Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

14 pages, 4813 KiB  
Article
Direct Observation of Molecular Orbitals Using Synchrotron X-ray Diffraction
by Shunsuke Kitou, Yuto Hosogi, Ryo Kitaura, Toshio Naito, Toshikazu Nakamura and Hiroshi Sawa
Crystals 2020, 10(11), 998; https://doi.org/10.3390/cryst10110998 - 03 Nov 2020
Cited by 8 | Viewed by 4341
Abstract
The physical properties of molecular crystals are governed by the frontier orbitals of molecules. A molecular orbital, which is formed by superposing the atomic orbitals of constituent elements, has complicated degrees of freedom in the crystal because of the influence of electron correlation [...] Read more.
The physical properties of molecular crystals are governed by the frontier orbitals of molecules. A molecular orbital, which is formed by superposing the atomic orbitals of constituent elements, has complicated degrees of freedom in the crystal because of the influence of electron correlation and crystal field. Therefore, in general, it is difficult to experimentally observe the whole picture of a frontier orbital. Here, we introduce a new method called “core differential Fourier synthesis” (CDFS) using synchrotron X-ray diffraction to observe the valence electron density in materials. By observing the valence electrons occupied in molecular orbitals, the orbital state can be directly determined in a real space. In this study, we applied the CDFS method to molecular materials such as diamond, C60 fullerene, (MV)I2, and (TMTTF)2X. Our results not only demonstrate the typical orbital states in some materials, but also provide a new method for studying intramolecular degrees of freedom. Full article
(This article belongs to the Special Issue Organic Conductors)
Show Figures

Graphical abstract

13 pages, 4524 KiB  
Article
5-Fluorocytosine/Isocytosine Monohydrate. The First Example of Isomorphic and Isostructural Co-Crystal of Pyrimidine Nucleobases
by Gustavo Portalone
Crystals 2020, 10(11), 999; https://doi.org/10.3390/cryst10110999 - 03 Nov 2020
Cited by 7 | Viewed by 2409
Abstract
To date, despite the crucial role played by cytosine, uracil, and thymine in the DNA/RNA replication process, no examples showing isomorphic and isostructural behavior among binary co-crystals of natural or modified pyrimidine nucleobases have been so far reported in the literature. In view [...] Read more.
To date, despite the crucial role played by cytosine, uracil, and thymine in the DNA/RNA replication process, no examples showing isomorphic and isostructural behavior among binary co-crystals of natural or modified pyrimidine nucleobases have been so far reported in the literature. In view of the relevance of biochemical and pharmaceutical compounds such as pyrimidine nucleobases and their 5-fluoroderivatives, co-crystals of the molecular complex formed by 5-fluorocytosine and isocytosine monohydrate, C4H4FN3O·C4H5N3O·H2O, have been synthesized by a reaction between 5-fluorocytosine and isocytosine. They represent the first example of isomorphic and isostructural binary co-crystals of pyrimidine nucleobases, as X-ray diffraction analysis shows structural similarities in the solid-state organization of molecules with that of the (1:1) 5-fluorocytosine/5-fluoroisocytosine monohydrate molecular complex, which differs solely in the H/F substitution at the C5 position of isocytosine. Molecules of 5-fluorocytosine and isocytosine are present in the crystal as 1H and 3H-ketoamino tautomers, respectively. They form almost coplanar WC base pairs through nucleobase-to-nucleobase DAA/ADD hydrogen bonding interactions, demonstrating that complementary binding enables the crystallization of specific tautomers. Additional peripheral hydrogen bonds involving all available H atom donor and acceptor sites of the water molecule give a three-dimensional polymeric structure. In the absence of H⋯F hydrogen-bonding interactions, the robustness of the supramolecular architectures based on three-point recognition synthons is responsible for the existence of isostructurality between the two molecular complexes. Full article
(This article belongs to the Special Issue Design, Synthesis, and Structures of Modified RNA/DNA Bases)
Show Figures

Figure 1

9 pages, 2233 KiB  
Article
Preparation of Cellulose Nanocrystal-Reinforced Physical Hydrogels for Actuator Application
by Jaehwan Kim, Tippabattini Jayaramudu, Lindong Zhai, Hyun Chan Kim and Dickens Owino Agumba
Crystals 2020, 10(11), 969; https://doi.org/10.3390/cryst10110969 - 26 Oct 2020
Cited by 13 | Viewed by 3413
Abstract
In the present investigation, we prepared cellulose nanocrystal (CNC)-reinforced polyvinyl alcohol-cellulose (PVA-Cell) physical hydrogels using a simple blending method for actuator application. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and the surface and cross-section were studied by scanning [...] Read more.
In the present investigation, we prepared cellulose nanocrystal (CNC)-reinforced polyvinyl alcohol-cellulose (PVA-Cell) physical hydrogels using a simple blending method for actuator application. The prepared hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and the surface and cross-section were studied by scanning electron microscopy. CNCs were well dispersed in the PVA-Cell hydrogel. In the preparation process, surface hydroxyl groups of the CNC and PVA-Cell matrix hydroxyl groups were interacted to produce uniform dispersion of CNCs in the hydrogels. Swelling behavior and compression studies revealed that the increase of the CNCs reinforced the crosslinking. The actuation test of the prepared hydrogels showed that the displacement linearly increased with the voltage, and the immense output displacement was observed at low CNC concentration. The prepared hydrogels are applicable for soft robot actuators and active lens. Full article
(This article belongs to the Special Issue New Composite Hydrogels)
Show Figures

Graphical abstract

15 pages, 5080 KiB  
Article
Formation Process of Columnar Grown (101)-Oriented Silicalite-1 Membrane and Its Separation Property for Xylene Isomer
by Motomu Sakai, Takuya Kaneko, Yukichi Sasaki, Miyuki Sekigawa and Masahiko Matsukata
Crystals 2020, 10(10), 949; https://doi.org/10.3390/cryst10100949 - 17 Oct 2020
Cited by 10 | Viewed by 2824
Abstract
Silicalite-1 membrane was prepared on an outer surface of a tubular α-alumina support by a secondary growth method. Changes of defect amount and crystallinity during secondary growth were carefully observed. The defect-less well-crystallized silicalite-1 membrane was obtained after 7-days crystallization at 373 K. [...] Read more.
Silicalite-1 membrane was prepared on an outer surface of a tubular α-alumina support by a secondary growth method. Changes of defect amount and crystallinity during secondary growth were carefully observed. The defect-less well-crystallized silicalite-1 membrane was obtained after 7-days crystallization at 373 K. The silicalite-1 membrane became (h0l)-orientation with increasing membrane thickness, possibly because the orientation was attributable to “evolutionally selection”. The (h0l)-oriented silicalite-1 membrane showed high p-xylene separation performance for a xylene isomer mixture (o-/m-/p-xylene = 0.4/0.4/0.4 kPa). The p-xylene permeance through the membrane was 6.52 × 10−8 mol m−2 s−1 Pa−1 with separation factors αp/o, αp/m of more than 100 at 373 K. As a result of microscopic analysis, it was suggested that a very thin part in the vicinity of surface played as effective separation layer and could contribute to high permeation performance. Full article
(This article belongs to the Special Issue Zeolites)
Show Figures

Graphical abstract

10 pages, 1880 KiB  
Article
Structural Variations in Manganese Halide Chain Compounds Mediated by Methylimidazolium Isomers
by Ceng Han, David B. Cordes, Alexandra M. Z. Slawin and Philip Lightfoot
Crystals 2020, 10(10), 930; https://doi.org/10.3390/cryst10100930 - 13 Oct 2020
Cited by 8 | Viewed by 2839
Abstract
The structures of two new hybrid organic–inorganic manganese halide compounds [1MiH]MnCl3(H2O) and [4MiH]MnCl3(H2O) ([1MiH] = 1-methylimidazolium, [4MiH] = 4-methylimidazolium) have been determined by single crystal X-ray diffraction. Both are composed of one dimensional [MnCl3 [...] Read more.
The structures of two new hybrid organic–inorganic manganese halide compounds [1MiH]MnCl3(H2O) and [4MiH]MnCl3(H2O) ([1MiH] = 1-methylimidazolium, [4MiH] = 4-methylimidazolium) have been determined by single crystal X-ray diffraction. Both are composed of one dimensional [MnCl3(H2O)]n edge-sharing octahedral chains. The structures are compared to the previously reported isomeric analogue [2MiH]MnCl3(H2O) ([2MiH] = 2-methylimidazolium), and three closely related compounds. The variations in packing of the inorganic chains are shown to be influenced by hydrogen bonding abilities of the imidazolium or related moieties. Both new compounds show intense red luminescence at ambient temperature under UV irradiation. Full article
(This article belongs to the Special Issue Coordination Polymers: Structure, Bonding and Applications)
Show Figures

Figure 1

12 pages, 1302 KiB  
Article
Influence of Alumina Air-Abrasion on Flexural and Shear Bond Strengths of CAD/CAM Composite
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
Crystals 2020, 10(10), 927; https://doi.org/10.3390/cryst10100927 - 12 Oct 2020
Viewed by 2123
Abstract
The purpose of this study was to clarify the influence of alumina air-abrasion on flexural and bond strengths of CAD/CAM composites. The flexural strength (FS) of two brands of commercial CAD/CAM composites was investigated by the three-point bending test using two specimen designs: [...] Read more.
The purpose of this study was to clarify the influence of alumina air-abrasion on flexural and bond strengths of CAD/CAM composites. The flexural strength (FS) of two brands of commercial CAD/CAM composites was investigated by the three-point bending test using two specimen designs: the single-bar according to the ISO standard and the bonded-double-bar fabricated by bonding two bars with a resin cement. The bond strength between the composites and the resin cement was measured by a conventional shear bond strength (SBS) test. The FS of single-bar specimens was significantly decreased by the air-abrasion. For the FS of the bonded-double-bar specimen, on the other hand, there was no significant difference between the specimens with/without air-abrasion. The SBS for the composites was significantly increased by air-abrasion. The results suggest that alumina air-abrasion improves the SBS of the composites while weakening its FS. Contrarily, the FS of the air-abraded composite did not decrease when the composites were bonded with the resin cement. Full article
(This article belongs to the Special Issue Resin Ceramics Composite)
Show Figures

Figure 1

17 pages, 3418 KiB  
Article
Effect of Process Conditions on Particle Size and Shape in Continuous Antisolvent Crystallisation of Lovastatin
by John McGinty, Magdalene W. S. Chong, Andrew Manson, Cameron J. Brown, Alison Nordon and Jan Sefcik
Crystals 2020, 10(10), 925; https://doi.org/10.3390/cryst10100925 - 12 Oct 2020
Cited by 27 | Viewed by 4882
Abstract
Lovastatin crystals often exhibit an undesirable needle-like morphology. Several studies have shown how a needle-like morphology can be modified in antisolvent crystallisation with the use of additives, but there is much less experimental work demonstrating crystal shape modification without the use of additives. [...] Read more.
Lovastatin crystals often exhibit an undesirable needle-like morphology. Several studies have shown how a needle-like morphology can be modified in antisolvent crystallisation with the use of additives, but there is much less experimental work demonstrating crystal shape modification without the use of additives. In this study, a series of unseeded continuous antisolvent crystallisation experiments were conducted with the process conditions of supersaturation, total flow rate, and ultrasound level being varied to determine their effects on crystal size and shape. This experimental work involved identifying acetone/water as the most suitable solvent/antisolvent system, assessing lovastatin nucleation behaviour by means of induction time measurements, and then designing and implementing the continuous antisolvent crystallisation experiments. It was found that in order to produce the smallest and least needle-like particles, the maximum total flow rate and supersaturation had to be combined with the application of ultrasound. These results should aid development of pharmaceutical manufacturing processes where the ability to control particle size and shape would allow for optimisation of crystal isolation and more efficient downstream processing. Full article
(This article belongs to the Special Issue Crystallization Processes: Food and Pharmaceutical Crystals)
Show Figures

Graphical abstract

15 pages, 2950 KiB  
Article
Crystallization of ApoA1 and ApoE4 Nanolipoprotein Particles and Initial XFEL-Based Structural Studies
by Megan L. Shelby, Deepshika Gilbile, Thomas D. Grant, William J. Bauer, Brent Segelke, Wei He, Angela C. Evans, Natalia Crespo, Pontus Fischer, Tim Pakendorf, Vincent Hennicke, Mark S. Hunter, Alex Batyuk, Miriam Barthelmess, Alke Meents, Tonya L. Kuhl, Matthias Frank and Matthew A. Coleman
Crystals 2020, 10(10), 886; https://doi.org/10.3390/cryst10100886 - 01 Oct 2020
Cited by 6 | Viewed by 3905
Abstract
Nanolipoprotein particles (NLPs), also called “nanodiscs”, are discoidal particles with a patch of lipid bilayer corralled by apolipoproteins. NLPs have long been of interest due to both their utility as membrane-model systems into which membrane proteins can be inserted and solubilized and their [...] Read more.
Nanolipoprotein particles (NLPs), also called “nanodiscs”, are discoidal particles with a patch of lipid bilayer corralled by apolipoproteins. NLPs have long been of interest due to both their utility as membrane-model systems into which membrane proteins can be inserted and solubilized and their physiological role in lipid and cholesterol transport via high-density lipoprotein (HDL) and low-density lipoprotein (LDL) maturation, which are important for human health. Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a powerful approach for structural biology of membrane proteins, which are traditionally difficult to crystallize as large single crystals capable of producing high-quality diffraction suitable for structure determination. To facilitate understanding of the specific role of two apolipoprotein/lipid complexes, ApoA1 and ApoE4, in lipid binding and HDL/LDL particle maturation dynamics, and to develop new SFX methods involving NLP membrane protein encapsulation, we have prepared and crystallized homogeneous populations of ApoA1 and ApoE4 NLPs. Crystallization of empty NLPs yields semi-ordered objects that appear crystalline and give highly anisotropic and diffuse X-ray diffraction, similar to fiber diffraction. Several unit cell parameters were approximately determined for both NLPs from these measurements. Thus, low-background, sample conservative methods of delivery are critical. Here we implemented a fixed target sample delivery scheme utilizing the Roadrunner fast-scanning system and ultra-thin polymer/graphene support films, providing a low-volume, low-background approach to membrane protein SFX. This study represents initial steps in obtaining structural information for ApoA1 and ApoE4 NLPs and developing this system as a supporting scaffold for future structural studies of membrane proteins crystalized in a native lipid environment. Full article
(This article belongs to the Special Issue Macromolecular Serial Crystallography (Volume II))
Show Figures

Figure 1

17 pages, 1373 KiB  
Article
Electric Transport of Nodal Line Semimetals in Single-Component Molecular Conductors
by Yoshikazu Suzumura, Reizo Kato and Masao Ogata
Crystals 2020, 10(10), 862; https://doi.org/10.3390/cryst10100862 - 24 Sep 2020
Cited by 4 | Viewed by 2271
Abstract
We examine an effect of acoustic phonon scattering on the electric conductivity of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) with a half-filled band by applying the previous calculation in a two-dimensional model with Dirac cone [Phys. Rev. B. 98, [...] Read more.
We examine an effect of acoustic phonon scattering on the electric conductivity of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) with a half-filled band by applying the previous calculation in a two-dimensional model with Dirac cone [Phys. Rev. B. 98, 161205 (2018)], wherethe electric transport by the impurity scattering exhibits a noticeable interplay of the Dirac cone and the phonon scattering, resulting in maximum of the conductivity with increasing temperature. The conductor shows a nodal line semimetal, where the band crossing of HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) provides a loop of Dirac points located close to the Fermi energy followed by the density of states (DOS) similar to that of a two-dimensional Dirac cone. Using a tight-binding (TB) model [arXiv:2008.09277], which was obtained using the crystal structure observed from a recent X ray diffraction experiment under pressure, it is shown that the obtained conductivity explains reasonably the anomalous behavior in [Pd(dddt)2] exhibiting temperature-independent resistivity at finite temperatures. This paper demonstrates a crucial role of the acoustic phonon scattering at finite temperatures in the electric conductivity of Dirac electrons. The present theoretical results of conductivity are compared with those of the experiments. Full article
(This article belongs to the Special Issue Organic Conductors)
Show Figures

Figure 1

7 pages, 2374 KiB  
Article
Shear Induced TiO2 Nano Structure Using Brush-Coating for Liquid Crystal Alignment
by Jong In Jang and Hae-Chang Jeong
Crystals 2020, 10(10), 860; https://doi.org/10.3390/cryst10100860 - 24 Sep 2020
Cited by 4 | Viewed by 2609
Abstract
We have developed a very useful and cost-effective liquid crystal (LC) alignment layer of brush-coated TiO2 that is solution-processable for twisted nematic (TN) LC cells. TiO2 was prepared via the sol-gel method. The TiO2 solution was brush-coated on the substrate, [...] Read more.
We have developed a very useful and cost-effective liquid crystal (LC) alignment layer of brush-coated TiO2 that is solution-processable for twisted nematic (TN) LC cells. TiO2 was prepared via the sol-gel method. The TiO2 solution was brush-coated on the substrate, followed by an annealing process. During the brush-coating process, a retracting force is generated on the deposited TiO solutions along the coating direction. The annealing process hardens the TiO2 and generates shearing stress arising from the retracting force along the brush-coating direction. The shearing stress created highly oriented nano/microstructure and uniformly aligned LCs with a stable pretilt angle of 0.6°. TN mode LC cells based on brush-coated TiO2 exhibited a performance of 12.5 ms of response and a threshold voltage of 1.8 V. Our brush-coated TiO2 incorporates two steps of the film deposition and alignment process into one step. Full article
Show Figures

Graphical abstract

24 pages, 5443 KiB  
Article
Anatomical Variation of Human Bone Bioapatite Crystallography
by Brittany Foley, Martina Greiner, George McGlynn and Wolfgang W. Schmahl
Crystals 2020, 10(10), 859; https://doi.org/10.3390/cryst10100859 - 24 Sep 2020
Cited by 9 | Viewed by 3814
Abstract
This systematic investigation of bioapatite, the mineral component of human bone, aims to characterize its crystallographic state, including lattice parameters and average crystallite size, and correlate these values with respect to anatomical position (bone function), physicality, and bone chemical composition. In sample sets [...] Read more.
This systematic investigation of bioapatite, the mineral component of human bone, aims to characterize its crystallographic state, including lattice parameters and average crystallite size, and correlate these values with respect to anatomical position (bone function), physicality, and bone chemical composition. In sample sets of buried bone from three different human adult skeletons, anatomical variation of crystallographic parameters and correlation to chemical composition were indeed observed. In general, the observed bioapatite a unit-cell edge-length among all analyzed human bones in this study was larger by 0.1–0.2% compared to that of stoichiometric hydroxylapatite (HAp), and substantially larger than that of fluorapatite (FAp). Across all analyzed samples, the a (=b) lattice parameter (unit cell edge-length) varies more than does the c lattice parameter. Average crystallite size (average coherent diffracting domain size) in the c-direction was equal to approximately 25 nm, ranging among the analyzed 18 bone samples from about 20–32 nm, and varying more than crystallite size in the a,b-direction (~8–10 nm). Neither lattice parameters nor average bioapatite crystallite sizes appeared to be correlated with bone mechanical function. The relative chemical composition of the bone material, however, was shown to correlate with the a (=b) lattice parameter. To our knowledge, this research provides, for the first time, the systematic study of the crystallographic parameters of human bone bioapatite in the context of anatomical position, physical constitution, and bone chemical composition using X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR). Full article
(This article belongs to the Special Issue Biominerals: Formation, Function, Properties)
Show Figures

Figure 1

16 pages, 3409 KiB  
Article
Depth Profile Analysis of Deep Level Defects in 4H-SiC Introduced by Radiation
by Tomislav Brodar, Luka Bakrač, Ivana Capan, Takeshi Ohshima, Luka Snoj, Vladimir Radulović and Željko Pastuović
Crystals 2020, 10(9), 845; https://doi.org/10.3390/cryst10090845 - 22 Sep 2020
Cited by 9 | Viewed by 4797
Abstract
Deep level defects created by implantation of light-helium and medium heavy carbon ions in the single ion regime and neutron irradiation in n-type 4H-SiC are characterized by the DLTS technique. Two deep levels with energies 0.4 eV (EH1) and 0.7 eV (EH3) below [...] Read more.
Deep level defects created by implantation of light-helium and medium heavy carbon ions in the single ion regime and neutron irradiation in n-type 4H-SiC are characterized by the DLTS technique. Two deep levels with energies 0.4 eV (EH1) and 0.7 eV (EH3) below the conduction band minimum are created in either ion implanted and neutron irradiated material beside carbon vacancies (Z1/2). In our study, we analyze components of EH1 and EH3 deep levels based on their concentration depth profiles, in addition to (−3/=) and (=/−) transition levels of silicon vacancy. A higher EH3 deep level concentration compared to the EH1 deep level concentration and a slight shift of the EH3 concentration depth profile to larger depths indicate that an additional deep level contributes to the DLTS signal of the EH3 deep level, most probably the defect complex involving interstitials. We report on the introduction of metastable M-center by light/medium heavy ion implantation and neutron irradiation, previously reported in cases of proton and electron irradiation. Contribution of M-center to the EH1 concentration profile is presented. Full article
(This article belongs to the Special Issue Crystalline Materials for Radiation Detection: A New Perspectives)
Show Figures

Figure 1

14 pages, 2945 KiB  
Article
Large Angle Forward Diffraction by Chiral Liquid Crystal Gratings with Inclined Helical Axis
by Migle Stebryte, Inge Nys, Yera Ye. Ussembayev, Jeroen Beeckman and Kristiaan Neyts
Crystals 2020, 10(9), 807; https://doi.org/10.3390/cryst10090807 - 12 Sep 2020
Cited by 18 | Viewed by 4539
Abstract
A layer of chiral liquid crystal (CLC) with a photonic bandgap in the visible range has excellent reflective properties. Recently, two director configurations have been proposed in the literature for CLC between two substrates with periodic photo-alignment: one with the director parallel to [...] Read more.
A layer of chiral liquid crystal (CLC) with a photonic bandgap in the visible range has excellent reflective properties. Recently, two director configurations have been proposed in the literature for CLC between two substrates with periodic photo-alignment: one with the director parallel to the substrates and one with the director in the bulk parallel to the tilted plane. The transmission experiments under large angles of incidence (AOI) presented in this work prove that, in the bulk, the director does not remain parallel with the substrates. Because of the inclined helical axis, the full reflection band can be observed at a smaller AOI than in planar CLC. For sufficiently large AOI, the reflection of diffracted light is prohibited by total internal reflection and efficient diffraction occurs in the forward direction. Full article
(This article belongs to the Special Issue Nematic Liquid Crystals)
Show Figures

Graphical abstract

15 pages, 2643 KiB  
Article
Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline
by Miao Liang, Zhijun Wang, Hai Wu, Li Yu, Bo Sun, Huan Zhou, Feng Yu, Qisheng Wang and Jianhua He
Crystals 2020, 10(9), 798; https://doi.org/10.3390/cryst10090798 - 09 Sep 2020
Cited by 3 | Viewed by 2463
Abstract
An efficient data collection method is important for microcrystals, because microcrystals are sensitive to radiation damage. Moreover, microcrystals are difficult to harvest and locate owing to refraction effects from the surface of the liquid drop or optically invisible, owing to their small size. [...] Read more.
An efficient data collection method is important for microcrystals, because microcrystals are sensitive to radiation damage. Moreover, microcrystals are difficult to harvest and locate owing to refraction effects from the surface of the liquid drop or optically invisible, owing to their small size. Collecting X-ray diffraction data directly from the crystallization devices to completely eliminate the crystal harvesting step is of particular interest. To address these needs, novel microplates combining crystal growth and data collection have been designed for efficient in situ data collection and fully tested at Shanghai Synchrotron Radiation Facility (SSRF) crystallography beamlines. The design of the novel microplates fully adapts the advantage of in situ technology. Thin Kapton membranes were selected to seal the microplate for crystal growth, the crystallization plates can support hanging drop and setting drop vapor diffusion crystallization experiments. Then, the microplate was fixed on a magnetic base and mounted on the goniometer head for in situ data collection. Automatic grid scanning was applied for crystal location with a Blu-Ice data collection system and then in situ data collection was performed. The microcrystals of lysozyme were selected as the testing samples for diffraction data collection using the novel microplates. The results show that this method can achieve comparable data quality to that of the traditional method using the nylon loop. In addition, our method can efficiently and diversely perform data acquisition experiments, and be especially suitable for solving structures of multiple crystals at room temperature or cryogenic temperature. Full article
(This article belongs to the Special Issue Advances in Industrial Crystallization)
Show Figures

Figure 1

13 pages, 3313 KiB  
Article
Optimal Control of SiC Crystal Growth in the RF-TSSG System Using Reinforcement Learning
by Lei Wang, Atsushi Sekimoto, Yuto Takehara, Yasunori Okano, Toru Ujihara and Sadik Dost
Crystals 2020, 10(9), 791; https://doi.org/10.3390/cryst10090791 - 07 Sep 2020
Cited by 8 | Viewed by 3105
Abstract
We have developed a reinforcement learning (RL) model to control the melt flow in the radio frequency (RF) top-seeded solution growth (TSSG) process for growing more uniform SiC crystals with a higher growth rate. In the study, the electromagnetic field (EM) strength is [...] Read more.
We have developed a reinforcement learning (RL) model to control the melt flow in the radio frequency (RF) top-seeded solution growth (TSSG) process for growing more uniform SiC crystals with a higher growth rate. In the study, the electromagnetic field (EM) strength is controlled by the RL model to weaken the influence of Marangoni convection. The RL model is trained through a two-dimensional (2D) numerical simulation of the TSSG process. As a result, the growth rate under the control of the RL model is improved significantly. The optimized RF-coil parameters based on the control strategy for the 2D melt flow are used in a three-dimensional (3D) numerical simulation for model validation, which predicts a higher and more uniform growth rate. It is shown that the present RL model can significantly reduce the development cost and offers a useful means of finding the optimal RF-coil parameters. Full article
(This article belongs to the Special Issue Crystal Growth from Liquid Phase)
Show Figures

Figure 1

12 pages, 3991 KiB  
Article
Efficient Broadband Truncated-Pyramid-Based Metamaterial Absorber in the Visible and Near-Infrared Regions
by Phuc Toan Dang, Tuan V. Vu, Jongyoon Kim, Jimin Park, Van-Chuc Nguyen, Dat D. Vo, Truong Khang Nguyen, Khai Q. Le and Ji-Hoon Lee
Crystals 2020, 10(9), 784; https://doi.org/10.3390/cryst10090784 - 03 Sep 2020
Cited by 22 | Viewed by 3666
Abstract
We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber [...] Read more.
We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber exhibits 98% absorption at normal incidence spanning a wideband range of 417–1091 nm, with >99% absorption within 822–1054 nm. The broadband absorption stability maintains 95% at large incident angles up to 40° for the transverse electric (TE)-mode and 20° for the transverse magnetic (TM)-mode. Furthermore, the polarization-insensitive broadband absorption is presented in this paper by analyzing absorption performance with various polarization angles. The proposed absorber can be applied for applications such as solar cells, infrared detection, and communication systems thanks to the convenient and compatible bandwidth for electronic THz sources. Full article
(This article belongs to the Special Issue Plasmonic Nanostructures)
Show Figures

Figure 1

21 pages, 10460 KiB  
Article
Determination of Mechanical Characteristics for Fiber-Reinforced Concrete with Straight and Hooked Fibers
by Zuzana Marcalikova, Radim Cajka, Vlastimil Bilek, David Bujdos and Oldrich Sucharda
Crystals 2020, 10(6), 545; https://doi.org/10.3390/cryst10060545 - 25 Jun 2020
Cited by 43 | Viewed by 6679
Abstract
Fiber-reinforced concrete has a wide application in practice, and many fields of research are devoted to it. In most cases, this is a specific problem, i.e., the determination of the mechanical properties or the test method. However, wider knowledge of the effect of [...] Read more.
Fiber-reinforced concrete has a wide application in practice, and many fields of research are devoted to it. In most cases, this is a specific problem, i.e., the determination of the mechanical properties or the test method. However, wider knowledge of the effect of fiber in concrete is unavailable or insufficient for selected test series that cannot be compared. This article deals with the processing of a comprehensive test study and the impact of two types of fibers on the quantitative and qualitative parameters of concrete. Testing was performed for fiber dosages of 0, 40, 75, and 110 kg/m3. The fibers were hooked and straight. The influence of the fibers on the mechanical properties in fiber-reinforced concrete was analyzed by functional dependence. The selected mechanical properties were compressive strength, splitting tensile strength, bending tensile strength, and fracture energy. The results also include the resulting load–displacement diagrams and summary recommendations for the structural use and design of fiber-reinforced concrete structures. The shear resistance of reinforced concrete beams with hooked fibers was also verified by tests. Full article
Show Figures

Figure 1

16 pages, 5365 KiB  
Article
Green Synthesis of ZnO Nanostructures Using Salvadora Persica Leaf Extract: Applications for Photocatalytic Degradation of Methylene Blue Dye
by Fahad A. Alharthi, Abdulaziz Ali Alghamdi, Asma A. Alothman, Zainab M. Almarhoon, Munairah F. Alsulaiman and Nabil Al-Zaqri
Crystals 2020, 10(6), 441; https://doi.org/10.3390/cryst10060441 - 30 May 2020
Cited by 35 | Viewed by 4408
Abstract
Various ZnO nanomaterials such as nanorods, nanoparticles, and nanosheets were synthesized using Salvadora persica leaf extract via the sol–gel method. The prepared nanomaterials possess a large number of nanocavities. The synthesized nanomaterials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible [...] Read more.
Various ZnO nanomaterials such as nanorods, nanoparticles, and nanosheets were synthesized using Salvadora persica leaf extract via the sol–gel method. The prepared nanomaterials possess a large number of nanocavities. The synthesized nanomaterials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible diffuse reflectance studies (UV-DRS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HT-TEM), and these nanomaterials were used to test photocatalytic applications for the degradation of highly hazardous methylene blue dye. The degradation efficiency was higher for materials with nanorods and nanosheets with nanocavities; this was due to the presence of the nanocavities, which made the catalyst more sensitive to light absorption. This method offers a green synthesis of different nanomaterials in bulk quantity at low cost. Full article
(This article belongs to the Special Issue Zinc Oxide Nanomaterials and Based Devices)
Show Figures

Figure 1

8 pages, 3611 KiB  
Article
Electromechanically Rotatable Cross-Shaped Mid-IR Metamaterial
by Jitong Zhong and Yu-Sheng Lin
Crystals 2020, 10(6), 431; https://doi.org/10.3390/cryst10060431 - 28 May 2020
Cited by 11 | Viewed by 2306
Abstract
We present an electromechanically rotatable infrared (IR) cross-shaped metamaterial (CSM) in the mid-IR wavelength range. The CSM configuration is composed of double gold layers with cross-shaped nanostructures. To investigate the fano-resonance within CSM nanostructures, the aspect ratios and length ratios of CSM are [...] Read more.
We present an electromechanically rotatable infrared (IR) cross-shaped metamaterial (CSM) in the mid-IR wavelength range. The CSM configuration is composed of double gold layers with cross-shaped nanostructures. To investigate the fano-resonance within CSM nanostructures, the aspect ratios and length ratios of CSM are compared and discussed. The electromagnetic responses exhibit the characteristics of large tuning range, tunable broad and narrow bandwidths. By properly tailoring the aspect ratio of CSM, the resonance can be tuned with bidirectional tuning in the range of 650 nm. CSM with different length ratios exhibit narrowband resonances around the wavelength of 4.6 μm and broadband resonances in the wavelength range of 5.0 μm to 6.5 μm. These characteristics of CSM with different aspect ratios and length ratios could be potentially used in IR narrowband and broadband filter. To further increase the flexibility of proposed electromechanically rotatable CSM, an actively tunable narrowband and broadband filter in the mid-IR wavelength range is performed. This study provides a unique approach to realizing an IR filter, with high flexibility. Full article
(This article belongs to the Special Issue Plasmonic Nanostructures)
Show Figures

Figure 1

11 pages, 3531 KiB  
Article
Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics
by Katja Waetzig, Christian Heubner and Mihails Kusnezoff
Crystals 2020, 10(5), 408; https://doi.org/10.3390/cryst10050408 - 20 May 2020
Cited by 34 | Viewed by 4989
Abstract
All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy [...] Read more.
All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy density. The solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) provides high Li-ion conductivity of about 10−3 S/cm and is considered a highly promising candidate for both the solid electrolyte-separator and the ionically conductive part of the all-solid state composite cathode, consisting of the cathode material, the solid electrolyte, and an electron conductor. Co-sintering of the composite cathode is a sophisticated challenge, because temperatures above 1000 °C are typically required to achieve the maximum ionic conductivity of LATP but provoke reactions with the cathode material, inhibiting proper electrochemical functioning in the ASSB. In the present study, the application of sintering aids with different melting points and their impact on the sinterability and the conductivity of LATP were investigated by means of optical dilatometry and impedance spectroscopy. The microstructure of the samples was analyzed by SEM. The results indicate that the sintering temperature can be reduced below 800 °C while maintaining high ionic conductivity of up to 3.6 × 10−4 S/cm. These insights can be considered a crucial step forward towards enable LATP-based composite cathodes for future ASSB. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 5430 KiB  
Article
Structural, Hirshfeld Surface Analysis, Morphological Approach, and Spectroscopic Study of New Hybrid Iodobismuthate Containing Tetranuclear 0D Cluster Bi4I16·4(C6H9N2) 2(H2O)
by Hela Ferjani
Crystals 2020, 10(5), 397; https://doi.org/10.3390/cryst10050397 - 15 May 2020
Cited by 21 | Viewed by 3289
Abstract
The Bi4I16·4(C6H9N2) 2(H2O) compound was synthesized by slow evaporation at room temperature. It exhibits a zero-dimensional (0D) tetrameric structure, comprising [Bi4I16]4− distorted octahedra, with strong I⋯I [...] Read more.
The Bi4I16·4(C6H9N2) 2(H2O) compound was synthesized by slow evaporation at room temperature. It exhibits a zero-dimensional (0D) tetrameric structure, comprising [Bi4I16]4− distorted octahedra, with strong I⋯I interactions among adjacent anionic clusters. We used Hirshfeld surface analysis to discuss the strength of hydrogen bonds and to quantify the inter-contacts (two-dimensional (2D) fingerprint plots). It revealed that the hydrogen bonding interactions H⋯I (56.3%), π–π stacking (11.7%), and I⋯I interactions (5.9%) play the major role in the stability of the crystal structure. The crystal morphology was simulated using Bravais–Friedel, Donnay–Harker (BFDH) and growth morphology (GM) methods. The experimental habit of the title compound was adequately reproduced by the two models. The calculated results show that the crystal morphology of the title compound in a vacuum is dominated by five facets: (020), (011), (110), (10−1), and (11−1). The (020) facet is the largest among all the facets calculated. Projection of the facet showed that there are a few polar groups on the (020) facet. In the 50–400 and 400–4000 cm−1 frequency regions, we measured the Raman and infrared spectra, respectively, of the title compound, and we assigned the observed vibration modes. Full article
Show Figures

Graphical abstract

24 pages, 7637 KiB  
Article
Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration
by Ahmed Fattah Abdulrahman, Sabah Mohammed Ahmed, Naser Mahmoud Ahmed and Munirah Abullah Almessiere
Crystals 2020, 10(5), 386; https://doi.org/10.3390/cryst10050386 - 09 May 2020
Cited by 37 | Viewed by 3722
Abstract
In this study, the effects of different precursor concentrations on the growth and characteristics properties of the zinc oxide (ZnO) nanorods (NRs) synthesized by using modified and conventional chemical bath deposition (CBD) methods were investigated. The morphologic, structural and optical properties of synthesized [...] Read more.
In this study, the effects of different precursor concentrations on the growth and characteristics properties of the zinc oxide (ZnO) nanorods (NRs) synthesized by using modified and conventional chemical bath deposition (CBD) methods were investigated. The morphologic, structural and optical properties of synthesized ZnO NRs with different precursor concentrations were studied using various characterization techniques. The experimental results show that the varying precursor concentration of the reactants has a remarkable and significant effect on the growth and characteristics properties of ZnO NRs. In addition, the characteristic properties of ZnO NRs grown using the modified method showed significantly improved and enhanced properties. The average length of grown ZnO NRs increased with increased precursor concentration; it can be seen that longer ZnO NRs have been investigated using the modified CBD methods. The ZnO NRs synthesized at 0.05 M using the modified method were grown with high aspect ratios than the ZnO NRs grown using conventional means which were 25 and 11, respectively. The growth rate increased with increased precursor concentration; it can be observed that a higher growth rate was seen using the modification CBD method. Furthermore, XRD results for the two cases reveal that the grown ZnO samples were a nanorod-like in shape and possessed a hexagonal wurtzite structure with high crystal quality. No other phases from the impurity were observed. The diffraction peaks along (002) plane became higher, sharper and narrower as precursor concentration increased, suggesting that the crystalline quality of ZnO NRs grown using the modified method was more enhanced and better than conventional methods. However, optical studies show that the transmittance at each concentration was more than two times higher than the transmittance using the modified CBD method. In addition, optical studies demonstrated that the ZnO NRs grown by using modified and conventional methods had a direct Eg in the range of (3.2–3.26) eV and (3.15–3.19) eV, respectively. It was demonstrated in two methods that ZnO NRs grown at a precursor concentration 0.05 M gave the most favorable result, since the NRs had best characteristic properties. Full article
(This article belongs to the Special Issue Zinc Oxide Nanomaterials and Based Devices)
Show Figures

Figure 1

17 pages, 3634 KiB  
Article
Parameter Estimation of the Stochastic Primary Nucleation Kinetics by Stochastic Integrals Using Focused-Beam Reflectance Measurements
by Joi Unno and Izumi Hirasawa
Crystals 2020, 10(5), 380; https://doi.org/10.3390/cryst10050380 - 07 May 2020
Cited by 9 | Viewed by 3517
Abstract
The kinetic parameters of stochastic primary nucleation were estimated for the batch-cooling crystallization of L-arginine. It is difficult for process analytical tools to detect the first nucleus. In this study, the latent period for the total number of crystals to be increased to [...] Read more.
The kinetic parameters of stochastic primary nucleation were estimated for the batch-cooling crystallization of L-arginine. It is difficult for process analytical tools to detect the first nucleus. In this study, the latent period for the total number of crystals to be increased to a predetermined threshold was repeatedly measured with focused-beam reflectance measurements. Consequently, the latent periods were different in each measurement due to the stochastic behavior of both primary and secondary nucleation. Therefore, at first, the distribution of the latent periods was estimated by a Monte Carlo simulation for some combinations of the kinetic parameters of primary nucleation. In the simulation, stochastic integrals of the population and mass balance equations were solved. Then, the parameters of the distribution of latent periods were estimated and correlated with the kinetic parameters of primary nucleation. The resulting correlation was represented by a mapping. Finally, the parameters of the actual distribution were input into the inverse mapping, and the kinetic parameters were estimated as the outputs. The estimated kinetic parameters were validated using statistical techniques, which implied that the observed distribution function of the latent periods for the thresholds used in the estimation coincided reasonably with the simulated one based on the estimated parameters. Full article
(This article belongs to the Special Issue Crystal Nucleation and Growth Kinetics)
Show Figures

Graphical abstract

7 pages, 1285 KiB  
Communication
Halogen Bonding in Isostructural Co(II) Complexes with 2-Halopyridines
by Sergey A. Adonin, Mikhail A. Bondarenko, Alexander S. Novikov and Maxim N. Sokolov
Crystals 2020, 10(4), 289; https://doi.org/10.3390/cryst10040289 - 10 Apr 2020
Cited by 25 | Viewed by 3211
Abstract
Three complexes [Co(2-XPy)2Cl2] (X = Cl, Br, and I) were prepared and characterized, representing a rare case of isostructurality within the Cl-Br-I row. The nature of halogen bonding (XB) in a solid state was studied by DFT calculations, revealing [...] Read more.
Three complexes [Co(2-XPy)2Cl2] (X = Cl, Br, and I) were prepared and characterized, representing a rare case of isostructurality within the Cl-Br-I row. The nature of halogen bonding (XB) in a solid state was studied by DFT calculations, revealing a tendency of XB energy growth for heavier halogens. Full article
(This article belongs to the Section Crystalline Materials)
Show Figures

Graphical abstract

18 pages, 8446 KiB  
Article
Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity
by Suman, Surjeet Chahal, Ashok Kumar and Parmod Kumar
Crystals 2020, 10(4), 273; https://doi.org/10.3390/cryst10040273 - 04 Apr 2020
Cited by 90 | Viewed by 6638
Abstract
Zinc (Zn) doped hematite (α-Fe2O3) nanoparticles with varying concentrations (pure, 2%, 4% and 6%) were synthesized via sol-gel method. The influence of divalent Zn ions on structural, optical and dielectric behavior of hematite were studied. X-ray diffraction (XRD) pattern [...] Read more.
Zinc (Zn) doped hematite (α-Fe2O3) nanoparticles with varying concentrations (pure, 2%, 4% and 6%) were synthesized via sol-gel method. The influence of divalent Zn ions on structural, optical and dielectric behavior of hematite were studied. X-ray diffraction (XRD) pattern of synthesized samples were indexed to rhombohedral R3c space group of hematite with 14–21 nm crystallite size. The lattice parameter (a and c) values increase upto Zn 4% and decrease afterwards. The surface morphology of prepared nanoparticles were explored using transmission electron microscopy (TEM). The band gap measured from Tauc’s plot, using UV-Vis spectroscopy, showed reduction in its values upto Zn 4% and the reverse trend was obtained in higher concentrations. The dielectric properties of pure and Zn doped hematite were investigated at room temperature and followed the same trends as that of XRD parameters and band gap. Photocatalytic properties of nanoparticles were performed for hazardous Rose bengal dye and showed effective degradation in the presence of UV light. Hence, Zn2+ doped hematite can be considered as an efficient material for the potential applications in the domain of photocatalysis and also higher value of dielectric constant at room temperature makes them applicable in high energy storage devices. Full article
Show Figures

Figure 1

17 pages, 5395 KiB  
Article
LED as Transmitter and Receiver of Light: A Simple Tool to Demonstration Photoelectric Effect
by Giuseppe Schirripa Spagnolo, Fabio Leccese and Mariagrazia Leccisi
Crystals 2019, 9(10), 531; https://doi.org/10.3390/cryst9100531 - 15 Oct 2019
Cited by 19 | Viewed by 14501
Abstract
The experimental observations of the photoelectric effect show the properties of quantum mechanics of the electromagnetic field. For this reason, this important effect is commonly used as an introductory topic for the study of quantum physics. The “classical” demonstration of the photoelectric effect [...] Read more.
The experimental observations of the photoelectric effect show the properties of quantum mechanics of the electromagnetic field. For this reason, this important effect is commonly used as an introductory topic for the study of quantum physics. The “classical” demonstration of the photoelectric effect is very incisive; unfortunately, the experimental apparatus is not cheap and easy to realize. The typical use of LEDs is as light emitters, but they can be used even as photosensors and, in this case, they are sensitive to wavelengths equal to or shorter than the predominant wavelength it emits. Furthermore, a LED used as detector is sensitive to wavelengths equal to or shorter than the predominant wavelength it emits. This ability of LEDs offers the possibility of developing a simple tool able to demonstrate the photoelectric effect. This paper describes the realization of an economic, simple, easy and safe system to use for the experimental demonstration of the photoelectric effect, based on the LED to LED structure. The paper has educational purposes, oriented towards laboratory teaching activities. Full article
(This article belongs to the Special Issue Recent Advances in Light-Emitting Diodes (LEDs))
Show Figures

Figure 1

14 pages, 2631 KiB  
Article
Bifurcated Triel Bonds—Hydrides and Halides of 1,2-Bis(Dichloroboryl)Benzene and 1,8-Bis(Dichloroboryl)Naphthalene
by Sławomir J. Grabowski
Crystals 2019, 9(10), 503; https://doi.org/10.3390/cryst9100503 - 27 Sep 2019
Cited by 17 | Viewed by 2824
Abstract
MP2/aug-cc-pVTZ calculations were performed on hydrides, fluorides, and chlorides of 1,8-bis(dichloroboryl)naphthalene and 1,2-bis(dichloroboryl)benzene. The theoretical analysis of BHB, BFB, and BClB arrangements occurring in these complexes and classified as bifurcated triel bonds was partly based on decomposition of [...] Read more.
MP2/aug-cc-pVTZ calculations were performed on hydrides, fluorides, and chlorides of 1,8-bis(dichloroboryl)naphthalene and 1,2-bis(dichloroboryl)benzene. The theoretical analysis of BHB, BFB, and BClB arrangements occurring in these complexes and classified as bifurcated triel bonds was partly based on decomposition of the energy of interaction. The latter was carried out for structures optimized using the DFT method. The complexes analyzed were characterized by a partly covalent character of the links to the hydride and halide anions; these anions strongly influenced the geometry of the complexes. The boron centers’ links for the neutral 1,8-bis(dichloroboryl)naphthalene and 1,2-bis(dichloroboryl)benzene molecules were characterized by approximately trigonal and planar configurations, while for anionic complexes, tetrahedral configurations were observed. The crystal structures of compounds related to species calculated here were found in the Cambridge Structural Database (CSD). Full article
Show Figures

Graphical abstract

17 pages, 1366 KiB  
Article
Critical Review of Scintillating Crystals for Neutron Detection
by Michał J. Cieślak, Kelum A. A. Gamage and Robert Glover
Crystals 2019, 9(9), 480; https://doi.org/10.3390/cryst9090480 - 13 Sep 2019
Cited by 58 | Viewed by 9287
Abstract
There exists an ongoing need to develop and improve methods of detecting radioactive materials. As each radioactive isotope leaves a unique mark in a form of the particles it emits, new materials capable of detecting and measuring these particles are constantly sought. Neutrons [...] Read more.
There exists an ongoing need to develop and improve methods of detecting radioactive materials. As each radioactive isotope leaves a unique mark in a form of the particles it emits, new materials capable of detecting and measuring these particles are constantly sought. Neutrons and their detectors play a significant role in areas such as nuclear power generation, nuclear decommissioning and decontamination, border security, nuclear proliferation and nuclear medicine. Owing to the complexity of their detection, as well as scarcity of 3He, which has historically been the preferred choice for neutron detection in many application fields, new sensitive materials are sought. Organic and inorganic scintillating crystals have been recognised as particularly good alternatives, and as such systems that utilise them are increasingly common. As they allow investigation of the neutron energy spectra, greater information about the radioactive source can be inferred. Therefore, in this article, an extensive review of scintillating crystals used for neutron detection is presented. By describing the history of scintillating crystals and discussing changes that occurred in their use and development of methods for radiation detection, the authors present a comprehensive overview of the current situation. Supported by a practical example, possible future directions of the research area are also presented. Full article
Show Figures

Figure 1

13 pages, 3227 KiB  
Article
Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells
by Ahmad Umar, Mohammad Shaheer Akhtar, Tubia Almas, Ahmed Abdulbaqi Ibrahim, Mohammed Sultan Al-Assiri, Yoshitake Masuda, Qazi Inamur Rahman and Sotirios Baskoutas
Crystals 2019, 9(8), 405; https://doi.org/10.3390/cryst9080405 - 04 Aug 2019
Cited by 18 | Viewed by 4723
Abstract
The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were [...] Read more.
The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied. The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF) of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient photoanode materials for DSSCs. Full article
(This article belongs to the Special Issue Zinc Oxide Nanomaterials and Based Devices)
Show Figures

Figure 1

8 pages, 1858 KiB  
Article
Optical Transport Properties of Graphene Surface Plasmon Polaritons in Mid-Infrared Band
by Yindi Wang, Hongxia Liu, Shulong Wang, Ming Cai and Lan Ma
Crystals 2019, 9(7), 354; https://doi.org/10.3390/cryst9070354 - 12 Jul 2019
Cited by 25 | Viewed by 3573
Abstract
The excellent transmission characteristics of graphene surface plasmon polaritons in mid-infrared band were analyzed and verified effectively through theoretical derivation and soft simulation in this paper. Meanwhile, a sandwich waveguide structure of dielectric–graphene–substrate–dielectric based on graphene surface plasmon polaritons (SPPs) was presented. Simulation [...] Read more.
The excellent transmission characteristics of graphene surface plasmon polaritons in mid-infrared band were analyzed and verified effectively through theoretical derivation and soft simulation in this paper. Meanwhile, a sandwich waveguide structure of dielectric–graphene–substrate–dielectric based on graphene surface plasmon polaritons (SPPs) was presented. Simulation results indicate that graphene SPPs show unique properties in the mid-infrared region including ultra-compact mode confinement and dynamic tunability, which allow these SPPs to overcome the defects of metal SPPs and traditional silicon-based optoelectronic devices. Thus, they can be used to manufacture subwavelength devices. The work in this paper lays a theoretical foundation for the application of graphene SPPs in the mid-infrared region. Full article
(This article belongs to the Special Issue Graphene Mechanics)
Show Figures

Figure 1

14 pages, 3033 KiB  
Article
The Fabrication of Calcium Alginate Beads as a Green Sorbent for Selective Recovery of Cu(Ⅱ) from Metal Mixtures
by Niannian Yang, Runkai Wang, Pinhua Rao, Lili Yan, Wenqi Zhang, Jincheng Wang and Fei Chai
Crystals 2019, 9(5), 255; https://doi.org/10.3390/cryst9050255 - 17 May 2019
Cited by 52 | Viewed by 5849
Abstract
Calcium alginate (CA) beads as a green sorbent were easily fabricated in this study using sodium alginate crosslinking with CaCl2, and the crosslinking pathway was the exchange between the sodium ion of α-L-guluronic acid and Ca(II). The experimental study was conducted [...] Read more.
Calcium alginate (CA) beads as a green sorbent were easily fabricated in this study using sodium alginate crosslinking with CaCl2, and the crosslinking pathway was the exchange between the sodium ion of α-L-guluronic acid and Ca(II). The experimental study was conducted on Cu(II), Cd(II), Ni(II) and Zn(II) as the model heavy metals and the concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The characterization and sorption behavior of the CA beads were analyzed in detail via using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption experiments demonstrated that the CA beads exhibited a high removal efficiency for the selective adsorption of Cu(II) from the tetra metallic mixture solution and an excellent adsorption capacity of the heavy metals separately. According to the isotherm studies, the maximum uptake of Cu(II) could reach 107.53 mg/g, which was significantly higher than the other three heavy metal ions in the tetra metallic mixture solution. Additionally, after five cycles of adsorption and desorption, the uptake rate of Cu(II) on CA beads was maintained at 92%. According to the properties mentioned above, this material was assumed to be applied to reduce heavy metal pollution or recover valuable metals from waste water. Full article
(This article belongs to the Special Issue Layered Double Hydroxides)
Show Figures

Figure 1

15 pages, 1497 KiB  
Article
Van der Waals Density Functional Theory vdW-DFq for Semihard Materials
by Qing Peng, Guangyu Wang, Gui-Rong Liu and Suvranu De
Crystals 2019, 9(5), 243; https://doi.org/10.3390/cryst9050243 - 08 May 2019
Cited by 22 | Viewed by 4948
Abstract
There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials include energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability [...] Read more.
There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials include energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here, we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β -cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1.05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and three typical layered van der Waals crystals. This success could be attributed to the similar electronic charge density gradients, suggesting a wide use in modeling semihard materials. This method could be useful in developing non-empirical density functional theories for semihard and soft materials. Full article
(This article belongs to the Special Issue First-Principles Prediction of Structures and Properties in Crystals)
Show Figures

Graphical abstract

11 pages, 4319 KiB  
Article
Dielectric and Piezoelectric Properties of Textured Lead-Free Na0.5Bi0.5TiO3-Based Ceramics
by Nannan Dong, Xiaoyi Gao, Fangquan Xia, Hanxing Liu, Hua Hao and Shujun Zhang
Crystals 2019, 9(4), 206; https://doi.org/10.3390/cryst9040206 - 14 Apr 2019
Cited by 24 | Viewed by 3801
Abstract
This work provides a comparative study of the dielectric and piezoelectric properties of randomly oriented and textured 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) ceramics. Textured ceramics were fabricated by template grain growth (TGG) method [...] Read more.
This work provides a comparative study of the dielectric and piezoelectric properties of randomly oriented and textured 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) ceramics. Textured ceramics were fabricated by template grain growth (TGG) method using NaNbO3 (NN) for templates. For textured ceramics with 4 wt% NN templates, a Lotgering factor of 96% and piezoelectric coefficient d33 of 185 pC/N were obtained. Compared to the randomly oriented ceramics, textured ceramics show lower strain hysteresis (H = 7.6%), higher unipolar strain of 0.041% with corresponding large signal piezoelectric coefficient d33* of 200 pm/V at applied field of 2 kV/mm. This enhancement can be explained by the grain orientation along <001> direction by texturing, where an engineered domain configuration is formed after polarization, leading to decreased hysteresis and increased piezoelectric property. Full article
(This article belongs to the Section Crystalline Materials)
Show Figures

Figure 1

8 pages, 2170 KiB  
Communication
Hybrid Biomimetic Materials from Silica/Carbonate Biomorphs
by Julian Opel, Niklas Unglaube, Melissa Wörner, Matthias Kellermeier, Helmut Cölfen and Juan-Manuel García-Ruiz
Crystals 2019, 9(3), 157; https://doi.org/10.3390/cryst9030157 - 18 Mar 2019
Cited by 10 | Viewed by 3855
Abstract
The formation of a polymer protection layer around fragile mineral architectures ensures that structures stay intact even after treatments that would normally destroy them going along with a total loss of textural information. Here we present a strategy to preserve the shape of [...] Read more.
The formation of a polymer protection layer around fragile mineral architectures ensures that structures stay intact even after treatments that would normally destroy them going along with a total loss of textural information. Here we present a strategy to preserve the shape of silica-carbonate biomorphs with polymers. This method converts non-hybrid inorganic-inorganic composite materials such a silica/carbonate biomorphs into hybrid organic/carbonate composite materials similar to biominerals. Full article
(This article belongs to the Special Issue Biological Crystallization)
Show Figures

Graphical abstract

18 pages, 6120 KiB  
Article
Critical Evaluation of Organic Thin-Film Transistor Models
by Markus Krammer, James W. Borchert, Andreas Petritz, Esther Karner-Petritz, Gerburg Schider, Barbara Stadlober, Hagen Klauk and Karin Zojer
Crystals 2019, 9(2), 85; https://doi.org/10.3390/cryst9020085 - 06 Feb 2019
Cited by 20 | Viewed by 5584
Abstract
The thin-film transistor (TFT) is a popular tool for determining the charge-carrier mobility in semiconductors, as the mobility (and other transistor parameters, such as the contact resistances) can be conveniently extracted from its measured current-voltage characteristics. However, the accuracy of the extracted parameters [...] Read more.
The thin-film transistor (TFT) is a popular tool for determining the charge-carrier mobility in semiconductors, as the mobility (and other transistor parameters, such as the contact resistances) can be conveniently extracted from its measured current-voltage characteristics. However, the accuracy of the extracted parameters is quite limited, because their values depend on the extraction technique and on the validity of the underlying transistor model. We propose here a new approach for validating to what extent a chosen transistor model is able to predict correctly the transistor operation. In the two-step fitting approach we have developed, we analyze the measured current-voltage characteristics of a series of TFTs with different channel lengths. In the first step, the transistor parameters are extracted from each individual transistor by fitting the output and transfer characteristics to the transistor model. In the second step, we check whether the channel-length dependence of the extracted parameters is consistent with the underlying model. We present results obtained from organic TFTs fabricated in two different laboratories using two different device architectures, three different organic semiconductors and five different materials combinations for the source and drain contacts. For each set of TFTs, our approach reveals that the state-of-the-art transistor models fail to reproduce correctly the channel-length-dependence of the transistor parameters. Our approach suggests that conventional transistor models require improvements in terms of the charge-carrier-density dependence of the mobility and/or in terms of the consideration of uncompensated charges in the carrier-accumulation channel. Full article
(This article belongs to the Special Issue Thin Film Transistor)
Show Figures

Graphical abstract

9 pages, 3228 KiB  
Article
Liquid-Phase Epitaxial Growth and Characterization of Nd:YAl3(BO3)4 Optical Waveguides
by Yi Lu, Peter Dekker and Judith M. Dawes
Crystals 2019, 9(2), 79; https://doi.org/10.3390/cryst9020079 - 01 Feb 2019
Cited by 4 | Viewed by 3421
Abstract
We investigated the fabrication of neodymium doped thin film optical waveguide-based devices as potential active sources for planar integrated optics. Liquid-phase epitaxial growth was used to fabricate neodymium-doped yttrium aluminum borate films on compatible lattice-matched, un-doped yttrium aluminum borate substrates. We observed the [...] Read more.
We investigated the fabrication of neodymium doped thin film optical waveguide-based devices as potential active sources for planar integrated optics. Liquid-phase epitaxial growth was used to fabricate neodymium-doped yttrium aluminum borate films on compatible lattice-matched, un-doped yttrium aluminum borate substrates. We observed the refractive index contrast of the doped and un-doped crystal layers via differential interference contrast microscopy. In addition, characterization by X-ray powder diffraction, optical absorption and luminescence spectra demonstrated the crystal quality, uniformity and optical guiding of the resulting thin films. Full article
(This article belongs to the Special Issue Crystal Growth of Multifunctional Borates and Related Materials)
Show Figures

Graphical abstract

18 pages, 3517 KiB  
Article
Spatio-temporal Investigations of the Incomplete Spin Transition in a Single Crystal of [Fe(2-pytrz)2{Pt(CN)4}]·3H2O: Experiment and Theory
by Houcem Fourati, Guillaume Bouchez, Miguel Paez-Espejo, Smail Triki and Kamel Boukheddaden
Crystals 2019, 9(1), 46; https://doi.org/10.3390/cryst9010046 - 16 Jan 2019
Cited by 12 | Viewed by 3732
Abstract
Optical microscopy technique is used to investigate the thermal and the spatio-temporal properties of the spin-crossover single crystal [Fe(2-pytrz) 2 {Pt(CN) 4 }]·3H 2 O, which exhibits a first-order spin transition from a full high-spin (HS) state at high temperature to an intermediate, [...] Read more.
Optical microscopy technique is used to investigate the thermal and the spatio-temporal properties of the spin-crossover single crystal [Fe(2-pytrz) 2 {Pt(CN) 4 }]·3H 2 O, which exhibits a first-order spin transition from a full high-spin (HS) state at high temperature to an intermediate, high-spin low-spin (HS-LS) state, below 153 K, where only one of the two crystallographic Fe(II) centers switches from the HS to HS-LS state. In comparison with crystals undergoing a complete spin transition, the present transformation involves smaller volume changes at the transition, which helps to preserving the crystal’s integrity. By analyzing the spatio-temporal properties of this spin transition, we evidenced a direct correlation between the orientation and shape of HS/HS-LS domain wall with the crystal’s shape. Thanks to the small volume change accompanying this spin transition, the analysis of the experimental data by an anisotropic reaction-diffusion model becomes very relevant and leads to an excellent agreement with the experimental observations. Full article
(This article belongs to the Special Issue Synthesis and Applications of New Spin Crossover Compounds)
Show Figures

Figure 1

10 pages, 3859 KiB  
Article
Tripling the Optical Efficiency of Color-Converted Micro-LED Displays with Funnel-Tube Array
by Fangwang Gou, En-Lin Hsiang, Guanjun Tan, Yi-Fen Lan, Cheng-Yeh Tsai and Shin-Tson Wu
Crystals 2019, 9(1), 39; https://doi.org/10.3390/cryst9010039 - 14 Jan 2019
Cited by 49 | Viewed by 9785
Abstract
Color-converted micro-LED displays consist of a mono-color micro-LED array and color conversion materials to achieve full color, while relieving the burden of epitaxial growth of three-color micro-LEDs. However, it usually suffers from low efficiency and color crosstalk due to the limited optical density [...] Read more.
Color-converted micro-LED displays consist of a mono-color micro-LED array and color conversion materials to achieve full color, while relieving the burden of epitaxial growth of three-color micro-LEDs. However, it usually suffers from low efficiency and color crosstalk due to the limited optical density of color conversion materials. With funnel-tube array, the optical efficiency of the color-converted micro-LED display can be improved by ~3X, while the crosstalk is eliminated. After optimization of the tapper angle, the ambient contrast ratio is also improved due to higher light intensity. Full article
(This article belongs to the Special Issue Advanced LED Solid-State Lighting Optics)
Show Figures

Figure 1

14 pages, 2116 KiB  
Article
NMR Crystallography of the Polymorphs of Metergoline
by Jiri Czernek, Martina Urbanova and Jiri Brus
Crystals 2018, 8(10), 378; https://doi.org/10.3390/cryst8100378 - 25 Sep 2018
Cited by 15 | Viewed by 4036
Abstract
Two polymorphs of the drug compound metergoline (C25H29N3O2) were investigated in detail by solid-state NMR measurements. The results have been analysed by an advanced procedure, which uses experimental input together with the results of quantum [...] Read more.
Two polymorphs of the drug compound metergoline (C25H29N3O2) were investigated in detail by solid-state NMR measurements. The results have been analysed by an advanced procedure, which uses experimental input together with the results of quantum chemical calculations that were performed for molecular crystals. In this way, it was possible to assign the total of 40 1H–13C correlation pairs in a highly complex system, namely, in the dynamically disordered polymorph with two independent molecules in the unit cell of a large volume of 4234 Å3. For the simpler polymorph, which exhibits only small-amplitude motions and has just one molecule in the unit cell with a volume of 529.0 Å3, the values of the principal elements of the 13C chemical shift tensors were measured. Additionally, for this polymorph, a set of crystal structure predictions were generated, and the {13C, 1H} isotropic and 13C anisotropic chemical shielding data were computed while using the gauge-including projector augmented-wave approach combined with the “revised Perdew-Burke-Ernzerhof“ exchange-correlation functional (GIPAW-RPBE). The experimental and theoretical results were combined in an application of the newly developed strategy to polymorph discrimination. This research thus opens up new routes towards more accurate characterization of the polymorphism of drug formulations. Full article
(This article belongs to the Special Issue NMR Crystallography)
Show Figures

Figure 1

19 pages, 44833 KiB  
Article
Tuning of Luminescent and Magnetic Properties via Metal Doping of Zn-BTC Systems
by Taoguang Qu, Qiang Wei, Carlos Ordonez, Jennifer Lindline, Michael Petronis, Marina S. Fonari and Tatiana Timofeeva
Crystals 2018, 8(4), 162; https://doi.org/10.3390/cryst8040162 - 08 Apr 2018
Cited by 7 | Viewed by 5799
Abstract
In order to assess how metal doping affects the luminescence and magnetic properties of anionic Metal-Organic Frameworks (MOFs), seven single-metal doped MOFs {M-Zn-BTC}{Me2NH2+} (M = Co, Cu, Ni, Mn, Ca, Mg, Cd) and three dual-metal doped MOFs {Zn-M [...] Read more.
In order to assess how metal doping affects the luminescence and magnetic properties of anionic Metal-Organic Frameworks (MOFs), seven single-metal doped MOFs {M-Zn-BTC}{Me2NH2+} (M = Co, Cu, Ni, Mn, Ca, Mg, Cd) and three dual-metal doped MOFs {Zn-M1-M2-BTC}{Me2NH2+} (M1 = Co, Cu; M2 = Ni, Co) were synthesized. Trace amounts of different metals were doped via addition of another metal salt during the synthetic process. All compounds retained the same crystal structure as that of the parent {Zn-BTC}{Me2NH2+} MOF, which was supported by single crystal and powder X-ray diffraction studies. Thermal Gravimetric Analysis (TGA) of these compounds also revealed that all MOFs had similar stability up to ~450 °C. Solid state photoluminescent studies indicated that {Zn-Mn-BTC}{Me2NH2+}, {Zn-Cd-BTC}{Me2NH2+}, and {Zn-Ca-BTC}{Me2NH2+} had a significant red shifting effect compared to the original {Zn-BTC}{Me2NH2+} MOF. Applications of this doping method to other MOF systems can provide an efficient way to tune the luminescence of such systems, and to obtain a desired wavelength for several applications such as sensors and white light LED materials. Because Zn, Co, Cu, Ni, Mg have magnetic properties, the effect of the doping metal atom on the magnetism of the {Zn-BTC}{Me2NH2+} networks was also studied. To characterize the magnetic behavior of the synthesized MOFs, we conducted low-temperature (10 K) saturation remanence experiments in a 3 Tesla applied field, with the principal goal of identifying the domain state of the synthesized materials (Zn, Zn-Co, Zn-Cu-Co, Zn-Cu-Ni, Zn-Mg, Zn-Mn, Zn-Ni-Co, Zn-Ni). During room/low temperature saturation magnetization experiments, Zn, Zn-Co, Zn-Cu-Co, and Zn-Cu-Ni systems yielded data indicative of superparamagnetic behavior, yet during zero field and field cooled experiments Zn-Co showed a slight paramagnetic effect, Zn showed no temperature dependence on warming and Zn-Cu-Co and Zn-Cu-Ni demonstrated only a slight temperature dependence on warming. These behaviors are consistent with ferromagnetic ordering. Zero field and field cooled experiments indicate that Zn-Mg and Zn-Ni have a ferromagnetic ordering and Zn-Mn and Zn-Ni-Co show paramagnetic ordering behavior. Full article
(This article belongs to the Special Issue Crystal Structure Analysis of Supramolecular and Porous Solids)
Show Figures

Figure 1

15 pages, 3401 KiB  
Article
Intra-/Intermolecular Bifurcated Chalcogen Bonding in Crystal Structure of Thiazole/Thiadiazole Derived Binuclear (Diaminocarbene)PdII Complexes
by Alexander S. Mikherdov, Alexander S. Novikov, Mikhail A. Kinzhalov, Andrey A. Zolotarev and Vadim P. Boyarskiy
Crystals 2018, 8(3), 112; https://doi.org/10.3390/cryst8030112 - 27 Feb 2018
Cited by 47 | Viewed by 5285
Abstract
The coupling of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with 4-phenylthiazol-2-amine in molar ratio 2:3 at RT in CH2Cl2 leads to binuclear (diaminocarbene)PdII complex 3c. The complex was characterized by HRESI+-MS, 1H NMR spectroscopy, and its structure was elucidated by single-crystal XRD. Inspection of [...] Read more.
The coupling of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with 4-phenylthiazol-2-amine in molar ratio 2:3 at RT in CH2Cl2 leads to binuclear (diaminocarbene)PdII complex 3c. The complex was characterized by HRESI+-MS, 1H NMR spectroscopy, and its structure was elucidated by single-crystal XRD. Inspection of the XRD data for 3c and for three relevant earlier obtained thiazole/thiadiazole derived binuclear diaminocarbene complexes (3a EYOVIZ; 3b: EYOWAS; 3d: EYOVOF) suggests that the structures of all these species exhibit intra-/intermolecular bifurcated chalcogen bonding (BCB). The obtained data indicate the presence of intramolecular S•••Cl chalcogen bonds in all of the structures, whereas varying of substituent in the 4th and 5th positions of the thiazaheterocyclic fragment leads to changes of the intermolecular chalcogen bonding type, viz. S•••π in 3a,b, S•••S in 3c, and S•••O in 3d. At the same time, the change of heterocyclic system (from 1,3-thiazole to 1,3,4-thiadiazole) does not affect the pattern of non-covalent interactions. Presence of such intermolecular chalcogen bonding leads to the formation of one-dimensional (1D) polymeric chains (for 3a,b), dimeric associates (for 3c), or the fixation of an acetone molecule in the hollow between two diaminocarbene complexes (for 3d) in the solid state. The Hirshfeld surface analysis for the studied X-ray structures estimated the contributions of intermolecular chalcogen bonds in crystal packing of 3ad: S•••π (3a: 2.4%; 3b: 2.4%), S•••S (3c: less 1%), S•••O (3d: less 1%). The additionally performed DFT calculations, followed by the topological analysis of the electron density distribution within the framework of Bader’s theory (AIM method), confirm the presence of intra-/intermolecular BCB S•••Cl/S•••S in dimer of 3c taken as a model system (solid state geometry). The AIM analysis demonstrates the presence of appropriate bond critical points for these interactions and defines their strength from 0.9 to 2.8 kcal/mol indicating their attractive nature. Full article
(This article belongs to the Special Issue Chalcogen Bonding in Crystalline and Catalyst Materials)
Show Figures

Graphical abstract

12 pages, 3731 KiB  
Article
A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction
by Shuo Sui, Yuxi Wang, Christos Dimitrakopoulos and Sarah L. Perry
Crystals 2018, 8(2), 76; https://doi.org/10.3390/cryst8020076 - 01 Feb 2018
Cited by 11 | Viewed by 6160
Abstract
Here, we describe a novel microfluidic platform for use in electrocrystallization experiments. The device incorporates ultra-thin graphene-based films as electrodes and as X-ray transparent windows to enable in situ X-ray diffraction analysis. Furthermore, large-area graphene films serve as a gas barrier, creating a [...] Read more.
Here, we describe a novel microfluidic platform for use in electrocrystallization experiments. The device incorporates ultra-thin graphene-based films as electrodes and as X-ray transparent windows to enable in situ X-ray diffraction analysis. Furthermore, large-area graphene films serve as a gas barrier, creating a stable sample environment over time. We characterize different methods for fabricating graphene electrodes, and validate the electrical capabilities of our device through the use of methyl viologen, a redox-sensitive dye. Proof-of-concept electrocrystallization experiments using an internal electric field at constant potential were performed using hen egg-white lysozyme (HEWL) as a model system. We observed faster nucleation and crystal growth, as well as a higher signal-to-noise for diffraction data obtained from crystals prepared in the presence of an applied electric field. Although this work is focused on the electrocrystallization of proteins for structural biology, we anticipate that this technology should also find utility in a broad range of both X-ray technologies and other applications of microfluidic technology. Full article
(This article belongs to the Special Issue Protein Crystallization under the Presence of an Electric Field)
Show Figures

Graphical abstract

14 pages, 4990 KiB  
Article
Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage
by Huiyun Sun, Wei Zhang and Ming Hu
Crystals 2018, 8(1), 23; https://doi.org/10.3390/cryst8010023 - 07 Jan 2018
Cited by 18 | Viewed by 7669
Abstract
Mesostructure engineering is a potential avenue towards the property control of coordination polymers in addition to the traditional structure design on an atomic/molecular scale. Mesoframes, as a class of mesostructures, have short diffusion pathways for guest species and thus can be an ideal [...] Read more.
Mesostructure engineering is a potential avenue towards the property control of coordination polymers in addition to the traditional structure design on an atomic/molecular scale. Mesoframes, as a class of mesostructures, have short diffusion pathways for guest species and thus can be an ideal platform for fast storage of guest ions. We report a synthesis of Prussian Blue analogue mesoframes by top-down etching of cubic crystals. Scanning and transmission electron microscopy revealed that the surfaces of the cubic crystals were selectively removed by HCl, leaving the corners, edges, and the cores connected together. The mesoframes were used as a host for the reversible insertion of sodium ions with the help of electrochemistry. The electrochemical intercalation/de-intercalation of Na+ ions in the mesoframes was highly reversible even at a high rate (166.7 C), suggesting that the mesoframes could be a promising cathode material for aqueous sodium ion batteries with excellent rate performance and cycling stability. Full article
(This article belongs to the Special Issue Structural Design and Properties of Coordination Polymers)
Show Figures

Figure 1

Review

17 pages, 13668 KiB  
Review
Imidazol(in)ium-2-Thiocarboxylate Zwitterion Ligands: Structural Aspects in Coordination Complexes
by David Elorriaga, Blanca Parra-Cadenas, Paula Pérez-Ramos, Raquel G. Soengas, Fernando Carrillo-Hermosilla and Humberto Rodríguez-Solla
Crystals 2023, 13(9), 1304; https://doi.org/10.3390/cryst13091304 - 26 Aug 2023
Viewed by 1424
Abstract
Azolium-2-thiocarboxylate zwitterion ligands have emerged as a promising class of compounds in the field of coordination chemistry due to their unique structural features and versatile applications. These ligands are characterized by a positively charged azolium ring and a negatively charged thiocarboxylate moiety, making [...] Read more.
Azolium-2-thiocarboxylate zwitterion ligands have emerged as a promising class of compounds in the field of coordination chemistry due to their unique structural features and versatile applications. These ligands are characterized by a positively charged azolium ring and a negatively charged thiocarboxylate moiety, making them capable of forming stable coordination complexes with various metal ions. One of the key structural aspects that make these ligands attractive for coordination chemistry is their ability to adopt diverse coordination modes with metal centers. The nature of these ligands enables them to engage in both monodentate and bidentate coordination, resulting in the formation of chelated complexes with enhanced stability and controlled geometry or the formation of polynuclear structures. This versatility in coordination behavior allows for the design of tailored ligands with specific metal-binding preferences, enabling the creation of unique and finely tuned coordination architectures. The azolium-2-thiocarboxylate zwitterionic ligands offer a promising platform for the design of coordination complexes with diverse structural architectures. Full article
Show Figures

Figure 1

17 pages, 3227 KiB  
Review
Progress in Ammonothermal Crystal Growth of Gallium Nitride from 2017–2023: Process, Defects and Devices
by Nathan Stoddard and Siddha Pimputkar
Crystals 2023, 13(7), 1004; https://doi.org/10.3390/cryst13071004 - 23 Jun 2023
Cited by 5 | Viewed by 1782
Abstract
Gallium nitride continues to be a material of intense interest for the ongoing advancement of electronic and optoelectronic devices. While the bulk of today’s markets for low-performance devices is still met with silicon and blue/UV LEDs derived from metal–organic chemical vapor deposition gallium [...] Read more.
Gallium nitride continues to be a material of intense interest for the ongoing advancement of electronic and optoelectronic devices. While the bulk of today’s markets for low-performance devices is still met with silicon and blue/UV LEDs derived from metal–organic chemical vapor deposition gallium nitride grown on foreign substrates such as sapphire and silicon carbide, the best performance values consistently come from devices built on bulk-grown gallium nitride from native seeds. The most prominent and promising of the bulk growth methods is the ammonothermal method of high-pressure solution growth. The state-of-the-art from the last five years in ammonothermal gallium nitride technology is herein reviewed within the general categories of growth technology, characterization and defects as well as device performance. Full article
(This article belongs to the Special Issue Research in GaN-based Materials and Devices)
Show Figures

Figure 1

20 pages, 34065 KiB  
Review
The Promise and Challenge of High Pressure Macromolecular Crystallography
by Katarzyna Kurpiewska, Joanna Sławek, Agnieszka Klonecka and Maciej Kozak
Crystals 2023, 13(4), 560; https://doi.org/10.3390/cryst13040560 - 24 Mar 2023
Viewed by 1529
Abstract
Since its introduction in the early 1970s, high pressure crystallography (HPX) has shown great potential for the investigation of different types of matter. Using diamond anvil cells, HPX is an emerging technique that has been rapidly implemented, making it available to biologists, and [...] Read more.
Since its introduction in the early 1970s, high pressure crystallography (HPX) has shown great potential for the investigation of different types of matter. Using diamond anvil cells, HPX is an emerging technique that has been rapidly implemented, making it available to biologists, and there is immense potential for utilizing this technique in biological systems in the future. At the molecular level, high-pressure crystallographic investigation provides information on structural characteristics that not only determine the native conformation of a protein but also the conformations with higher free-energy, thus revealing function-related structural changes and properties that can be modified as a result of pressurization. The increase in the number of crystal structures of different macromolecules determined under high pressure over the last five decades can be ascribed mainly to two factors: the emergence of high-pressure cells with very large, open angles, and the advent of third generation synchrotron sources. The use of high pressure crystallography as a research tool has been shown to contribute to the advancements in the basic fields of biochemistry (protein misfolding and aggregation), biophysics (protein stability), and biotechnology (food processing). Presently, with a growing interest in biomedicine and nanotechnology, this nonstandard method appears to be a valid instrument for probing more challenging and complex systems. In this review, we present the method, highlight a selection of recent applications, and describe challenges for high pressure macromolecular crystallography (HPMX). Full article
(This article belongs to the Special Issue Crystalline Phases under Extreme Conditions)
Show Figures

Figure 1

19 pages, 4623 KiB  
Review
Recent Progress in Phase Stability and Elastic Anomalies of Group VB Transition Metals
by Yixian Wang, Hao Wu, Yingying Liu, Hao Wang, Xiangrong Chen and Huayun Geng
Crystals 2022, 12(12), 1762; https://doi.org/10.3390/cryst12121762 - 05 Dec 2022
Cited by 2 | Viewed by 1986
Abstract
Recently discovered phase transition and elastic anomaly of compression-induced softening and heating-induced hardening (CISHIH) in group VB transition metals at high-pressure and high-temperature (HPHT) conditions are unique and interesting among typical metals. This article reviews recent progress in the understanding of the structural [...] Read more.
Recently discovered phase transition and elastic anomaly of compression-induced softening and heating-induced hardening (CISHIH) in group VB transition metals at high-pressure and high-temperature (HPHT) conditions are unique and interesting among typical metals. This article reviews recent progress in the understanding of the structural and elastic properties of these important metals under HPHT conditions. Previous investigations unveiled the close connection of the remarkable structural stability and elastic anomalies to the Fermi surface nesting (FSN), Jahn–Teller effect, and electronic topological transition (ETT) in vanadium, niobium, and tantalum. We elaborate that two competing scenarios are emerging from these advancements. The first one focuses on phase transition and phase diagram, in which a soft-mode driven structural transformation of BCC→RH1→RH2→BCC under compression and an RH→BCC reverse transition under heating in vanadium were established by experiments and theories. Similar phase transitions in niobium and tantalum were also proposed. The concomitant elastic anomalies were considered to be due to the phase transition. However, we also showed that there exist some experimental and theoretical facts that are incompatible with this scenario. A second scenario is required to accomplish a physically consistent interpretation. In this alternative scenario, the electronic structure and associated elastic anomaly are fundamental, whereas phase transition is just an outcome of the mechanical instability. We note that this second scenario is promising to reconcile all known discrepancies but caution that the phase transition in group VB metals is elusive and is still an open question. A general consensus on the relationship between the possible phase transitions and the mechanical elasticity (especially the resultant CISHIH dual anomaly, which has a much wider impact), is still unreached. Full article
(This article belongs to the Special Issue Pressure-Induced Phase Transformations (Volume II))
Show Figures

Figure 1

16 pages, 2315 KiB  
Review
Understanding Cysteine Chemistry Using Conventional and Serial X-ray Protein Crystallography
by Nathan Smith and Mark A. Wilson
Crystals 2022, 12(11), 1671; https://doi.org/10.3390/cryst12111671 - 19 Nov 2022
Viewed by 2587
Abstract
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted [...] Read more.
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted inhibitors. The formation of catalytic intermediates can change enzyme conformational dynamics, sometimes activating protein motions that are important for catalytic turnover. However, these transiently populated intermediate species have been challenging to structurally characterize using traditional crystallographic approaches. This review describes the use and promise of new time-resolved serial crystallographic methods to study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine proteases of SARS-CoV-2, as well as on other examples. We review features of cysteine chemistry that are relevant for the design and execution of time-resolved serial crystallography experiments. In addition, we discuss emerging X-ray techniques, such as time-resolved sulfur X-ray spectroscopy, that may be able to detect changes in sulfur charge states and covalency during catalysis or regulatory modification. In summary, cysteine-dependent enzymes have features that make them especially attractive targets for new time-resolved serial crystallography approaches, which can reveal both changes to enzyme structures and dynamics during catalysis in crystalline samples. Full article
(This article belongs to the Special Issue Novel Structural Studies of Coronavirus Proteins)
Show Figures

Figure 1

20 pages, 5682 KiB  
Review
Angular Quasi-Phase-Matching in Periodically Poled Uniaxial and Biaxial Crystals
by Yannick Petit, Alexandra Peña, Simon Joly, Dazhi Lu, Patricia Segonds and Benoît Boulanger
Crystals 2022, 12(7), 979; https://doi.org/10.3390/cryst12070979 - 13 Jul 2022
Cited by 1 | Viewed by 1828
Abstract
This article deals with a general description of Angular Quasi-Phase-Matching (AQPM) in uniaxial and biaxial crystals for second-order nonlinear optical interactions. Such an exhaustive and generalized angular-dependent approach of AQPM reveals new directions of propagation with efficient parametric frequency conversion. These AQPM solutions [...] Read more.
This article deals with a general description of Angular Quasi-Phase-Matching (AQPM) in uniaxial and biaxial crystals for second-order nonlinear optical interactions. Such an exhaustive and generalized angular-dependent approach of AQPM reveals new directions of propagation with efficient parametric frequency conversion. These AQPM solutions are studied by depicting the corresponding topologies and associated symmetries. The theoretical overview is fully validated and illustrated by measurements. We clearly demonstrate the benefits of such a generalized approach, both in the case of two emblematic periodically poled (PP) crystals: 5%MgO-doped PPLiNbO3 (5%MgO:PPLN) and Rb-doped PPKTiOPO4 (PPRKTP). These developments should stimulate new potential applications in nonlinear frequency conversion. Full article
(This article belongs to the Special Issue Advances in Optoelectric Functional Crystalline Materials)
Show Figures

Figure 1

15 pages, 1145 KiB  
Review
A Stable Mode of Dendritic Growth in Cases of Conductive and Convective Heat and Mass Transfer
by Liubov V. Toropova, Peter K. Galenko and Dmitri V. Alexandrov
Crystals 2022, 12(7), 965; https://doi.org/10.3390/cryst12070965 - 11 Jul 2022
Cited by 6 | Viewed by 1546
Abstract
In this paper, we develop a theory of stable dendritic growth in undercooled melts in the presence of conductive and convective heat and mass transfer boundary conditions at the solid/liquid interface of a dendrite. To simplify the matter and construct the analytical theory, [...] Read more.
In this paper, we develop a theory of stable dendritic growth in undercooled melts in the presence of conductive and convective heat and mass transfer boundary conditions at the solid/liquid interface of a dendrite. To simplify the matter and construct the analytical theory, conductive and convective mechanisms are considered separately. Namely, the laws for total undercooling and selection criterion defining the stable growth mode (dendrite tip velocity and diameter) are derived for conductive and convective boundary conditions. To describe the case of simultaneous occurrence of these heat and mass transfer mechanisms, we sew together conductive and convective laws using power stitching functions. The generalised selection theory is compared with experimental data for Al24Ge76 and Ti45Al55 undercooled melts. Full article
(This article belongs to the Special Issue Phase Transition in External Fields)
Show Figures

Figure 1

Back to TopTop