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Abstract: Three complexes [Co(2-XPy)2Cl2] (X = Cl, Br, and I) were prepared and characterized,
representing a rare case of isostructurality within the Cl-Br-I row. The nature of halogen bonding
(XB) in a solid state was studied by DFT calculations, revealing a tendency of XB energy growth for
heavier halogens.
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1. Introduction

Regarding all of the approaches in the field of crystal engineering, halogen bonding (XB) has
attracted great interest within modern research [1,2]. This type of non-covalent interaction involving
halogen atoms (according to the IUPAC-approved definition, the bond “occurs when there is evidence
of a net attractive interaction between an electrophilic region associated with a halogen atom in
a molecular entity and a nucleophilic region in another, or the same, molecular entity”) becomes
especially prominent in a solid state, and its appearance can affect numerous physical properties
of matter, such as luminescence [3–5], solubility [6], color [7], and so forth, therefore providing an
additional tool for material design [8–10].

From the point of view of physical chemistry, the key parameter of XB is its energy, which mainly
depends on the environment of the halogen atoms participating in the formation of non-covalent
contacts. However, the effects of crystal packing can play a significant role as well [11]. Therefore,
for the experimental estimation of the σ-hole-donating ability in certain building blocks (this feature is
essential for XB formation [2]) of special interest are the cases where series of compounds containing
different halogen atoms (Cl, Br, and I) are isostructural. This situation allows a direct comparison
of energies in different X···X pairs by means of theoretical methods. However, while Cl/Br or Br/I
isostructural pairs are common, the ‘triple’ series are very rare [12,13] especially in coordination
chemistry [14,15].

Neutral complexes of general formula, [M(XPy)2Y2] (XPy = halogen-substituted pyridine, Y = Cl,
Br or I, M = divalent metal cations, i.a. Cu, Zn, Co, Cd, etc.) [16–23], represent a large family of
coordination compounds which reveal a clear trend to form XB in a solid state. Surprisingly, the analysis
of previously published XRD data indicates that complexes with 2-halopyridines (2-XPy) are less
studied than those with 3-, 4- or polysubstituted pyridines. In relation to 2-XPy, there are structurally
characterized examples for Pd [24], Co [25], and Cu [26–29], (1, 1, and 7, respectively), although the
preparation procedures [30,31], the features of thermal decomposition [32], and IR spectra [33] for
several relevant Co complexes were described earlier. In order to fill this gap, we prepared a series of
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cobalt(II) complexes of the general formula [Co(2-XPy)Cl2] (X = Cl (1), Br (2) and I (3)) which, according
to the XRD data, are isostructural (the maximal deviations of the unit cell parameters are 0.342 Å) and,
therefore, represent an attractive and rare object for the study of XB nature.

2. Materials and Methods

All experiments were conducted in air. All reagents used were from commercial sources
(Sigma-Aldrich) and used as purchased.

2.1. Preparation of 1–3

The measurement of 100 mg (0.42 mmol) of CoCl2·6H2O was dissolved in 5 mL of ethanol,
followed by the addition of 2-chloro (84 µL), 2-bromo (85 µL), or 2-iodopyridine (90 µL), for 1, 2, or 3,
respectively. The slow evaporation of the solvents (to ≈10% of the initial volume) resulted in the
formation of blue crystals suitable for X-ray diffractometry. Yield: 86% (1), 88% (2), 85% (3); element
analysis data are given in Table S1 (Supplementary Materials).

2.2. X-ray Diffractometry

Data for single crystals of 1–3 were obtained at 130 K on the Agilent Xcalibur diffractometer
(version/model, Oxford Diffraction, UK) equipped with an area AtlasS2 detector (graphite monochromator,
λ(MoKα) = 0.71073 Å, ω-scans). The integration, absorption correction, and determination of unit cell
parameters were performed using the CrysAlisPro program package (CrysAlisPro 1.171.38.41. Rigaku
Oxford Diffraction: The Woodlands, TX, USA, 2015). The structures were solved using the dual space
algorithm (SHELXT) and refined by the full-matrix least-squares technique (SHELXL) [34] in anisotropic
approximation (except hydrogen atoms). The position of the hydrogen atoms of organic ligands was
calculated geometrically and refined in the riding model. The crystallographic data and details of the
structure refinements are summarized in Table S1 (Supplementary Materials). CCDC 1985498-1985500
contains the supplementary crystallographic data for this paper. The data can be obtained free of charge
from The Cambridge Crystallographic Data Center at http://www.ccdc.cam.ac.uk/data_request/cif.

3. Results and Discussion

The formulas 1–3 are neutral. The coordination environment of the tetrahedral Co(II) consisted of
two chloride and two pyridine ligands (Figure 1). The Co–Cl and Co–N bond lengths were very similar
(Co–Cl = 2.236–2.250, 2.238–2.253, and 2.246–2.257 Å, Co–N = 2.051–2.066, 2.050–2.064, and 2.057
2.069 Å, respectively). The comparison of X···Cl distances (3.505–3.543, 3.401–3.418, and 3.393–3.400 Å
in 1, 2, and 3) combined with the sum of the corresponding Bondi’s van der Waals radii (3.50, 3.58,
and 3.73 Å for X = Cl, Br, and I [35,36]) indicates that corresponding non-covalent interactions must be
present in 2 and 3 and, most likely, absent in 1. However, since it was known that “abnormally long”
XB can exists, we decided to include 1 into the DFT analysis dataset.

For the estimation of XB energies in 1–3, we applied an approach that was successfully used by us
earlier [37–40]: atomic coordinates were extracted from XRD data and used (without optimization,
see Supplementary Materials) for DFT calculations (M06/DZP-DKH) and the topological analysis of
the electron density distribution [41]. Results are presented in Table 1 and in Figure 2.
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Figure 1. Halogen bonding (dashed) in the structure of 3. I purple, Cl green, N blue, Co cyan, C 
turquoise, H grey. 
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Figure 2. 

 
Figure 2. The contour lines demonstrate the Laplacian electron density distribution 2(r), bond 
paths, and selected zero-flux surfaces referring to the intermolecular non-covalent interactions of 
X···Cl (X = Cl, Br, I) in 1 (top, left), 2 (top, right) and 3 (bottom). The critical bonding points (3, −1) are 
shown in blue, the nuclear critical points (3, −3) – in pale brown, ring critical points (3, +1) – in 
orange, and length units – Å. 
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Figure 2. The contour lines demonstrate the Laplacian electron density distribution ∇2ρ(r), bond paths,
and selected zero-flux surfaces referring to the intermolecular non-covalent interactions of X···Cl (X = Cl,
Br, I) in 1 (top, left), 2 (top, right) and 3 (bottom). The critical bonding points (3, −1) are shown in blue,
the nuclear critical points (3, −3) – in pale brown, ring critical points (3, +1) – in orange, and length
units – Å.

According to the criterion proposed by Espinosa et al., the balance between the Lagrangian kinetic
energy G(r) and potential energy density V(r) at the BCPs (3,−1) indicates the nature of these interactions;
if the ratio −G(r)/V(r) > 1, then the nature of the appropriate interaction is purely non-covalent; in the
case of −G(r)/V(r) < 1, some covalent component occurs [42]; therefore, all considered interactions are
purely non-covalent. For the estimation of XB energies, four diverse approaches were used [43–45].
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The absolute values of Eint calculated via these methods vary, but in all cases there was a clear trend:
the energy increased in the Cl–Br–I row (the difference became especially prominent in the case of the
approach proposed by Bartashevich et al. [45]). Interestingly, these correlated with the contributions of
corresponding interactions to the molecular Hirshfeld surfaces (see Supplementary Materials, Table S2)
which increased in the 1-2-3 sequence. All these facts confirmed that 2-iodopyridine was the best XB
donor in 2-XPy series.

Table 1. Values of the density of all electrons – ρ(r), Laplacian of electron density – ∇2ρ(r) and
appropriate λ2 eigenvalues (with promolecular approximation), energy density – Hb, potential energy
density – V(r), and Lagrangian kinetic energy – G(r) (a.u.) at the bonding of critical points (3, −1),
corresponding to intermolecular non-covalent interactions X···Cl (X = Cl, Br, I) in 1, 2, and 3, as well as
energies for these contacts Eint (kcal/mol), defined by different approaches.

Contact ρ(r) ∇
2ρ(r) λ2 Hb V(r) G(r) Eint

a Eint
b Eint

c Eint
d

1

Cl···Cl, 3.505 Å 0.007 0.023 −0.009 0.001 −0.003 0.005 0.9 1.3 0.9 1.5

Cl···Cl, 3.543 Å 0.006 0.021 −0.008 0.001 −0.003 0.004 0.9 1.1 0.9 1.2

2

Br···Cl, 3.401 Å 0.009 0.030 −0.012 0.001 −0.005 0.006 1.6 1.6 1.8 2.1

Br···Cl, 3.418 Å 0.009 0.029 −0.012 0.001 −0.005 0.006 1.6 1.6 1.8 2.1

3

I···Cl, 3.393 Å 0.012 0.041 −0.016 0.001 −0.008 0.009 2.5 2.4 3.4 3.8

I···Cl, 3.400 Å 0.012 0.040 −0.015 0.001 −0.008 0.009 2.5 2.4 3.4 3.8
a Eint = −V(r)/2 for all types of non-covalent interactions [43]. b Eint = 0.429G(r) for all types of non-covalent
interactions (this correlation was initially developed for hydrogen bonding) [44]. c Eint = 0.49(−V(r)), or 0.58(−V(r)),
or 0.68(−V(r)) for non-covalent interactions involving chlorine, bromine, and iodine atoms, respectively [45].
d Eint = 0.47G(r), or 0.57G(r), or 0.67G(r) for non-covalent interactions involving chlorine, bromine, and iodine
atoms, respectively [45].

4. Conclusions

In this study, the isostructural complexes [Co(2-XPy)Cl2] represent a rare case from the point of
view of crystal engineering, making direct comparisons of XB donor properties of 2-XPy (those are
most prominent for 2-iodopyridine). In our opinion, these facts confirmed that halogen-substituted
N-donor ligands are promising building blocks for the design of XB-based supramolecular systems
(similar ideas were expressed earlier for 3- and 4-halogenated pyridines [16,19,22,26,27,46]), and this
feature can be utilized in material science.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/4/289/
s1. Table S1: Crystal data and structure refinement for 1–3, Table S2: Results of Hirshfeld surface analysis,
computational details, Table S3: Cartesian atomic coordinates for model supramolecular associates 1, 2 and 3,
Table S4: Element analysis data for 1–3.
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