Critical Review of Scintillating Crystals for Neutron Detection
Abstract
:1. Introduction
2. Scintillating Crystals Used in Radiation Detection Applications
2.1. Operation Principle of Inorganic Crystals
2.2. Inorganic Crystals Capable of Neutron Detection
2.3. Detectors Utilising 6Li Neutron Reaction
2.4. Detectors Utilising Other Properties of Inorganic Crystals
2.5. Organic Crystals Operation
2.6. Summary
3. Methodology
3.1. Energy Calibration
3.2. Pulse Shape Discrimination
3.3. PSD Quality Assessment
4. Results
5. Discussion and Conclusions
Example of Neutron Detection Capabilities Using Single Stilbene Crystal
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; et al. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier. Nucl. Inst. Methods Phys. Res. A 2011, 652, 41–44. [Google Scholar] [CrossRef]
- Seymour, R.; Hull, C.D.; Crawford, T.; Coyne, B.; Bliss, M.; Craig, R.A. Portal, freight and vehicle monitor performance using scintillating glass fiber detectors for the detection of plutonium in the Illicit Trafficking Radiation Assessment Program. J. Radioanal. Nucl. Chem. 2001, 248, 699–705. [Google Scholar] [CrossRef]
- Röntgen, W.C. On a New Kind of Rays. Science 1896, 3, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Crookes, W. On The Illumination of Lines of Molecular Pressure and the Trajectory of Molecules. Philos. Trans. R. Soc. Lond. 1878, 28, 102–111. [Google Scholar]
- Friedrich, W.; Knipping, P.; Laue, M. Interferenzerscheinungen bei Röntgenstrahlen. Ann. Phys. 1913, 346, 971–988. [Google Scholar] [CrossRef]
- Bragg, W.H. X-rays and Crystalline Structure. Science 1914, 40, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Zworykin, V.K.; Morton, G.A.; Malter, L. The Secondary Emission Multiplier-A New Electronic Device. Proc. Inst. Radio Eng. 1936, 24, 351–375. [Google Scholar] [CrossRef]
- Krane, K.S. Introductory Nuclear Physics; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Van Eijk, C.W. Development of inorganic scintillators. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 1997, 392, 285–290. [Google Scholar] [CrossRef]
- Schweitzer, J.S. Cerium-doped Lutetium Oxyorthosilicate. IEEE Trans. Nucl Sci. 1992, 39, 502–505. [Google Scholar]
- Tomanin, A.; Peerani, P.; Janssens-Maenhout, G. On the optimisation of the use of 3He in radiation portal monitors. Nucl. Inst. Methods Phys. Res. A 2012, 700, 81–85. [Google Scholar] [CrossRef]
- Kouzes, R.T.; Ely, J.H.; Erikson, L.E.; Kernan, W.J.; Lintereur, A.T.; Siciliano, E.R.; Stephens, D.L.; Stromswold, D.C.; Van Ginhoven, R.M.; Woodring, M.L. Neutron detection alternatives to 3He for national security applications. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2010, 623, 1035–1045. [Google Scholar] [CrossRef]
- Robinson, S.M.; Runkle, R.C.; Newby, R.J. A comparison of performance between organic scintillation crystals and moderated 3He-based detectors for fission neutron detection. Nucl. Inst. Methods Phys. Res. A 2011, 652, 404–407. [Google Scholar] [CrossRef]
- Peerani, P.; Tomanin, A.; Pozzi, S.; Dolan, J.; Miller, E.; Flaska, M.; Battaglieri, M.; Vita, R.D.; Ficini, L.; Ottonello, G.; et al. A Testing on novel neutron detectors as alternative to 3He for security applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2012, 696, 110–120. [Google Scholar] [CrossRef]
- Goldsmith, J.E.M.; Gerling, M.D.; Brennan, J.S. A compact neutron scatter camera for field deployment A compact neutron scatter camera for field deployment. Rev. Sci. Instrum. 2019, 87, 083307. [Google Scholar] [CrossRef] [PubMed]
- Balmer, M.J.; Gamage, K.A.; Taylor, G.C. Comparative analysis of pulse shape discrimination methods in a 6Li loaded plastic scintillator. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2015, 788, 146–153. [Google Scholar] [CrossRef]
- Boatner, L.; Comer, E.; Wright, G.; Ramey, J.; Riedel, R.; Jellison, G.; Kolopus, J. Improved Lithium Iodide neutron scintillator with Eu2+ activation II: Activator zoning and concentration effects in Bridgman-grown crystals. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2018, 903, 8–17. [Google Scholar] [CrossRef]
- Iwanowska, J.; Swiderski, L.; Moszynski, M.; Yanagida, T.; Yokota, Y.; Yoshikawa, A.; Fukuda, K.; Kawaguchi, N.; Ishizu, S. Thermal neutron detection with Ce3+ doped LiCaAlF6 single crystals. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2011, 652, 319–322. [Google Scholar] [CrossRef]
- Yanagida, T.; Watanabe, K.; Okada, G.; Kawaguchi, N. Neutron and gamma-ray pulse shape discrimination of LiAlO2 and LiGaO2 crystals. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2019, 919, 64–67. [Google Scholar] [CrossRef]
- Reeder, P.L.; Bowyer, S.M. Fast neutron and alpha detection using LiBaF3 scintillator. IEEE Trans. Nucl. Sci. 2001, 48, 351–355. [Google Scholar] [CrossRef]
- Glodo, J.; Wang, Y.; Shawgo, R.; Brecher, C.; Hawrami, R.H.; Tower, J.; Shah, K.S. New Developments in Scintillators for Security Applications. Phys. Proc. 2017, 90, 285–290. [Google Scholar] [CrossRef]
- Gueorguiev, A.; van Loef, E.; Markosyan, G.; Soundara-Pandian, L.; Glodo, J.; Tower, J.; Shah, K. Composite neutron gamma detector. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Shirwadkar, U.; Gueorguiev, A.; van Loef, E.V.; Markosyan, G.; Glodo, J.; Tower, J.; Shah, K.S.; Pozzi, S.; Clarke, S.; Bourne, M. Multi-Signature Composite Detector System for Nuclear Non-proliferation. In Proceedings of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Atlanta, GA, USA, 21–28 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- D’Olympia, N.; Chowdhury, P.; Lister, C.J.; Glodo, J.; Hawrami, R.; Shah, K.; Shirwadkar, U. Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2013, 714, 121–127. [Google Scholar] [CrossRef]
- Van Eijk, C.W. Inorganic scintillators for thermal neutron detection. Radiat. Measur. 2004, 38, 337–342. [Google Scholar] [CrossRef]
- Rutherford, S.E. The Stability of Atoms. Proc. Phys. Soc. Lond. 1920, 33, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, T.; Fujimoto, Y. Evaluations of pure zinc sulfide crystal scintillator. Jpn. J. Appl. Phys. 2014, 53, 032601. [Google Scholar] [CrossRef]
- Eljen Technology. EJ-426 Thermal Neutron Detector Data Sheet. 2016. Available online: https://eljentechnology.com/images/products/data_sheets/EJ-426.pdf (accessed on 11 September 2019).
- Viererbl, L.; Klupak, V.; Vins, M.; Lahodova, Z.; Soltes, J. YAP:Ce Scintillator Characteristics for Neutron Detection. IEEE Trans. Nucl. Sci. 2016, 63, 1963–1966. [Google Scholar] [CrossRef]
- Korjik, M.; Brinkmann, K.T.; Dosovitskiy, G.; Dormenev, V.; Fedorov, A.; Kozlov, D.; Mechinsky, V.; Zaunick, H.G. Compact and Effective Detector of the Fast Neutrons on a Base of Ce-doped Gd3Al2Ga3O12 Scintillation Crystal. IEEE Trans. Nucl. Sci. 2019, 66, 536–540. [Google Scholar] [CrossRef]
- Iwanowska, J.; Szczeȩśniak, T.; Szczȩśniak, T. New Organic Scintillators for Neutron Detection. Aip Conf. Proc. 2010, 1204, 165. [Google Scholar] [CrossRef]
- Fu, Z.; Pan, S.; Yang, F.; Gu, S.; Lei, X.; Heng, Y.; Ren, G.; Qi, M. Neutron detection properties of Li6Y(BO3)3:Ce crystal. Radiat. Meas. 2015, 72, 39–43. [Google Scholar] [CrossRef]
- Hansson, C.C.T.; Owens, A.; Biezen, J.V.D. X-ray, γ-ray and neutron detector development for future space instrumentation. Acta Astronaut. 2013, 93, 121–128. [Google Scholar] [CrossRef]
- Inada, T. Detection of Fast Neutrons with Nal(Tl) Crystal. J. Nucl. Sci. Technol. 1968, 5, 287–291. [Google Scholar] [CrossRef]
- Ryzhikov, V.D.; Naydenov, S.V.; Onyshchenko, G.M.; Piven’, L.A.; Pochet, T.; Smith, C.F. High efficiency fast neutron detectors based on inorganic scintillators. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, USA, 8–15 November 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Lucchini, M.; Pauwels, K.; Pizzichemi, M.; Chipaux, R.; Jacquot, F.; Mazué, H.; Wolff, H.; Lecoq, P.; Auffray, E. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy. IEEE Trans. Nucl. Sci. 2014, 61, 472–478. [Google Scholar] [CrossRef]
- Brooks, F. A scintillation counter with neutron and gamma-ray discriminators. Nucl. Instrum. Methods 1959, 4, 151–163. [Google Scholar] [CrossRef]
- Hull, G.; Zaitseva, N.P.; Cherepy, N.J.; Newby, J.R.; Stoeffl, W.; Payne, S.A. New organic crystals for pulse shape discrimination. IEEE Trans. Nucl. Sci. 2009, 56, 899–903. [Google Scholar] [CrossRef]
- Brubaker, E.; Steele, J. Neutron imaging using the anisotropic response of crystalline organic scintillators. IEEE Nucl. Sci. Symp. Conf. Rec. 2010, 1647–1652. [Google Scholar] [CrossRef]
- Zaitseva, N.; Glenn, A.; Carman, L.; Paul Martinez, H.; Hatarik, R.; Klapper, H.; Payne, S. Scintillation properties of solution-grown trans-stilbene single crystals. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2015, 789, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, M.J.; Gamage, K.A.; Glover, R. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager. J. Instrum. 2017, 12, P07023. [Google Scholar] [CrossRef]
- Inrad Optics. Stilbene Single Crystals Data Sheet. 2019. Available online: https://www.inradoptics.com/pdfs/datasheets/InradOptics_Datasheet_Stilbene_Final.pdf (accessed on 11 September 2019).
- Becchetti, F.D.; Torres-Isea, R.O.; Di Fulvio, A.; Pozzi, S.A.; Nattress, J.; Jovanovic, I.; Febbraro, M.; Zaitseva, N.; Carman, L. Deuterated stilbene (stilbene-d12): An improved detector for fast neutrons. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2018, 908, 376–382. [Google Scholar] [CrossRef]
- Carman, L.; Paul Martinez, H.; Voss, L.; Hunter, S.; Beck, P.; Zaitseva, N.; Payne, S.A.; Irkhin, P.; Choi, H.H.; Podzorov, V. Solution-Grown Rubrene Crystals as Radiation Detecting Devices. IEEE Trans. Nucl. Sci. 2017, 64, 781–788. [Google Scholar] [CrossRef]
- Van Eijk, C.W. Fast Lanthanide-Doped Inorganic Scintillators. In Proc. SPIE 2706, Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transitional-Metal Ions; SPIE: Bellingham, WA, USA, 1996; Volume 2706. [Google Scholar] [CrossRef]
- Reeder, P.L.; Bowyer, S.M. Calibration of LiBaF 3: Ce scintillator for fission spectrum. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2002, 484, 469–485. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Pejchal, J.; Nikl, M.; Endo, T.; Tsutsumi, K.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. Crystal Growth and Scintillation Properties of Ce Single Crystals. J. Cryst. Growth 2012, 59, 2112–2115. [Google Scholar] [CrossRef]
- Singh, A.K.; Tyagi, M.; Singh, S.G.; Desai, D.G.; Tiwari, B. Development of Ce doped Li6Y(BO3)3 Crystal Based Portable Solid State Detectors for Thermal Neutrons. BARC Technology Development Article. Bhabha Atomic Research Centre (BARC), 2015; pp. 20–24. Available online: https://pdfs.semanticscholar.org/3fee/3c8cc20afe4afbbbb728f6a6c842daabcf0f.pdf?_ga=2.14556031.995535344.1568162717-243878714.1565515068 (accessed on 11 September 2019).
- Yanagida, T.; Yamaji, A.; Kawaguchi, N.; Fujimoto, Y.; Fukuda, K.; Kurosawa, S.; Yamazaki, A.; Watanabe, K.; Futami, Y.; Yokota, Y.; et al. Europium and Sodium Codoped LiCaAlF6 Scintillator for Neutron Detection. Appl. Phys. Express 2011, 4, 106401. [Google Scholar] [CrossRef]
- Weber, M.J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45. [Google Scholar] [CrossRef]
- Shiran, N.V.; Gektin, A.V.; Neicheva, S.V.; Kornienko, V.A. Optical and scintillation properties of LiCaAlF6: Eu crystal. J. Lumin. 2003, 103, 815–818. [Google Scholar] [CrossRef]
- Melcher, C.L.Ã. Perspectives on the future development of new scintillators. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2005, 537, 6–14. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mchugh, H.R. Portable gamma and thermal neutron detector using 6LiI(Eu) crystals. In Proc. SPIE 5198, Hard X-ray and Gamma-Ray Detector Physics V; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5198, pp. 73–82. [Google Scholar]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar] [CrossRef]
- Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y. Evaluation of GAGG:Ce scintillators for future space applications. J. Instrum. 2018, 13, P02023. [Google Scholar] [CrossRef]
- Eljen Technology. Neutron/Gamma PSD Liquid Scintillator EJ-301, EJ-309 Data Sheet, Eljen Technology, 2018. Available online: https://eljentechnology.com/images/products/data_sheets/EJ-301_EJ-309.pdf (accessed on 11 September 2019).
- Eljen Technology. PSD Plastic Scintillator EJ-276, EJ-276G; Eljen Technology, 2017. Available online: https://eljentechnology.com/images/products/data_sheets/EJ-276.pdf (accessed on 11 September 2019).
- Zaitseva, N.; Glenn, A.; Paul Martinez, H.; Carman, L.; Pawełczak, I.; Faust, M.; Payne, S. Pulse shape discrimination with lithium-containing organic scintillators. Nucl. Inst. Methods Phys. Res. Sec. A Accel. Spectrom. Detec. Assoc. Equip. 2013, 729, 747–754. [Google Scholar] [CrossRef]
- Winyard, R.; Lutkin, J.; McBeth, G. Pulse shape discrimination in inorganic and organic scintillators. I. Nucl. Instrum. Methods 1971, 95, 141–153. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Scintillation Material | Density (gm/cm3) | Wavelength (nm) | Refractive Index | Decay Time (ns) | Light Yield (Photons/MeV) | Energy Resolution (% at 662 keV) | |
---|---|---|---|---|---|---|---|
Neutron | Gamma | ||||||
NaI(Tl) | 3.67 | 415 | 1.85 | 230 | - | 41,000 | 5.6 |
CsI(Tl) | 4.51 | 550 | 1.8 | 800 | - | 66,000 | 6.6 |
CsI(Na) | 4.51 | 420 | 1.84 | 630 | - | 40,000 | 7.4 |
LSO(Ce) | 7.4 | 420 | 1.82 | 40 | - | 26,000 | 7.9 |
LYSO(Ce) | 7.2 | 400 | 1.81 | 30–35 | - | 32,000 | 8.5 |
LiI(Eu) | 4.1 | 470 | 1.96 | 1400 | 50,000 | 12,000 | 8 |
LiCaAlF6(Eu) | 2.94 | 370 | 1.4 | 40 | 30,000 | 29,000 | - |
LiCaAlF6(Ce) | 2.94 | 300 | 1.4 | 40 | 4,000 | 1,600 | - |
LiAlO2 | 2.61 | 330 | - | 790 (5400 not enriched) 6Li) | 5,900 | 7,000 | - |
LiGaO2 | 4.18 | 330 | - | 12 (680 not enriched) 6Li) | 5,500 | 5,000 | - |
CLYC | 3.3 | 380 | 1.81 | 50; 1,000 | 70,000 | 20,000 | 4 |
CLLBC | 4.1 | 410 | 1.9 | 55; <270 | 180,000 | 60,000 | 3.5 |
6LiF/ZnS:Ag | 2.6 | 450 | - | 80,000 (neutron), 100 (gamma) | 160,000 | 75,000 | - |
YAl03:Ce3+ | 5.37 | 370 | 1.95 | 30 | - | 21,000 | 4.3 |
GAGG:Ce | 6.63 | 520 | 1.9 | 100 | - | 56,000 | - |
Li6(BO3)3:Ce | 2.8 | 420 | - | 27 | - | 1,200 | - |
CdWO4 | 7.9 | 495 | - | 5000 | - | 20,000 | 6.8 |
PbWO4 | 8.28 | 420 | 2.16 | 6;30 | - | 205 | - |
Stilbene | 1.25 | 390 | 1.626 | 3.5–4.5 | 10,700 | 14,000 | - |
Anthracene | 1.16 | 447 | 1.62 | 30 | 20,000 | 20,000 | - |
EJ-309 | 0.96 | 424 | 1.57 | 3.5 (short component) | 12,300 | 12,300 | - |
EJ-276 | 1.096 | 425 | - | g (13, 35, 270); n (13, 59, 460) | 8,600 | 8,600 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieślak, M.J.; Gamage, K.A.A.; Glover, R. Critical Review of Scintillating Crystals for Neutron Detection. Crystals 2019, 9, 480. https://doi.org/10.3390/cryst9090480
Cieślak MJ, Gamage KAA, Glover R. Critical Review of Scintillating Crystals for Neutron Detection. Crystals. 2019; 9(9):480. https://doi.org/10.3390/cryst9090480
Chicago/Turabian StyleCieślak, Michał J., Kelum A. A. Gamage, and Robert Glover. 2019. "Critical Review of Scintillating Crystals for Neutron Detection" Crystals 9, no. 9: 480. https://doi.org/10.3390/cryst9090480
APA StyleCieślak, M. J., Gamage, K. A. A., & Glover, R. (2019). Critical Review of Scintillating Crystals for Neutron Detection. Crystals, 9(9), 480. https://doi.org/10.3390/cryst9090480