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Abstract: In this paper, we develop a theory of stable dendritic growth in undercooled melts in the
presence of conductive and convective heat and mass transfer boundary conditions at the solid/liquid
interface of a dendrite. To simplify the matter and construct the analytical theory, conductive and
convective mechanisms are considered separately. Namely, the laws for total undercooling and
selection criterion defining the stable growth mode (dendrite tip velocity and diameter) are derived
for conductive and convective boundary conditions. To describe the case of simultaneous occurrence
of these heat and mass transfer mechanisms, we sew together conductive and convective laws using
power stitching functions. The generalised selection theory is compared with experimental data for
Al24Ge76 and Ti45Al55 undercooled melts.

Keywords: dendritic growth; selection criterion; solvability theory; morphological stability; convection;
undercooling balance

1. Introduction

A crystal with a main trunk and lateral branches extending along the main crystallo-
graphic axes of the crystal lattice is called a dendrite [1–4]. Growing single dendritic crystals
and the intertwined side branches of adjacent dendrites form one of the main types of a solid
structure in solidifying materials. As this takes place, the features of such a structure (e.g.,
its dispersion or mean interdendritic distance) are determined by heat and mass transfer
processes, hydrodynamic and convective melt currents throughout the solidifying system,
and the kinetics of atom attachment to the interfacial crystal surfaces [5–7].

One of the actual problems allowing theoretical description of dendritic structure (e.g.,
transition between monocrystalline and polycrystalline patterns) is the problem of selection
for a stable mode of dendritic crystal growth. By solving this problem, we may find the
selection criterion (the equation relating the steady-state growth rate V of the dendrite,
its tip diameter ρ and melt undercooling ∆θ). This equation and the total undercooling
balance (the second equation linking these quantities) represent a nonlinear system of two
algebraic equations to determine the governing dependencies V(∆θ) and ρ(∆θ) [8–12].
This system of equations has been intensively studied in recent decades for conductive
heat and mass fluxes at solid–liquid dendritic interfaces (see, among others, recent review
papers [13,14]). However, experimental data [15,16] show that such a model does not work
over the entire range of melt undercooling. In many cases comparing experimental data
with theoretical modeling predictions, it has been shown that convection may influence
the growth kinetics if the dendrite growth velocity is comparable by magnitude with the
value of the flow velocity [17]. This occurs at relatively “small” crystal growth velocity
(mm per second or cm per second) and, respectively, at low undercooling. So, for example,
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when undercooling is small enough, the model no longer describes the experimental data.
This can be explained by the fact that at small undercoolings, the convective melt fluxes in
the thin boundary layer near the dendrite surface become essential [18]. In this case, the
selection criterion and the balance of total undercooling change its form and are entirely
determined by the convective mechanism of heat and mass transfer near the dendrite
surface. Therefore, to describe the whole range of melt undercooling, we need to use the
theory of convective heat and mass transfer for small undercooling and conductive heat
and mass transfer for moderate and large undercooling. How to combine these approaches
using a unified selection theory and undercooling balance is described below, where we
sew together the corresponding dependencies to better describe experimental data within
a broad range of melt undercooling.

2. The Heat and Mass Transfer Model of Dendritic Growth

For simplicity, we first consider the steady-state growth of a dendritic crystal in an
undercooled binary melt illustrated in Figure 1. The heat-transfer and diffusion equations
in the solid and melt phases read as

∂θs

∂τ
= Dθ∆θs (solid phase), (1)

∂θl
∂τ

+ (v · ∇)θl = Dθ∆θl ,
∂σ

∂τ
+ (v · ∇)σ = Dσ∆σ (liquid phase), (2)

where θs and θl are the temperatures in solid and liquid, σ is the solute concentration in melt,
τ is the time, Dθ is the temperature conductivity coefficient, Dσ is the diffusivity coefficient,
v is the velocity of oncoming melt, ∇ is the nabla operator, and ∆ is the Laplacian.

Figure 1. A three-dimensional sketch of dendritic crystal. (a) Laminar flow with conductive boundary
conditions, (b) local convection in front of dendrite tip with convective boundary conditions, where
u∗ represents friction velocity appearing as a result of intensive heat and mass transfer.

We consider the viscous melt model in the Oseen hydrodynamic approximation [19–21],
as the more general Navier–Stokes model has no analytical solutions.

u
∂v
∂z

= − 1
ρm
∇p + µ∆v, ∇ · v = 0, (liquid phase), (3)

where u is the flow velocity far from the crystal at z→ ∞, z is the spatial coordinate corre-
sponding to the direction of dendrite growth, ρm is the melt density, p is the hydrodynamic
pressure, and µ is the kinematic viscosity. Note that the last equation in (3) describes the
incompressible fluid model.

The system of hydrodynamic Equation (3) must be supplemented with appropriate
boundary conditions for fluid adhesion to the dendrite surface. Since the hydrodynamic
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problem about the flow of a viscous melt around a dendrite does not depend on the thermal
and concentration distributions, but is an independent one, below we use its solution
constructed in Refs. [22,23].

Considering the case of plane-parallel melt flow far from the dendrite, we fix tempera-
ture θ∞ and solute concentration σ∞ far from the growing crystal, i.e.,

θl → θ∞, σ→ σ∞ (far from the crystal). (4)

Below, we consider two possible regimes of melt flow around the growing crystal. The
first of them occurs in slow laminar currents when thermal and mass fluxes are described
by classical Fourier’s laws. Dealing with this case, we have

V · n =
Dθκp

Q
(∇θs −∇θl) · n, (1− ke)σV · n = −Dσ∇σ · n (at the interface), (5)

where V stands for the growth rate of solid/liquid interface, κp is the specific heat, Q is the
latent heat parameter, and ke is the equilibrium segregation coefficient.

The second regime occurs in cases of intense hydrodynamic currents near the solid/
liquid surface of a dendrite. If this is really the case, the heat and mass fluxes become of
convective-type and boundary conditions read as [24–28]

θQ

Dθ
V · n = ∇θs · n +

αθρmκpu∗
λs

(θi − θ∞), (at the interface)

(1− ke)σiV · n = ασu∗(σi − σ∞), (at the interface),
(6)

where θQ = Q/κp is the adiabatic temperature, αθ and ασ are the convective heat and mass
coefficients, and λs is the temperature conductivity in the solid. The friction velocity u∗,
defining the intensity of flow near the dendrite, can be expressed in terms of shear stress ss
as u∗ = (ss/ρm)1/2 [29]. In addition, the ratio of convective heat and mass coefficients is
expressed as αθ/ασ = (Dθ/Dσ)n̄, 2/3 < n̄ < 4/5 [24,30–33].

The last boundary condition defines the interfacial temperature in the form of

θs = θl = θ∗ −meσ− θQdK− β̃V · n, (at the interface), (7)

where θ∗ is the phase transition temperature for a single-component melt (σ = 0), me is
the equilibrium liquidus line slope, and d and β̃ stand for the capillary length and kinetic
coefficient, which due to the anisotropic growth, are the functions of polar angle θ [34]
shown in Figure 1

d(θ) = d0{1− χd cos[n(θ − θd)]}, β̃(θ) = β0θQ
{

1− χβ cos[n(θ − θβ)]
}

. (8)

Here, d0 and β0 are the constant factors. Note that expressions (8) work in the case of
n-fold dendritic symmetry. The constants χd and χβ are assumed to be much smaller than
unity. It is also significant to note that the crystal curvature K equates to 2/ρ and 4/ρ in the
2D and 3D geometries, respectively. Here, ρ stands for the dendrite tip diameter. Following
papers [14,18] we assume that the misalignment angles θd and θβ are negligibly small.

It is convenient to solve the model (1)–(8) using special curvilinear coordinate systems
(Figure 2). So, we use the parabolic cylinder reference frame in the 2D case and paraboloid
of revolution reference frame in the 3D case. These curvilinear coordinates are introduced
as follows

z = ρ
ζ − ξ

2
, x = ρ

√
ξζ in 2D,

z = ρ
ζ − ξ

2
, x = ρ

√
ξζ cos φ, y = ρ

√
ξζ sin φ in 3D.

(9)
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Here, ρ represents the dendrite tip radius, and x, y, and z are the Cartesian coordi-
nates. The coordinate ζ = 1 is introduced to be constant at the crystal surface and
the surfaces ζ = const represent isothermal (isoconcentration) surfaces surrounding the
growing dendrite.

Figure 2. A sketch of dendritic crystal streamlined by fluid flow in 2D (panel a, parabolic cylinder
coordinates ζ and ξ) and 3D (panel b, paraboloid of revolution coordinates ζ, ξ and φ). The phase
transition boundary corresponds to ζ = 1 in panels a and b.

Rewriting the model (1)–(8) in the coordinates (9) and considering that θl = θl(ζ)
and σ = σ(ζ) (the temperature θs in the solid phase is fixed), we obtain the steady-state
solutions in the form of

θl(ζ) = θi + (θ∞ − θi)
Iθ(ζ)

Iθ(∞)
, σ(ζ) = σi + (σ∞ − σi)

Iσ(ζ)

Iσ(∞)
. (10)

Here, θi and σi are the temperature and solute concentration at the dendrite surface
ζ = 1, and Iθ(ζ) and Iσ(ζ) are the temperature and concentration integrals. These functions
depend on the heat and mass transfer mechanism (conductive or convective) near the
crystal and are given in Sections 3.1 and 3.2.

3. The Total Undercooling Balance

The undercooling is a measure of the deviation of the temperature at any point of a
system from the equilibrium temperature of phase co-existence. The full and experimentally
measurable undercooling is a sum of a number of processes: heat and mass transport in
the bulk and at the interface as well as the solid–liquid interface stability due to interface
energy and attachment of particles (atoms, molecules, or clusters) to the interface. All
these contributions give their own influence on the growth kinetics that is expressed by the
following undercooling balance.

The melt undercooling ∆θ = θ∗ − θ∞ −meσ∞ represents the driving force of dendritic
growth and is given by the following terms

∆θ = ∆θθ + ∆θσ + ∆θρ + ∆θk, (11)
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where ∆θθ is the thermal undercooling, ∆θσ is the concentration undercooling, ∆θρ is the
undercooling connected with the curved phase transition interface, and ∆θk is the kinetic
undercooling. The first two of them are substantially dependent on the heat and mass
transfer mechanism at the dendrite interface. The last two contributions are only dependent
on dendrite tip diameter ρ and tip velocity V.

So, ∆θρ is given by

∆θρ(ρ) =
2d0θQ

ρ
(2D) and ∆θρ(ρ) =

4d0θQ

ρ
(3D). (12)

The kinetic undercooling ∆θk reads as

∆θk(V) =

(
V
νk

)j
, (13)

where νk represents the kinetic coefficient and j is the constant derived from experimental
data or numerical calculations.

3.1. Conductive Heat and Mass Transfer

Dealing with conductive heat and mass transfer near the dendritic surface, we come
to the following thermal and concentration undercoolings [13,18]

∆θθ(ρ, V) = θi − θ∞ = θQIv∗θ (ρ, V),

∆θσ(ρ, V) = me(σi − σ∞) =
meσ∞(1− ke)Iv∗σ(ρ, V)

1− (1− ke)Iv∗σ(ρ, V)
,

(14)

where the modified (thermal and concentration) Ivantsov functions take the form

Iv∗θ (ρ, V) = Pθ(ρ, V) exp[P0(ρ, V)]Iθ(∞),

Iv∗σ(ρ, V) = Pθ(ρ, V)
Dθ

Dσ
exp

[
P0(ρ, V)Dθ

Dσ

]
Iσ(∞).

Here, the thermal (Pθ) and flow (Pu) Péclet numbers are defined as

Pθ(ρ, V) =
ρV
2Dθ

, Pu(ρ) =
ρu

2Dθ
and P0(ρ, V) = Pθ(ρ, V) + Pu(ρ).

The interfacial temperature θi and solute concentration σi, as well as the integrals Iθ

and Iσ, are given by [13,18]

θi = θ∞ + θQPθ exp(P0)Iθ(∞),

σi =
σ∞

1− (1− ke) exp(P0Dθ/Dσ)Pθ Iσ(∞)Dθ/Dσ
,

Iθ(ζ) =

ζ∫
1

exp

(k− 1)Pu

ζ1∫
1

G(ζ2)dζ2√
ζ2

− P0ζ1

 dζ1

ζ
(k−1)/2
1

,

Iσ(ζ) =

ζ∫
1

exp

(k− 1)Pu
Dθ

Dσ

ζ1∫
1

G(ζ2)dζ2√
ζ2

− P0
Dθ

Dσ
ζ1

 dζ1

ζ
(k−1)/2
1

,

where k = 2 and k = 3 in cases of the 2D and 3D dendritic geometry.
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The function G(ζ) entering these expressions is determined from the hydrodynamic
solution of the Oseen viscous flow model and is given by [22,23] in the 2D and 3D cases

G(ζ) =

√
2√

π< erfc
√
</2

[
exp

(
−<

2

)
− exp

(
− ζ<

2

)]
+

erfc
√

ζ</2
erfc
√
</2

√
ζ in 2D,

G(ζ) =
exp(−</2)− exp(−ζ</2)√

ζ<E1(</2)
+

√
ζE1(ζ</2)
2E1(</2)

in 3D,

where < = ρu/µ stands for the Reynolds number, and E1(w) =
∫ ∞

w λ−1 exp(−λ)dλ.
As a result, the contributions in the total undercooling balance (11) in the case of

conductive heat and mass transfer mechanism are defined by expressions (12)–(14).

3.2. Convective Heat and Mass Transfer

Dealing with intense fluid motions and mixing near the dendrite surface, we come to
the following temperature and concentration undercoolings for convective heat and mass
transfer mechanism [18]

∆θθ(V) = θi − θ∞ =
θQVλs

αθρmκpu∗Dθ
,

∆θσ(V) = me(σi − σ∞) =
(1− ke)Vmeσ∞

ασu∗ − (1− ke)V
.

(15)

The integrals Iθ(ζ) and Iσ(ζ) entering in (10) in the case of convective transfer mecha-
nism are given by

Iθ(ζ) =

ζ∫
1

exp(−Pθζ1)

ζ
(k−1)/2
1

dζ1, Iσ(ζ) =

ζ∫
1

exp(−Pσζ1)

ζ
(k−1)/2
1

dζ1, Pσ =
ρV

2Dσ
,

and, as before, k = 2 and k = 3 describe the 2D and 3D growth geometries. Thus, the
contributions in the total undercooling balance (11) in the case of convective heat and mass
transfer mechanism are defined by expressions (12), (13) and (15).

3.3. Sewing Together Undercooling Balances

In this section, we sew together the undercooling balances for conductive and con-
vective heat and mass transfer to describe mixed transfer mechanisms near the dendritic
surface. To do this, we introduce the corresponding superscripts “cond” and “conv”, i.e., we
write the melt undercoolings as ∆θcond for conductive mechanism and ∆θconv for convective
mechanism. To sew together these functions of ∆θ let us write down the following law

∆θ = ∆θsewed =
∆θconvBconv(∆θ) + ∆θcondBcond(∆θ)

Bconv(∆θ) + Bcond(∆θ)
, (16)

where Bcond(∆θ) and Bconv(∆θ) are the sewing functions. These functions should satisfy
the following limiting cases: Bcond(∆θ)→ 0 for ∆θ → 0 and Bconv(∆θ)→ 0 for ∆θ � ∆θc,
where ∆θc is a characteristic undercooling (e.g., initial undercooling). In other words,
∆θsewed ≈ ∆θconv for small and ∆θsewed ≈ ∆θcond for large melt undercoolings. The sewing
functions can be chosen in various ways. So, for example, when describing dendritic tip
shapes, the authors of Refs. [35,36] used the exponential sewing functions. On the other
hand, when describing dynamics of intracellular clusters of nanoparticles, the authors of
Ref. [37] used power functions to stitch together different asymptotic solutions.
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4. Selection Criterion

Equation (16) expresses ρ, V and ∆θ. To obtain ρ(∆θ) and V(∆θ) independently, we
need one more equation between these variables. Such an equation, known as the selection
criterion, follows from the solvability theory and stability analysis [13,18,34,38–40].

4.1. Solvability Condition

The solvability condition defines the family of solutions for temperature and solute
concentration distributions lying in the vicinity of parabolic/paraboloidal Ivantsov solu-
tions. This condition takes the form [41]

∞∫
−∞

A[Ξ0(`)]℘m(`)d` = 0, ℘m(`) = exp

i
`∫

0

κm(`1)d`1

. (17)

Here, A represents a curvature operator, κm is the wavenumber found from stability
theory (see Section 4.2), Ξ0(`) is the solution of corresponding boundary-value problem,
and i is the unit imaginary number. Equation (17) will be used below to obtain the second
equation connecting ρ, V and ∆θ.

4.2. Conductive Heat and Mass Transfer

Now we consider the conductive-type boundary conditions at the growing dendritic
surface. Following the theory [10], we expand the flow velocity components uξ and uζ in
series at the point ζ = 1 for the 2D crystal. The result reads as

uξ =

(
ξ

ξ + 1

)1/2

(V + b(<)u(ζ − 1)), uζ = −V(ξ + 1)−1/2, (18)

where

b(<) =
(
<
2π

)1/2 exp(−</2)
erfc (

√
</2)

in 2D and b(<) = exp(−</2)
E1(</2)

in 3D.

Again, following the theory [10], we use the local Cartesian reference frame (xl , yl)
fixed at the dendrite surface and shifting together with the crystal. Keeping this in mind, we
rewrite Formulas (18) as (here the axes xl and yl point out the tangent and normal directions)

ũ = −yl
b(<)u

2ρ
sin(2θ)−V sin θ, ṽ = −V cos θ, (19)

where ũ and ṽ represent the tangent and normal velocities near dendritic surface.
The boundary conditions (5) determine the following derivatives at the solid/liquid

surface yl = 0

dθ̃l
dyl

= −
θQV cos θ

Dθ
,

dσ̃

dyl
=

(ke − 1)Vσi cos θ

Dσ
, yl = 0. (20)

Here, and below the “tilde” above, the symbols indicate the steady-state solutions. Keeping
this in mind, we have the temperature and solute concentration near the solid/liquid surface

θ̃l = θi − yl
θQV cos θ

Dθ
, σ̃ = σi + yl

(ke − 1)Vσi cos θ

Dσ
. (21)

To find the wavenumber κm in (17), we perturb the steady-state solutions of (i) fluid
flow near the growing dendrite as u′ and v′, (ii) temperature field in the solid and liquid
phases as θ′s and θ′l , (iii) solute concentration in liquid as σ′, (iv) hydrodynamic pressure
as p′, and (v) solid/liquid interface as Σ′. All perturbations are assumed to be small
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compared to the corresponding steady-state functions. Equations governing a behaviour of
perturbations follow from (1)–(3) and take the form

∂θ′s
∂τ

+ ũ
∂θ′s
∂xl

+ ṽ
∂θ′s
∂yl

+ v′
dθ̃s

dyl
= Dθ∆θ′s,

∂θ′l
∂τ

+ ũ
∂θ′l
∂xl

+ ṽ
∂θ′l
∂yl

+ v′
dθ̃l
dyl

= Dθ∆θ′l ,

∂σ′

∂τ
+ ũ

∂σ′

∂xl
+ ṽ

∂σ′

∂yl
+ v′

dσ̃

dyl
= Dσ∆σ′,

∇p′ = µρm∆v′, ∇ · v′ = 0.

(22)

Here, v′ means the vector of hydrodynamic perturbations.
Expanding expressions (5) and (7) in series near dendrite surface yl = 0, we arrive at

θ′s + θ′l −
θQV cos θ

Dθ
Σ′ = 0,

θ′s − θQd(θ)
∂2Σ′

∂y2
l
+ β̃(θ)

∂Σ′

∂τ
−meσ′ +

meσi(1− ke)V cos θ

Dσ
Σ′ = 0,

u′ = 0, v′ +
∂Σ′

∂τ
= 0,

θQ

Dθ

∂Σ′

∂τ
− ∂θ′s

∂yl
+

∂θ′l
∂yl

+
θQV2 cos2 θ

D2
θ

Σ′ = 0.

(23)

Let us especially underline that all perturbations are proportional to

exp(vτ + iκxl − εκyl) (24)

within the framework of linear stability theory (see, among others, [10,13,18]). Here, v
and κ stand for the frequency and wavenumber of perturbations, and |ε| = 1 defines the
convergence of perturbations for yl → ∞.

The method for constructing the analytical expressions for perturbations is described
in detail in several papers devoted to the morphological stability theory (see, among
others, [10,13,18]). Therefore, to save room, we mention only the main idea for finding such
solutions. Considering all perturbations to be proportional to the exponential function (24),
we find equations for their amplitudes from the boundary conditions (23). Then, to obtain
a nontrivial solution for a system of linear equations for such amplitudes, we equate the
determinant of this linear system to zero and come to the following cubic equation for the
wavenumber κ = κm

κ3
m − κm

(
V

2Dθd(θ)
+

me(1− ke)σiV
θQDσd(θ)

)
exp(iθ)− iκm

b(<)u sin(2θ)

16ρDθ

−iκm
b(<)u sin(2θ)

8ρDσ
+ iκ2

m
V sin θ

2Dθ
− V2 cos θ exp(iθ)

4D2
θ d(θ)

− iκ2
m

β̃(θ)V sin θ

θQd(θ)
= 0.

(25)

In deriving Equation (25), it was taken into account that the moving coordinate
system associated with the dendrite tip is travelling in space at velocity −iκV sin θ. As this
takes place, the perturbation evolves with the velocity v(κ). Therefore, the real velocity
of a perturbation represents the sum of these velocities and looks like v(κ) − iVκ sin θ.
Again, let us mention that the growth rate V of the dendritic tip is assumed to be constant
throughout this paper. Here, we refer the interested reader to the theory [42] of how fast the
dendrite reaches its steady-state velocity V. Furthermore, we have considered the neutral
stability surface, where κ = κm (v = 0), put ε = −1, and changed i by −i accordingly to
the theory of Ref. [10]. An important point is that expression (25) corresponds to previously
developed theories [8–10,13,41,43–47] in various limiting cases.



Crystals 2022, 12, 965 9 of 15

Next, combining (17) and (25), we get the selection criterion for conductive heat and
mass transfer boundary conditions

σ∗cond ≡ 2d0Dθρ−2V−1 =
σ0nχ7/n

d B7/n
n

1 + βν̄sn
n

 1[
1 + b1nχ2/n

d B2/n
n Pθ(1 + ∆0β0Dθ/d0)

]2

+
2me(1− ke)σiDθ[

1 + b2nχ2/n
d B2/n

n Pσ(1 + ∆0β0Dσ/d0CD)
]2

DσθQ

,

(26)

where

ν̄n = χ−3/n
d B−3/n

n

(
b(<)ud0

4VρR
+

b(<)ud0Dθ

2VρRDσ

)
, sn =

7 + n
2(3 + n)

, R = 1 +
2me(1− ke)σiDθ

DσθQ
,

d0CD =
d0θQ

2me(1− ke)σi
, Bn =

1
23n/4

n

∑
j=0

(
n
j

)
in−j cos

π(n− j)
2

,

b1n =

(
8σ0n

7

)1/2( 3
56

)3/8
B3/2n

n χ3/2n−3/8
d , b2n =

√
2b1n, ∆0 = 20

(
7

24

)1/2(56
3

)3/8
.

Here, σ0n and β are the selection constants. The first of them defines the stable mode
of dendritic growth in the absence of hydrodynamic flow, whereas the second one is
responsible for hydrodynamic flows. The selection criterion (26) determines the second
equation connecting ρ, V and ∆θ for conductive heat and mass transfer boundary conditions.
Now, coupling (11) and (26), one can find the functions ρ(∆θ) and V(∆θ). Note that
criterion (26) has limiting transitions to previously developed theories [8–10,13,41,43–47].
The theory developed can be used for the three-dimensional dendritic growth as well. In
this case, we have to replace the solution of the two-dimensional heat and mass transfer and
hydrodynamic equations with the corresponding three-dimensional solutions. Therefore,
the system (11) and (26) works in the 3D case too.

4.3. Convective Heat and Mass Transfer

Now, we consider the convective-type boundary conditions at the growing dendritic
surface. In this case, the theory considered in Section 4.2 should be modified. At first, now ex-
pressions (19) look like ũ = −V sin θ and ṽ = −V cos θ. The boundary conditions (23) become

θ′l + ( f1 + me f2)Σ′ + meσ′ + dθQ
∂2Σ′

∂y2
l
− β̃

∂Σ′

∂τ
= 0,

θ′s −me f2Σ′ −meσ′ − dθQ
∂2Σ′

∂y2
l
+ β̃

∂Σ′

∂τ
= 0,

θQ

Dθ

∂Σ′

∂τ
− ∂θ′s

∂yl
+ 2h f1Σ′ + 2hθ′l ,

1− ke

ασu∗

[
V cos θ(σ′ + f2Σ′) + σi

∂Σ′

∂τ

]
+ σ′ + f2Σ′ = 0,

(27)

where h = αθρmκpu∗/(2λs).
Equating to zero the determinant of coefficients at perturbations following from

Equation (27), we obtain the marginal mode of the wavenumber

κ2
m + κm

(
2h− i

β̃V sin θ

θQd
− i

Y2 sin θ

Y1d

)
− i

2hβ̃V sin θ

θQd
− i

V sin θ

Dθd
− i

2hY2 sin θ

Y1d
= 0, (28)
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where

Y1 = 1 +
(1− ke)V cos θ

ασu∗
, Y2 =

(1− ke)meσiV
ασθQu∗

.

Now, combining (17) and (28), we get the selection criterion for convective heat and
mass transfer boundary conditions

σ∗conv ≡ 2d0Dθρ−2V−1 =
2σc

0nχ2/n
d B2/n

n Dθ β1

ρ

+
σc

0nχ5/n
d B5/n

n (1 + b1β1Dθ)
[
1 + rnν̃

(n+5)/2(n−1)
1n

]2

[
1 + ln

(
χ3/n

d B3/n
n b1ρ + 3χ1/4

d B2/n
n Pθ Dθ β1/(21/4d0)

)]2 ,

(29)

where

b1 =
αθu∗ρmκp

2λs
, β1 = β0 +

me(1− ke)σi
ασu∗θQ

, l2
n = 29/2 25

27
σc

0n, ν̃1n =
b2

1χ1/n
d B1/n

n ρd0

21/4Pθ(1 + b1β1Dθ)
.

Here, σc
0n and rn represent selection constants dependent on the crystalline symmetry

(subscript n).
The selection criterion (29) defines the second equation connecting ρ, V and ∆θ for

convective heat and mass-transfer boundary conditions. Now, coupling (11) and (29), one
can find the functions ρ(∆θ) and V(∆θ). As before, the theory developed can be used for
the three-dimensional dendritic growth as well.

4.4. Sewing Together Selection Criteria

Let us now sew together selection criteria (26) and (29) for conductive and convective
heat and mass transfer near a dendrite surface

σ∗sewed =
σ∗convBconv(∆θ) + σ∗condBcond(∆θ)

Bconv(∆θ) + Bcond(∆θ)
. (30)

As before, σ∗sewed ≈ σ∗conv for smaller and σ∗sewed ≈ σ∗cond for larger melt undercool-
ings.This means that criterion (30) contains limiting transitions to the conductive and
convective mechanisms of heat and mass transfer. If both mechanisms take place simul-
taneously, we have two nonlinear Equations (16) and (30) to find ρ(∆θ) and V(∆θ). An
important point is that these equations should describe both undercooling limits: low
∆θ (convective mechanism prevails) and moderate ∆θ (conductive mechanism prevails).
Note that a behaviour of ρ(∆θ) and V(∆θ) will substantially depend on the sewing func-
tions Bcond(∆θ) and Bconv(∆θ), which can be chosen in different ways [35–37,48,49]. The
essential conditions are only those Bcond(∆θ) → 0 for ∆θ → 0 and Bconv(∆θ) → 0 for
∆θ � ∆θc. In the next section, we analyse the sewed solutions (16) and (30) for different
undercooled melts.

5. Behaviour of Sewed Functions

First of all, let us choose the stitching functions entering in the sewed undercooling
balance (16) and selection criterion (30). Following previous studies [35–37], we chose
power functions as follows

Bconv(∆θ) = εconv

(
θQ

∆θ

)jconv

, Bcond(∆θ) = εcond

(
∆θ

θ∗

)jcond

. (31)

Here, εconv and εcond are the stitching constants, and jconv ≥ 1 and jcond ≥ 1 are
the parameters determining the smoothness of stitching functions. These values should
also provide the correct behaviour of Bconv(∆θ) and Bcond(∆θ) for small and large melt
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undercoolings. Namely, Bconv(∆θ)→ 0 at large ∆θ (∆θ � θQ) and Bcond(∆θ)→ 0 at small
∆θ (∆θ � θ∗). Taking these limiting cases into account, we see that

∆θ ≈ ∆θconv and σ∗ ≈ σ∗conv, small undercooling,

∆θ ≈ ∆θcond and σ∗ ≈ σ∗cond, large undercooling.

Such behaviour provides a correct smooth transition of the sewed solution compared
with purely convective and conductive branches shown in Figure 3 for the Al24Ge76 melt.
The solidification experiments with Al24Ge76 alloy (see for details [15]) were carried out
using a horizontal sample alignment, minimising gravity-induced fluid flow. The driving
force for solidification is the total undercooling ∆θ at the dendrite tip. It is determined as
the sum of solutal and curvature (Gibbs–Thomson effect) undercooling; kinetic and thermal
undercooling were neglected (i.e., ∆θθ = 0 and ∆θk = 0), because fast thermal diffusion
was assumed.

Figure 3. Tip velocity V as a function of the melt undercooling ∆θ for Al24Ge76 [15] undercooled melt.
(a) Convective (solid line) and conductive (dashed line) boundary conditions. Material and calculation
parameters are given in Table 1. (b) Sewed model. Stitching parameters: εconv = 4.5 × 10−10,
εcond = 0.48, jconv = jcond = 2.

Table 1. Material and calculation parameters for the Al24Ge76 [15] and Ti45Al55 [16] melts.

Parameter Al24Ge76 Ti45Al55 Units

Liquidus slope, me 10.4 10.72 K/at.%
Hypercooling, θQ 353 272 K
Liquidus temperature, θ∗ 732 1748 K
Solute diffusion coefficient, Dσ 7× 10−9 8× 10−9 m2 s−1

Initial composition, σ∞ 24 55 at.%
Capillary constant, d0 4.3× 10−10 7.8× 10−10 m
Thermal diffusivity, Dθ 4× 10−5 7.5× 10−6 m2 s−1

Liquid density, ρm 1.26× 103 2.46× 103 kg m−3

Heat capacity, κp 550 1237 J kg−1 K−1

Thermal conductivity in the solid, λs 29.22 29.22 W m−1 K−1

Friction velocity of flow, u∗ 3.3× 10−4 2 m s−1

Segregation coefficient, ke 0.11 0.86 -
Surface energy stiffness, χd 0.026 0.030 -
Solvability constant, σ0n/σc

0n 0.09/0.09 0.02/0.15 -
Convective coefficient of heat, αθ 0 0.25 -
Convective coefficient of mass, ασ 2.88 1 -
Order of crystalline symmetry, n 4 4 -

Comparing the theory with the experimental data, it is easy to see that each of these
branches moves away from the experimental points into the region of its invalidity: the
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convective branch (solid line in Figure 3a) does not work for larger ∆θ, while the conductive
one (dashed line in Figure 3a) does not describe experiments for smaller ∆θ. Both branches
sewed together (solid line in Figure 3b) well satisfy experimental points in the whole
diapason of melt undercooling.

To check the theory functionality for another system, we compare the sewed solution
for the Ti45Al55 droplets processed in electromagnetic levitators [13] in Figure 4. The sewed
model is able to quantitatively reproduce the experimental results obtained by Hartmann et al.
(see [16]). Note that that the intensity of convection and flow velocity are not measured in
experiments of [16] directly. In this sense, the theoretical model uses the fluid velocity u∗ as the
parameter, which relates to the process of viscous flow in levitated droplets realistically. Thus,
convective boundary conditions well describe two experimental points lying near 40 K and
conductive boundary conditions covering the intermediate region, as well as the whole
undercooling diapason. As is easily seen, the sewed “tip velocity—melt undercooling”
curve describes both limiting regimes with smaller and larger ∆θ, as well as the intermediate
regime between them. In other words, the whole diapason of experimental measurements
is covered.

Figure 4. Tip velocity V as a function of the melt undercooling ∆θ for Ti45Al55 [16] undercooled
melt. Sewed model, material and calculation parameters are given in Table 1. Stitching parameters:
εconv = 3× 10−9, εcond = 0.03, jconv = jcond = 3.

The reason for this behaviour, from a practical viewpoint, is that vigorous currents
of liquid could occur in the vicinity of growing dendrites. This in turn is associated with
a laminar-to-turbulent transition when undercooled droplets solidify in electromagnetic
levitators [50]. This transition may be driven as a result of vigorous fluid swirls, resulting
in a convective heat and mass transport near the surfaces of crystals. Therefore, taking
all of the above into account, we conclude that convective boundary conditions might
outline experimental data on melt solidification for small undercooling by analogy with ice
dendrites grown in sea water [24–27].

6. Conclusions

In summary, we developed a generalised theory of stable dendritic growth in under-
cooled binary melts in the presence of convective flows. First of all, we considered two
kinds of solidification conditions: (i) forced melt convection when conductive-type heat and
mass transfer boundary conditions take place, and (ii) intense melt convection (e.g., caused
by turbulent flows near the dendrite surface or various peculiarities of hydrodynamics
currents) when convective-type heat and mass transfer boundary conditions occur. The
first of these cases describes moderate and high melt undercoolings ∆θ, whereas the second
one corresponds to smaller values of the driving force ∆θ. Let us especially underline that
small driving forces ∆θ happen at Pθ . 10−3, moderate ∆θ occur at 10−3 . Pθ . 10−2, and
high ∆θ correspond to Pθ & 10−2 [35]. Sewing together these cases, we described a wider
range of melt undercoolings (both of these cases) until local-equilibrium crystallisation
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conditions are fulfilled. To do this, we derived undercooling balances and stability criteria
for cases (i) and (ii) independently. Then these expressions were sewed together using
the generalised Formulas (16) and (30), which represent the main outcome of our theory.
Analysing these laws, we saw that the present solution contained two branches, convective
and conductive. The first of them describes low melt undercoolings, while the second one is
valid for moderate and high driving forces. The stitching functions Bconv(∆θ) and Bcond(∆θ)
ensure a smooth transition between these branches. These functions can only be chosen by
comparing theory and experimental data. Our simulations based on Formulas (16) and (30)
demonstrated that the theory and experiments are in good agreement. Let us especially
highlight in this conclusion that the stable growth mode of dendrites in local nonequilib-
rium crystallisation conditions Pθ & 1 can also be selected using the hyperbolic diffusion
equation, modified mass balance condition, and nonequilibrium expressions for the segre-
gation coefficient and liquidus line slope. Such a theory was developed in our previous
studies [51,52].

Note that it is convenient to use the power laws “dendrite tip velocity—undercooling”
and “dendrite tip diameter—undercooling” to compare the theory and experimental data.
Such laws can be derived analytically in some limiting cases (see, among others, Ref. [46]).
When studying different asymptotics to derive similar power laws for different under-
coolings, Péclet and Reynolds numbers represent one of the important tasks for future
investigations.

The theory under consideration could be further developed to describe the anoma-
lous (U-shape) behaviour of the velocity–undercooling relationship found in experiments
aboard the International Space Station [53]. To describe these experiments where dendritic
growth and crystal nucleation occur simultaneously ahead of the recalescence front, we
also need to use nucleation theory at initial and intermediate stages (see, among others,
recently published papers [54–57]). This will be the subject of further investigations in the
near future.
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