Harabasz (CH) index was the best-performing one. In a more recent study by [13],
four validation criteria—Silhouette, Davies–Bouldin, CH, and DBCV Index—were used
on 27 data sets to identify the highest scoring solution and the best parameters for each of
the six clustering algorithms; k-means, DBSCAN, Ward, Expectation-Minimization (EM),
mean-shift and spectral clustering. One of their results indicated that k-means is easily
capable of achieving good Silhouette and CH scores, and DBSCAN works best with DB
and DBCV indices.
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When faced with multiple indices for assessing performance, a reasonable approach
would be to consider an ensemble of these indices. Then, naturally, the matter of partial
weights and metrics combinations arise. Another approach would then lie in exploring a
framework in which more than one index is considered at a time to discover the patterns
underlying the data, hence the best possible clustering solution. As a result, it seems
appropriate to formulate the problem as a multi-objective optimization problem. Multi-
objective optimization, or Pareto optimization, is an optimization problem that has, as
the name suggests, more than one objective function to optimize. Pareto optimal or non-
dominated solutions are the solutions in which none of the objective functions can be
improved without degrading another one, thus producing the set of most acceptable
solutions. Realistically, this also means that there exists no solution that has every objective
simultaneously optimized (maximized or minimized). Therefore, in the end, a set of
solutions are deemed equally acceptable and presented to the decision maker [14]. There
are three major approaches to multi-objective optimization problems: (i) using a weighted
sum to combine a set of objectives into a single objective, (ii) ordering the objectives based
on their importance, or (iii) optimizing the multiple objectives simultaneously with a
Pareto-based approach [15]. The latter provides a set of solutions from which the decision
maker will select (or evaluate).

Multi-objective clustering (MOC) has been of growing interest in recent years, espe-
cially in the field of genetic algorithms [16]. Keeping in mind that, realistically, optimizing
no single objective can completely capture the clusters present in a data set, MOC per-
forms a search over the space of all parameters of the algorithm while simultaneously
optimizing a number of validity indices. An algorithm named MOCK (Multi-Objective
Clustering with automatic determination of the number of clusters), presented by [17],
offers a multi-objective evolutionary algorithm to detect the correct number of clusters
in a genetic encoding, and its objective functions are the overall deviation of partitioning
(which is the overall summed distances between data points and their cluster centers) and
connectivity (which measures the degree that neighboring data points have been placed in
the same cluster). In another work performed by [18], the NSGA-II algorithm has been used
on numeric image data sets to simultaneously optimize the Xie–Beni (XB) index (which is a
ratio of global to local variation) and Jm (which calculates the global cluster variance), and
the results are compared to two other scenarios, each optimizing only one of these scores
using other clustering methods. The final results are evaluated using another index that
was not included before and suggest that the multi-objective clustering outperforms the
other methods.

Considering the previous work and aforementioned advantages of MOC, this study
considers a clustering strategy using Pareto optimization to simultaneously optimize a
number of different metrics to reveal the behavior of the data. Hence, the clustering result
will not depend on only one metric (and one type of cluster feature), but rather a more
holistic view is taken into account to assign the memberships. In more detail, the clustering
would be treated as an unsupervised step of data analysis, with none of the parameters
selected. The clustering is performed multiple times while varying the parameters over
their ranges, and multiple internal metrics are calculated for each run. A multi-objective
optimization is then performed, with these metrics as objectives, to find the best solutions
and the final number of present clusters. To obtain a better insight, the previous step is then
combined with DR techniques to further assist the information extraction. Depending on
how the mapping is carried out from high dimensions to low dimensions, different clusters
can be created or lost. Therefore, considering representations of the data set at hand in
various versions in lower dimensions would help in identifying the patterns/clusters that
are preserved during the mapping, i.e., the most persistent features of the data. Finally,
MOC is performed multiple times on different projections of the data to assess the results
of the clustering step.

In comparison to previous studies focusing on multi-objective clustering, the novel
features of the current study are (1) the consideration of a density-based validity metric
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as well as cohesion-based and separation-based indices simultaneously, as well as (2) the
utilization of DR techniques and the application of multi-objective clustering in tandem to
discover the most important features of a data set. As a tangible result of the methodology,
the presented robust solution, which approaches the problem from different aspects, pro-
vides an unsupervised tool to determine the optimal number of clusters that can be used
as an input to subsequent analyses contributing to the final solution. Hence, the expert
knowledge requirement of such unsupervised analysis techniques can be significantly
reduced, and the implementation can be automatized.

The roadmap of the article is as follows. In the next section, the problem formulation,
overview of the methods and objective functions, as well as details of the data sets for the
case studies and the steps of the proposed approach are presented. Results and discussion
of the numerical experiments on the mentioned data sets are presented in Section 3, and
Section 4 offers the conclusions.

3. Methodology

In this section, a brief overview of the methods utilized in this study is presented,
starting with the general mathematical formulation of the problem, followed by the dis-
cussion of the methods of dimension reduction and clustering. Then, the performance
metrics/indices, the multi-objective optimization problem and finally the data sets are
introduced. The section concludes with the specific steps of the proposed method.

3.1. Problem Formulation

The schematic representation of the proposed methodology is depicted in Figure 1.
We start formulating the problem at the top left corner of the figure by assuming an n×m
data matrix X = [x1, . . . , xn]T , where n denotes the number of samples and m is the number
of variables. During the first step, the dimension reduction is performed (top in the middle
in Figure 1), where the aim of dimension reduction is to map the matrix X onto a n× p
matrix Y = [y1, . . . , yn]T by preserving as much of the intrinsic structure of the data set as
possible where the set of vectors is of a reduced dimension p (p 6 m):

Y = F(X) (1)

Again, the function G is defined based on the selected clustering method. Here, the out-
come z is an n× 1 vector, where the elements correspond to the subsets C = {C1, . . . , Ci, . . . , Ck}
with the number of clusters k. In addition, it is assumed that there exists a true set of la-
bels defined by a n × 1 vector u, where the elements are of the subsets of true labels
L = {L1, . . . , Lj, . . . , LnL} with the number of labels represented by nL.

Recognizing that clustering is an unsupervised machine learning technique, the deter-
mination of the true (distinguishable) number of clusters, nL, is often based on the expert
knowledge of the application domain and in several cases may be required as an input to
the clustering algorithm. The aim of the present article is to determine the optimal number
of clusters, k, in an unsupervised manner. Therefore, during Step 2, with the application
of t different clustering techniques, t different possible clustering solutions are created,
resulting in a total of t vector zs. Subsequently, in the third step, the resultant clustering
solutions are evaluated based on nq different internal metrics, which are calculated with
the help of q1, . . . , qnq functions. The results of these calculations are stored in a t × nq
matrix Q. This is followed by the determination of the optimal solutions from the t solu-
tions by multi-objective optimization, and further Pareto-front-based analysis reveals the
optimal number of subsets (the proposed method is described in depth in Section 3.6). This
optimization-based selection of results and determination of the optimal cluster number is
depicted as Step 4 in Figure 1. As a result of this robust scoring method, applying multiple
clustering solutions and multiple evaluation metrics, and hence approaching the problem
from various aspects, the number of found clusters and the number of true (distinguishable)
subsets in the data set are found to be equal, i.e., k = nL without the prior knowledge
of the number of true (distinguishable) subsets, nL). To demonstrate the performance of
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the proposed method, nL is compared to k in the end. The general formulation of the
multi-objective optimization problem in Step 4 with nq objective functions is presented as

max
t
{Q = [q1(z), q2(z) . . . , qnq(z)]} (2)

Or, in more explicit form,

max
1...t

Q =


q1(z1) q2(z1) . . . qnq(z1)
q1(z2)

...
...

q1(zt) . . . qnq(zt)


 (3)

Figure 1. The schematic representation of the proposed methodology with its four main steps:
dimension reduction, t types of clustering, the characterization of the clustering solutions by nq
metrics and the selection of the best solutions.

Due to the often conflicting objective functions, the solution of a multi-objective
optimization problem is typically not a single point but a group of points called the Pareto-
optimal or non-dominated set of solutions. A non-dominated solution is defined as the
solution that is strictly better than the rest of the solutions in at least one criterion and is
no worse than the rest in all objectives. In other words, a non-dominated solution cannot
improve in any of the objectives without degrading at least another one and is accordingly
selected as a member of the final solution set. This set of non-dominated solutions is called
Pareto-optimal [19].

In the present work, the goal is to analyze the Pareto optimal solutions of the t solutions.
The form of the applied dimension reduction functions, F, are defined in Section 3.2, while
the approaches for clustering—therefore, the form of the function G—are provided in
Section 3.3. Finally, the objective functions, or in other words, the internal evaluation
metrics (indices) of clustering performance, are provided in Section 3.4, as well as external
metrics for a final assessment of the proposed approach.
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3.2. Dimension Reduction (DR) Techniques

The main use of DR techniques is to remove redundant information (data) and repre-
sent meaningful features of the raw process data in fewer—often, two or three—dimensions
(2D or 3D). Some benefits of applying DR techniques are reducing the computational
complexity and avoiding the curse of dimensionality. While having a lower number of
(transformed) variables facilitates data analysis, these techniques can also be used for
visualization purposes in 2D or 3D. For the case at hand, all DR techniques have been used
to transform the original m-dimensional data set into a two-dimensional manifold. A brief
introduction to the DR techniques used in this study follows, with a focus on their definitive
attributes, which classify them into three different categories of correlation-preserving,
distance-preserving and neighborhood-preserving.

• Principal Component Analysis (PCA) Principal Component Analysis [20,21] is by far
the most well-known dimension reduction technique with applications in diverse
fields. Very briefly, PCA assumes that there exists a new set of variables called the
principal components (PCs) that is smaller than the original number of variables,
through which the original interrelated (correlated) data can be expressed. These new
variables, which are linear combinations of the original variables, are uncorrelated
and orthogonal, and this linear projection is constructed in such a way to preserve
the maximum variation possible present in the original data. The number of selected
principal components in the end determines the number of dimensions of the PC
space. As can be gleaned from this description, this method is a correlation-preserving
technique. PCA and all its derivatives are considered to belong to this category.

• Multidimensional Scaling (MDS)
Multidimensional Scaling [20,22] is an example of the distance-preserving category.
It is assumed that the relative distance between points in the original data is more
informative than their correlation; therefore, the goal is to preserve that distance
during the dimension reduction step. Given the proximity matrix (which is simply the
table of Euclidean distances), a map displaying the relative positions of the data points
is constructed and then used to find the points in the lower dimensions. Since this is
performed based solely on the distance, any shift/rotation of the data will produce the
same proximity matrix; therefore, there can be many solutions. Hence, a centering step
is preformed to pin down one solution. A variation of MDS is the Metric MDS, which
is for quantitative data, and its algorithm has a few differences such as the distance
matrix and the loss function.
An important matter regarding the inefficiency of linear techniques (such as PCA and
MDS), which has been considered in the recent years, is the importance of the data
structure rather than the Euclidean distance. Two points may be close to each other
based on their Euclidean distance, but they may be far in the data manifold based on
their geodesic distance. Therefore, it is advisable to also consider nonlinear manifold
DR techniques to compare their results with linear methods.

• Isometric Mapping (ISOMAP)
Another example of the distance-preserving category of DR techniques is ISOMAP [23],
which is closely related to MDS. To address the inefficiency of Euclidean distance, this
method preserves the geodesic distance of the data manifold by constructing a neigh-
borhood graph using the nearest neighbors of each point and calculating the shortest
path between pairs of data points through their closest neighbors. After that, by
following the steps of MDS, a distance matrix is constructed to use for dimensionality
transformation. This results in a nonlinear projection of the original manifold.

• t-Stochastic Neighborhood Embedding (t-SNE)
The next category is the neighborhood-preserving techniques. t-Stochastic Neighbor-
hood Embedding (t-SNE) [24] is an example of this category, which assumes that local
neighborhoods are more important in revealing the inner structure of the data. This
method attempts to preserve the local neighborhoods by creating a Gaussian probabil-
ity distribution of each neighborhood and transferring them to the lower dimensions
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using a t-student distribution while minimizing a cost function. Because of the “heavy
tails” probability of t-distribution, the relative distances become more extreme, thus
highlighting the local neighborhoods more clearly. Since this algorithm works only
with local neighborhoods, any global structure—or in other words, distance between
clusters in the high dimensions (or higher dimensional features)—may be lost in the
low-dimensional representation.

• Uniform Manifold Approximation and Projection (UMAP)
Uniform Manifold Approximation and Projection (UMAP) [25] is a manifold-learning
dimension reduction technique and is in the same category of neighborhood-preserving
techniques, being similar to t-SNE. However, it has some differences in the way that
the conditional probability calculations are carried out and how the cost function is
formulated in trying to preserve the global structure as well by balancing the local–
global structure preservation. In addition, it has a faster execution time compared to
t-SNE.

3.3. Clustering Methods

Four different categories of clustering methods are utilized in this study: connectivity-
based, centroid-based, distribution-based and density-based.

• Connectivity -based clustering
The methods in this category consider the spatial (often Euclidean) distance between
data points when assigning cluster membership. Closer data points are assumed
to be in similar clusters as opposed to farther data points. The most well-known
method in this category is agglomerative hierarchical clustering [26], which uses a
number of possible closeness measures (linkages). This method uses a bottom-up
merging strategy, starting by considering every data point as a single cluster and then
merging the two closest clusters together, and repeating this process until the whole
data set belongs to one cluster. The hierarchy of these combinations is represented
by a dendrogram in the shape of a tree. After the process is completed, the user can
choose where to cut the dendrogram, therefore defining the number of clusters.

• Centroid-based clustering
Methods in this category find centroids in order to partition the data into a specific
number of clusters. This is performed by minimizing the distance of points from
their closest centroid. The examples chosen for this category are k-means [27] and
k-medoids [28]. The main difference between these two methods is their selection
of the centroid. For k-means, the algorithm uses the number of clusters, k, as the
input by the user and tries to separate the data into k groups of equal variance, while
minimizing the sum of squares of distances for members of a cluster from the centroid
of that cluster. The centroids are randomly chosen in the beginning and are updated
through each iteration of the algorithm to be the mean of their cluster members. This
randomness slightly affects the results in every run. While k-medoids is similar to k-
means, it instead minimizes a sum of general pairwise dissimilarities, and the medoids
(centroids) are determined from the points in the data set.

• Distribution-based clustering
The main idea exploited in this third category is the assumption that members of a
cluster most likely belong to the same distribution, in other words, points are assigned
to clusters based on their probability of belonging to a distribution. A Gaussian
mixture model (GMM) [29], for example, assumes that the data are constructed of
multiple Gaussian distributions. This method uses the Expectation-Maximization
algorithm to find the parameters of each Gaussian to finally determine the probabilities
of each sample belonging to any Gaussian distribution.

• Density-based clustering
In the fourth category, clusters are defined as areas of high density separated by areas
of low density. Higher density is defined as smaller regions with higher numbers
of samples, and based on this definition, all methods in this category are able to



Processes 2022, 10, 893 8 of 22

perform outlier detection. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [30] is one example that finds core samples as data points that have
a minimum number of samples within a specified distance around them and therefore
finds dense areas using that distance. Ordering Points To Identify the Clustering
Structure (OPTICS) [31] is very similar to DBSCAN, with a major difference: OPTICS
orders the points in a reachability graph to prioritize the memberships, which allows
for variable density cluster identification in a single data set. Hierarchical density-
based clustering (HDBSCAN) [32] is also similar to DBSCAN, but has a hierarchical
approach. The clusters are searched for using a range of distances, but instead of the
size of the region determining this separation cut, the cut is placed where the number
of small clusters and outliers are reasonable; i.e., the formed clusters are more stable.
The input parameter is the minimum cluster size to help the algorithm make the cut
in the dendrogram.

3.4. Performance Evaluation Metrics

The performance assessment of clustering methods depends on an important piece
of information about the data: whether the true assignments of data points (i.e., true
labels) are known or not. Cases with known true labels are usually used for training and
classification (supervised) purposes, and metrics are called external. There are a number
of important metrics that are calculated using the true labels and clustering assignments.
The metrics considered in this study are Adjusted Mutual Information (AMI) and V-
measure. These indices provide a more accurate assessment of how the clustering was
performed. For the purposes of this study, external metrics are only introduced and later
utilized to demonstrate the performance of the approach and are not objective functions
for the optimization process. Later in this section, internal metrics are introduced, such as
the Silhouette coefficient, Davies–Bouldin index and DBCV index. These constitute the
objective functions of the optimization to find the expected number of clusters and are the
calculated metrics for each solution.

3.4.1. Adjusted Mutual Information (AMI)

Adjusted Mutual Information (AMI) [33] is the adjustment of the Mutual Information
score to measure the agreement between true labels and assignments while accounting for
chance and is an external metric. The mathematical description follows the steps below:

Consider two assignments of the vector z = [z1, z2, . . . , zn], C = {C1, . . . , Ci, . . . , CnC}
with nC clusters and L = {L1, . . . , Lj, . . . , LnL} with nL clusters. Selecting an object ran-
domly from z, the probability of the object falling into cluster Ci is expressed as

P(i) =
|Ci|
n

(4)

where |Ci| is the number of elements in cluster Ci. The entropy S of a set represents the
amount of uncertainty for a partition set:

S(C) = −
nC

∑
i=1

P(i)log(P(i)) (5)

S(L) = −
nL

∑
j=1

P(j)log(P(j)) (6)

The mutual information between the sets C and L is then expressed as

MI(C, L) =
nC

∑
i=1

nL

∑
j=1

P′(i, j)log(
P′(i, j)

P(i)P(j)
(7)
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where P′(i, j) is the probability that a sample point belongs to cluster Ci in the assignment
C and to cluster Lj in the assignment L. The expected value of MI is calculated according
to the following:

E[MI(C, L)] =
nC

∑
i=1

nL

∑
j=1

min(ai ,bj)

∑
nij=(ai+bj−n)+

nij

n
log(

n · nij

aibj
)

ai!bj!(n− ai)!(n− bj)!
n!nij!(ai − nij)!(bj − nij)!(n− ai − bj + nij)!

(8)

For easier notation, ai = |Ci| is the number of elements in Ci and bj = |Lj| is the
number of elements in Lj. nij = |Ci ∩ Lj| denotes the number of objects common to clusters
Ci and Lj. The variables ai and bj are the partial sums of the contingency table of predicted
and true (expected) labels: ai = ∑nC

j=1 = nij and bj = ∑nL
i=1 = nij. (ai + bj − n)+ denotes

max(1, ai + bj − n)). The final AMI score is calculated as

AMI =
MI − E[MI]

mean(S(C), S(L))− E[MI]
(9)

The AMI score is bounded between 0 and 1, where assuming that one of the assign-
ments contains the true cluster labels, the higher values correspond to better performing
clustering assignments.

3.4.2. V-Measure

Another external metric is calculated using two other performance metrics: homo-
geneity (h) and c ompleteness (c). The former is calculated based on whether each cluster
only contains members of a single class, and the latter regards whether all members of a
given class are assigned to the same cluster. Each is calculated as follows:

h = 1− S(C|L)
S(C)

(10)

c = 1− S(L|C)

S(L)
(11)

where S(C) and S(L) are the entropy values of sets C and L, while S(C|L) is the conditional
entropy of the classes, given the cluster assignment:

S(C|L) = −
|C|

∑
i=1

|L|

∑
j=1

ai,L

N
· log(

ai,L

bj
) (12)

where ai,L is the number of samples belonging to class C and assigned to class L. The
harmonic mean of these scores is called the V-measure [34], bounded between 0 and 1,
where higher values represent more accurate clustering assignments:

v = 2 · h · c
h + c

(13)

As most cases consider unsupervised approaches where the true labels of the data are
not known, the performance assessment of the clustering assignments is carried out using
the internal metrics, with the help of internal features of the found clusters. These features
can be placed into two categories: cohesion measures and separation measures [10]. Cohesion
can be interpreted as the tightness of the found clusters, and separation represents how
“far” the clusters are from each other. Clusters are ideally defined as groups of points that
have high cohesion and high separation. However, the tightness of each of the clusters and
distance of pair of clusters measure the same metrics that the clustering methods optimize
to detect clusters. Therefore, these evaluation metrics and most clustering methods validate
each other’s results. As a result, the outcome may not be truly representative of the actual
clusters and structure of the data.
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3.4.3. Silhouette Coefficient

The most well-known internal metric is the Silhouette coefficient [35]. Similar to most
of the internal validation metrics, this metric is the ratio of cohesion to separation, and
maximization of the metric is favorable. For a data point l in cluster Ci, the simplified
formula is

sc(l) =
B− A

max(A, B)
(14)

where A is the mean distance between a sample and all other points in the same cluster Ci:

A(l) =
1

|Ci| − 1 ∑
k∈Ci ,l 6=k

d(l, k) (15)

and B is the smallest mean distance between a sample and all other points in the next
nearest cluster Cj:

B(l) = min
j 6=i

1
|Cj| ∑

k∈Cj

d(l, k) (16)

For this metric to be maximized (it has an upper bound of 1 and a lower bound of −1),
it is ideal for A to be much smaller than B. A high value indicates that the object is well
matched to its own cluster and poorly matched to neighboring clusters. The Silhouette
coefficient, sc, is calculated for all points, and the overall sc is the mean over all data points.

3.4.4. Davies–Bouldin (DB) Index

Another example of internal metrics is the Davies–Bouldin (DB) index [36], which
compares the distance between clusters with the size of the clusters themselves. Two scores
are calculated: T and M. T is the average distance between each point of cluster and the
centroid of that cluster (cluster diameter).

Ti =

(
1
|Ci|

|Ci |

∑
l=1
|xl − Di|p

) 1
p

(17)

where xl is the feature vector assigned to the cluster, Di is the centroid of the cluster, |Ci| is
the size of the cluster, and p is usually 2 to consider a Euclidean distance (2-norm). M is the
distance between cluster centroids:

Mi,j = ||Di − Dj||p (18)

A value of Rij is then calculated for each pair of clusters:

Rij =
Ti + Tj

Mi,j
(19)

The DB Index is found using the maximum of Rij values:

DB =
1
k

k

∑
i=1

max
i 6=j

Rij (20)

where k is the number of clusters.
Based on previous definitions, it would be ideal to have a high value of M and a low

value of T, and therefore a low value of the DB index. The lower values would then indicate
a model with better separation between clusters. The index has a minimum of zero.

In addition, there are some other examples such as the Dunn index [37] and Calisnki–
Harabasz index [38] with similar structures. Clearly, a problem arises in cases that do not
have convex clusters, including cases with elongated or arbitrary-shaped clusters, as these
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clusters will not achieve good scores regarding these metrics. Furthermore, most of these
metrics do not account for any possible unclustered data points (outliers) that might have
been found using some of the clustering methods. Hence, a need for an internal clustering
evaluation metric with different features is evident.

3.4.5. Density-Based Clustering Validation (DBCV) Index

There have been some recent studies that have proposed new metrics that work with
other features of the clusters, such as density, and thus could be more suitable to assess the
performance of density-based clustering methods. The most well-developed metric is the
Density-Based Clustering Validation (DBCV) index [39]. Similar to objectives of density-
based clustering methods, this internal metric considers the relative density connections
between pairs of objects. The all-points-core-distance, which is the inverse of the density
of each object with respect to all other objects inside its cluster, is calculated using the
following formula:

aptscoredist(l) =
(∑nk

k=2(
1

KNN(l,k) )
d

nk − 1

)− 1
d

(21)

This value is calculated for each point. KNN(l, k) is the distance between object l and
its kth nearest neighbors, in this case all other objects in its cluster, and therefore 1/KNN
could be interpreted as a density measurement. Then, for all pairs of l and t objects in the
cluster, the Mutual Reachability Distance (MRD) is found as

dmreach(l, t) = max{aptscoredist(l), aptscoredist(t), d(l, t)} (22)

Based on this calculation, dense points (with low core distance) remain with the
same distance, and sparser points are moved further away to be at least one core distance
away form each other. Then, a Mutual Reachability Distance Graph is created, which is a
complete graph with objects in the data set as vertices and the MRD between pairs as the
weight of each edge. From the graph, a Minimum Spanning Tree (MST) is built to decide
where and how clusters should be defined. The tree is built one edge at a time, starting and
moving forward with the lowest weight edges that connect the tree to a disconnected vertex,
such that in the end, there is no disconnection of components. This process is repeated for
all clusters.

Two features are defined here: the density sparseness of a cluster, DSC, defined as the
maximum edge of its corresponding MST, and the density separation of a pair of clusters,
DSPC, defined as the minimum MRD (dmreach) between objects of a cluster and objects
from the other clusters. Both can be interpreted as density-equivalents of cohesion and
separation, as mentioned previously. Then, the Validity Index of a cluster is calculated as
follows:

VC(Ci) =
min1≤j≤r,j 6=i

(
DSPC(Ci, Cj)

)
− DSC(Ci)

max
(

min1≤j≤r,j 6=i
(

DSPC(Ci, Cj), DSC(Ci)
)) (23)

and the DBCV index is found using the weighted average of the Validity Index of all
clusters:

DBCV =
i=k

∑
i=1

|Ci|
N

VC(Ci) (24)

where |Ci| is the size of a cluster and N is the total number of objects under evaluation. This
score is bounded between −1 and +1, where negative values are cases when the density
inside a cluster is lower than the between-cluster density and greater values indicate better
solutions.

3.5. Data Sets

Three different data sets with distinct features were tested using the approach pre-
sented in this paper.
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• Wine data set
The first data set is the well-known and broadly used “Wine data set”, containing the
results of the chemical analysis of wines grown in a specific area of Italy, available on
the UCI repository [40]. The data set contains three different wine types represented
by overall 178 samples, with 13 variables recorded for each sample. Based on the data
set, it is desirable to detect three individual groups after performing clustering; i.e.,
when using clustering methods that do not perform outlier detection, the expected
number of clusters is three.

• Synthetic data set
The idea explored in the second data set is the evaluation of the performance of this
approach on 2D data sets. The data set is synthetic and created using the make_blobs
function of the scikit-learn package [41]. It contains five clusters, each with a 0.6 stan-
dard deviation, and is in 2D as mentioned. There would be no dimension reduction in
this case, but the DR techniques are used still to produce different projections of the
data. In this case, using the clustering methods that do not detect outliers, the expected
number of clusters would be five.

• Fault detection in the Tennessee Eastman Process
The third data set was generated using the revised Tennessee Eastman Process (TEP)
simulator in MATLAB [42]. TEP is a benchmark chemical plant consisting of five major
units (a reactor, a product condenser, a recycle compressor, a vapor–liquid separator
and a product stripper) and eight chemical components. Data sets generated using
this simulator have been the benchmark for testing many fault detection methods in
process systems engineering. The original simulation has 41 measured variables and
12 manipulated variables as well as 20 predefined faults of different types that can
be introduced to the system. For this data set, three different faults of varying types
were selected: Fault 2 is a step change in a component composition, Fault 13 is a slow
drift in the reaction kinetics, and Fault 14 represents the sticking of the reactor cooling
water valve. Each of these faults were separately active for a constant 20 min and
then turned off immediately before the next period started. The data set also contains
20 min of normal operation (without any faults).
As mentioned in [43], for this data set, in the visualization of the 2D data, it was
observed that data points of Fault 14 were close to those of the normal state or even
were indistinguishable in most of the cases, which makes it difficult for the clustering
methods to detect two different states. During the mapping from high dimensions to
low dimensions, these two states are considered to have similar features; hence, they
are overlapping in the lower dimensions. Therefore, if it can be deemed acceptable
for the clustering methods to consider Fault 14 and the normal state as one cluster
because of the DR performance, then the expected number of clusters can be considered
as 3. Furthermore, as demonstrated later, the average number of points per cluster
in this data set is higher compared to previous data sets and is much higher than
the possible outliers, because of the simulation runs. In other words, there are not
many outliers present in the data, and the expected number of clusters would be 3 for
any method.
One important feature of this data set is the presence of an elongated cluster belonging
to Fault 13, which is a slow drift in the reaction kinetics. As mentioned previously,
methods such as the ones in the centroid-based category do not perform well when
encountered with elongated clusters. Hence, methods such as DBSCAN or HDBSCAN
would be expected to perform better for data sets with elongated clusters, such as
this one.

3.6. Proposed Method

To start with, after normalization of the data, multiple lower-dimensional forms of
the data set are created using different DR techniques, while also keeping the original
high-dimensional version. Then, for each clustering method discussed above, a cluster-
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ing analysis is performed over the search space of its hyperparameters. This is followed
by Pareto optimization to choose the best set of solutions while optimizing the internal
metrics, hence selecting the best number of clusters without any prior knowledge. Due
to the varying nature (and goals) of clustering methods, it is not meaningful to compare
the final results, since methods have different capabilities in terms of outlier and cluster
shape detection; some methods detect outliers while others are unable to detect them, and
some methods cannot work with elongated clusters while others are more compatible
with different shapes of clusters. Therefore, one universal element that can be compared
over all clustering results is the final number of clusters found. Hence, that is the fo-
cus of the comparative study. Figure 2 presents a roadmap of the steps included in the
current approach.

Figure 2. A step-wise summary of the proposed method.

The process of transforming the dimensions is not studied here. It is assumed that
the dimension reduction with suitable parameters is feasible, and the parameter selection
for DR (if needed) is performed based on available studies or other heuristics. All the
dimension reduction techniques have been used to obtain 2D data sets. All five mentioned
DR techniques have been applied paired with each clustering, so for each data set, there are
six versions available in total. More DR techniques can be used, and this number has been
selected as a minimum. In addition, all four categories of previously mentioned clustering
(seven methods in total) were utilized for a more thorough study.

As mentioned, in order to emphasize the unsupervised nature of this study, only
internal metrics are considered for optimization, and the calculation of any external metrics
is solely for the purpose of result comparison. These internal metrics are the Silhouette
coefficient, DB and DBCV indices. The first two are to be maximized, but for the latter
metric, lower values indicate better performance. Moreover, the DB index, in the context
of this study, is in the order of 1000, while other indices are between 0–1. Therefore, the
reciprocal of the DB index is maximized in the optimization process to uniformly maximize
all the metrics in the same range.

After Pareto optimization, the number of presented solutions varies among different
clustering methods and different dimension-reduced data sets. In some cases, the number
of Pareto solutions is very high, and sometimes only a handful of solutions are acceptable.
Hence, in order to balance the number of presented solutions in each case and remove
the solutions with the poorest performance, a filter is placed after the optimization step.
This filter removes the solutions that have any internal score with an absolute value lower
than 0.01. Since the closeness of the calculated scores to zero is an indicator of their poor
performance, this value has been selected as a heuristic threshold to eliminate possible
substandard solutions.

4. Results

In this section, the results of the study are presented in individual graphs. For each data
set, the results are grouped based on the category of clustering methods (distance-based,
centroid-based, distribution-based and density-based), resulting in four subplots. Each
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plot demonstrates the fraction of Pareto solutions representing different number of clusters.
The plots contain the performance of each DR technique and the overall performance,
considering all the Pareto front solutions found for the data set. In the end of each part, an
example of the actual clustering with the calculated AMI and V-measure is presented. The
final part of this section is dedicated to key findings and a discussion of the results.

4.1. Wine Data Set

As an example of the optimization outcome, a three-dimensional space is presented
in Figure 3, which summarizes the solution set for the PCA-reduced wine data set, with
metrics calculated using DBSCAN clustering. The figure shows all the solutions obtained
for optimizing the three metrics: i.e., Silhouette coefficient, DB index and DBCV index.
The solid dots are the dominated solutions, and the points marked with x are the non-
dominated solutions (Pareto front). The threshold regions to remove the solutions with
poor performance resulted in removing the points marked in red. As demonstrated, in
this case, three non-dominated solutions were removed, and the rest of the Pareto front is
considered in the cluster number detection to calculate the fraction of solutions suggesting
each number of clusters.

Figure 3. A three-dimensional representation of the optimization space.

Different high-dimensional and low-dimensional versions of the data set suggest
different numbers of clusters as their most repeated solution, while it should be kept
in mind that each version presented a different number of Pareto front solutions. For
example, as shown in Figure 4, for the distance-based category, all solutions found after
ISOMAP dimension reduction suggested that there are two clusters present, and t-SNE
results indicated that there are equal possibilities for the presence of three clusters and
four clusters. Therefore, considering all the solutions overall leaves out the effects of
each individual DR technique and helps us to examine the features of the data set that
persisted throughout all the high-dimensional and low-dimensional versions, i.e., the
number of clusters.

Figure 4 indicates that, considering distance-based clustering methods, which include
agglomerative hierarchical clustering, 0.53 of the solutions suggest that there are three
clusters in the data set. For the centroid-based clustering, i.e., considering both k-means and
k-medoids, this number is 0.44, and for the distribution-based category including GMM,
this fraction is 0.46. Density-based methods, DBSCAN, OPTICS and HDBSCAN considered
all together suggest four clusters in 0.60 of their solutions. It can be seen that first three
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categories of clustering methods detected 3 clusters, the expected number of clusters, and
the last category detected four clusters. It should be noted that the methods in the final
category are able to isolate outliers, hence ending up with expected number of clusters+1.
Although no outliers were reported explicitly in this particular data set, some points were
not assigned to any of the clusters, suggesting this possibility.

Figure 4. Fraction of solutions representing found number of clusters in the wine data set for each
DR technique.

The selection of a solution from the Pareto set is called post-Pareto optimality anal-
ysis [44], which is not pursued in this work, but to observe an example of the clustering
performance itself, one such solution is displayed in Figure 5. The data set is converted to
two dimensions using ISOMAP, and clustering is performed using GMM. Different colors
represent the clusters found by the method, and the true labels are marked with different
shapes. The AMI obtained by this solution is 0.833 and the V-measure is 0.835, indicating a
satisfactory outcome.
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Figure 5. GMM clustering of the wine data set with Isomap dimension reduction.

4.2. Synthetic Data Set

For this data set, Figure 6 shows how each clustering method performed in the
determination of the number of clusters. The distance-based category suggests five clusters
with 0.50 of the solutions, the centroid based suggests five clusters with 0.46 of the solutions,
and distribution-based category indicates five clusters with 0.38 of the solutions. In all
these cases, the cluster number with the highest fraction of the solutions does not have the
majority (more than half), but it is the most-repeated outcome compared to others. On the
other hand, the density-based category suggests six clusters with 0.76 of the solutions. The
first three categories correctly detect five clusters in the data set, the same as the expected
number of clusters. For the last category (three methods), the proposed approach suggests
that there are six clusters in total, including the cluster of outliers. Again, the final results
are consistent with the expected number of clusters + 1. In the first three plots, there are no
solutions with more than five clusters, meaning that no non-dominated solutions detected
more than five clusters.

An example of clustering performance for this data set is demonstrated in Figure 7.
The DR technique is MDS, and clustering is performed using DBSCAN. The five obtained
clusters are in different colors, with the outliers in gray. The true labels are marked with
different shapes, and the AMI for this clustering result is 0.835 and the V-measure is 0.835.
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Figure 6. Fraction of solutions representing the found number of clusters in the synthetic data set for
each DR technique.

Figure 7. DBSCAN clustering of the synthetic data set with MDS dimension reduction.
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4.3. TEP Data Set

For the final data set, it can be seen in Figure 8 that the distance-based category
suggests the presence of three clusters or nine clusters, each with a 0.16 probability, the
centroid-based suggests eight clusters with 0.16 probability, and the distribution-based
category suggests eight clusters with 0.16 and three clusters with 0.15 probability. In the
last category—density-based—the final number is presented with a higher confidence
compared to other categories, which is three clusters with 0.37 of all solutions.

Based on what was noted for the expected number of clusters for this data set, the
density-based category performed well. The final results indicate three clusters, which is
equal to the expected number of clusters. Another category that suggested the presence of
three clusters in the data set, but with a much lower confidence, was the distance-based
category. This is in agreement with the results of [43] demonstrating that this category
had the second-best performance in state isolation. From one of the solutions, the clusters
found using hierarchical clustering on the t-SNE reduced data are presented in Figure 9,
with an AMI of 0.766 and V-measure of 0.767. As it can be seen in this figure, the normal
state and Fault 14 are combined in one cluster in yellow.

Figure 8. Fraction of solutions representing found number of clusters in the TEP data set for each DR
technique.
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Figure 9. Hierarchical clustering of the TEP data set with t-SNE dimension reduction.

4.4. Discussion of Results

Overall, this method demonstrates an outstanding performance in the determination
of the number of clusters present in a data set. Key observations and further discussion of
the results are provided below:

• Using any method that is not from the density-based category, the expected number
of clusters is obtained. In cases where the density-based category detects one cluster
more than the other categories, the final number can be interpreted as expected number
of clusters + 1.

• In cases where different categories present inconsistent results, there is a possibility
that an elongated cluster is present. In this case, further examination of the original
data set and its lower-dimensional versions is needed to choose the final number
of clusters.

• With all the attempts emphasizing carrying out all the steps in an unsupervised
manner, in the end, the selection of the final number depends on a level of familiarity
with the data set and/or the method as mentioned. A basic knowledge is required
to decide whether the final number is with or without the outliers depending on the
method and whether any number of clusters have overlapped during the DR or not.
It should be noted that the required level of information can be easily obtained by
the visualization of the dimensionally-reduced versions of the data set, since these
features can be pointed out in the comparison of the different versions.

• Despite the advantages of overall consideration of solutions in finding the number
of clusters in a data set, it can be interesting and beneficial to look at the individual
performances of DR techniques in detecting the clusters. As seen in Figure 4, for
all categories of clusterings, MDS, t-SNE and UMAP were the DR techniques that
suggested the expected number of clusters, either with the highest probability or one of
highest probabilities. For the synthetic data set in Figure 6, it is demonstrated that
t-SNE and UMAP lead to the same results as the overall performance in three out
of four clustering categories, with the exception of the density-based category. The
performance of PCA and MDS is consistent with the overall performance in another
three out of four clustering categories, with the exception being the distribution-based
methods. For the case with an elongated cluster, by looking at the density-based
category in Figure 8, PCA, MDS and UMAP suggest the same number of clusters
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as the overall performance. In conclusion, UMAP can deliver satisfactory results in
almost every case. In the quantitative survey on DR techniques by [5], UMAP was
also suggested as one of the techniques yielding the best quality of projection based
on their considered quality metrics.

• Considering the no DR solutions obtained for each clustering category, there is no
specific pattern of behavior in the results of the wine data set and TEP data set, and
the clustering of the original data set was only able to detect the number of clusters in
at most two categories, still not with a high probability compared to other numbers.
However, the clustering of the original data set for the synthetic data led to the same
result in terms of the overall performance. This can be explained by the dimensionality
of the data at hand. The synthetic data set was two-dimensional, while the other data
sets were high-dimensional, and in the latter, clustering methods utilizing traditional
distance measures, such as Euclidean, may be ineffective in detecting the clusters,
since such distance measures may be dominated by noise in many dimensions [45].

4.5. Observations

One of the key assumptions of the present work is the existence of true/ideal cluster
labels. While for most real-life motivated examples, this can be true, they would often
be unknown to the analysts. Therefore, the parametrization of classification algorithms
should be directed towards the capture of underlying features of the dataset. In most
cases, however, the driving mechanism of the cluster formulation is opaque; the clusters
can be revealed by the assumption of centrality, density, connectivity, etc. The associated
evaluation metrics are of similar diversity. As a result, the parametrization methodology
proposed in this work aims to incorporate as many of these assumptions as possible
to create a more agnostic conceptualization. Interestingly, one can clearly observe that
two different clustering solutions yield similarly good or even outstanding metrics, yet
neither may describe the true/ideal structure of the dataset. This is an inherent problem of
unsupervised learning algorithms, where the global optimality is often hard to locate if not
impossible to be proved. The multi-objective formulation helps to address this shortcoming,
at least in principle.

Another issue is the potential existence of conflicting performance metrics as the
general assumption of the definition of Pareto fronts. However, the different dimension
reduction, clustering and performance measurement techniques are generally not in conflict
with each other in terms of their performance metrics. Nevertheless, these solutions still
constitute the best available in the addressed search space, and therefore the associated
parameter sets are the best available for the analyst.

A third issue is that the traditional clustering algorithms do not aim to directly optimize
the proposed performance metrics. Therefore, we should be able to directly define new
clustering algorithms explicitly aiming for the optimization of these performance metrics.
Our aim, however, was not the formalization of new clustering algorithms but to support
the parametrization of existing, well-known approaches.

Finally, we note that global optimality is challenging to mathematically formulate,
especially in domains where often a high proportion of domain knowledge is required
by experts during the analysis of the results. While there is clearly room for future devel-
opments in this field, the proposed methodology provides a an acceptable, practical and
insightful solution to the problem.

5. Conclusions

In exploring and extracting information from high-dimensional data sets, clustering
plays an important role. Most of the clustering methods need some information about
internal features of the data set, if not the actual number of clusters. In order to utilize
clustering as an unsupervised data analysis tool, a method has been proposed in this study
to simultaneously optimize a number of internal cluster validation metrics to detect the
number of clusters present in the data. This process is also carried out on dimensionally
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reduced versions of the data set, since it is assumed that the most important features of
the data will be preserved after dimension reduction. This approach was carried out on
three data sets with distinct features. In all three cases, the approach was able to correctly
detect the expected number of clusters, and it is important to mention that the results were
achievable irrespective of the selection of the clustering method. Besides the determination
of the optimally applied cluster number parameter, our key observations underpinned
previous findings of the quantitative survey on DR techniques that UMAP can deliver
satisfactory results in almost every case. Moreover, according to our results, in the case
of high-dimensional data sets, clustering methods utilizing traditional distance measures,
such as Euclidean, may be ineffective in detecting the clusters, since such distance measures
may be dominated by noise in many dimensions. Overall, this method can be a useful
step to detect the number of clusters in a data set as it requires no or basic preliminary
examinations of features of the data.
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