Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration
Abstract
:1. Introduction
Brief Survey on the Influence of Precursor Concentration in the Growth of ZnO Nanorods
2. Experimental Methodology
2.1. Sample Preparation
2.2. Growth Process
2.3. Characterization Techniques
3. Results and Discussion
3.1. Morphology Characteristics
3.2. The pH Values of the Growth Solutions
3.3. Chemical Analysis of the Grown ZnO Nanorods
3.4. X-ray Diffraction (XRD) Analysis
3.4.1. The Intensity of Diffraction Peak (002) Variation
3.4.2. The Structural Properties and Lattice Parameters
3.4.3. The Crystal Size of ZnO Nanorods
3.4.4. The Volume and Bond Length of ZnO Nanorods
3.5. Optical Properties of ZnO Nanorods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shinde, V.R.; Lokhande, C.D.; Mane, R.S.; Han, S.H. Hydrophobic and textured ZnO films deposited by chemical bath deposition: Annealing effect. Appl. Surf. Sci. 2005, 245, 407–413. [Google Scholar] [CrossRef]
- Lupan, O.; Chow, L.; Chai, G.; Roldan, B.; Naitabdi, A.; Schulte, A.; Heinrich, H. Nanofabrication and characterization of ZnO NRs arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2007, 145, 57–66. [Google Scholar] [CrossRef]
- Gimenez, A. ZnO−paper based photoconductive UV sensor. J. Phys. 2010, 2, 282–287. [Google Scholar] [CrossRef]
- Zhang, Q.; Dandeneau, C.S.; Zhou, X.; Cao, G. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108. [Google Scholar] [CrossRef]
- Lei, A.; Qu, B.; Zhou, W.; Wang, Y.; Zhang, Q.; Zou, B. Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Mater. Lett. 2012, 66, 72–75. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lin, M.Y.; Wu, W.H.; Wang, J.Y.; Chou, Y.; Su, W.F.; Chen, Y.F.; Lin, C.F. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations. Semicond. Sci. Technol. 2010, 25, 105008. [Google Scholar] [CrossRef]
- Jha, S.K.; Kutsay, O.; Bello, I.; Lee, S.T. ZnO nanorod based low turn-on voltage LEDs with wide electroluminescence spectra. J. Lumin. 2013, 133, 222–225. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897. [Google Scholar] [CrossRef] [Green Version]
- Park, W.I.; Kim, D.H.; Jung, S.W.; Yi, G.C. Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO NRs. Appl. Phys. Lett. 2002, 80, 4232. [Google Scholar] [CrossRef]
- Suh, H.W.; Kim, G.Y.; Jung, Y.S.; Choi, W.K.; Byun, D. Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. J. Appl. Phys. 2005, 97, 044305. [Google Scholar] [CrossRef]
- Yi, G.C.; Wang, C.; Park, W.I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005, 20, S22. [Google Scholar] [CrossRef]
- Montenegro, D.N.; Hortelano, V.; Martínez, O.; Martínez-Tomas, M.C.; Sallet, V.; Muñoz-Sanjosé, V.; Jiménez, J. Influence of metal organic chemical vapor deposition growth conditions on vibrational and luminescent properties of ZnO nanorods. J. Appl. Phys. 2013, 113, 143513–143519. [Google Scholar] [CrossRef]
- Choi, J.H.; Tabata, H.; Kawai, T. Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J. Cryst. Growth 2001, 226, 493–500. [Google Scholar] [CrossRef]
- Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, Y.S.; Kim, J.H.; Park, M.O.; Im, S. Optimizing n ZnO/P Si hetero junctions for photodiode applications. Thin Solid Films 2002, 403, 553. [Google Scholar] [CrossRef]
- Shabannia, R.; Abu-Hassan, H. Vertically aligned ZnO nanorods synthesized using chemical bath deposition method on seed-layer ZnO/polyethylene naphthalate (PEN) substrates. Mater. Lett. 2013, 90, 156–158. [Google Scholar] [CrossRef]
- Ryu, Y.; Lee, T.S.; Lubguban, J.A.; White, H.W.; Kim, B.J.; Park, Y.S.; Youn, C.J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 2006, 88, 241108. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M. investigation of optical properties of ZnO nanorods grown on different substrates. Sci. J. Univ. Zakho 2018, 6, 160–165. [Google Scholar] [CrossRef]
- Mcpeak, K.M.; Baxter, J.B. Microreactor for high-yield chemical bath deposition of semiconductor nanowires: ZnO nanowire case study. Ind. Eng. Chem. Res. 2009, 48, 5954–5961. [Google Scholar] [CrossRef]
- Jung, J.Y.; Park, N.K.; Han, S.Y.; Han, G.B.; Lee, T.J.; Ryu, S.O.; Chang, C.H. The growth of the flower-like ZnO structure using a continuous flow microreactor. Curr. Appl. Phys. 2008, 8, 720–724. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M.; Almessiere, M.A. Novel process using oxygen and air bubbling in chemicalbath deposition method for vertically well aligned arrays of ZnO nanorods. Dig. J. Nanomater. Biostruct. 2016, 11, 1073–1082. [Google Scholar]
- Amin, G.; Asif, M.H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Syrrokostas, G.; Govatsi, K.; Yannopoulos, S.N. High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth. Cryst. Growth Des. 2016, 16, 2140–2150. [Google Scholar] [CrossRef]
- Tao, Q.; Li, S.; Zhang, Q.Y.; Kang, D.W.; Yang, J.S.; Qiu, W.W.; Liu, K. Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles. Mater. Res. Bull. 2014, 54, 6–12. [Google Scholar] [CrossRef]
- Govatsi, K.; Seferlis, A.; Neophytides, S.G.; Yannopoulos, S.N. Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency. Int. J. Hydrog. Energy 2018, 43, 4866–4879. [Google Scholar] [CrossRef]
- Nair, P.K.; Nair MT, S.; Fernandez, A.; Ocampo, M. Prospects of chemically deposited metal chalcogenide thin films for solar control applications. J. Phys. D Appl. Phys. 1989, 22, 829. [Google Scholar] [CrossRef]
- Suryanarayana, C.V.; Lakshmanan, A.S.; Subramanian, V.; Krishnakumar, R. Preparation of thin film electrodes for electrochemical solar cells-chemical bath deposition. Bull. Electrochem. 1986, 2, 57–58. [Google Scholar]
- Parize, R.; Garnier, J.D.; Appert, E.; Chaix-Pluchery, O.; Consonni, V. Effects of polyethylenimine and its molecular weight on the chemical bath deposition of ZnO nanowires. ACS Omega 2018, 3, 12457–12464. [Google Scholar] [CrossRef]
- Shakernejad, R.; Khayatian, A.; Ramazani, A.; Akhtarianfar, S.F.; Kashi, M.A. The role of different initial rest times on synthesized buffer layer and UV sensing of ZnO nanorods grown on rotational substrate. J. Mat. Sci. Mat. Electron. 2018, 29, 8303–8312. [Google Scholar] [CrossRef]
- Jia, G.; Wang, Y.; Yao, J. Growth mechanism of ZnO nanostructure using chemical bath deposition. J. Ovonic Res. 2010, 6, 303–307. [Google Scholar]
- Li, Q.; Bian, J.; Sun, J.; Wang, J.; Luo, Y.; Sun, K.; Yu, D. Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl. Surf. Sci. 2010, 256, 1698. [Google Scholar] [CrossRef]
- Wahab, R.; Kim, Y.S.; Lee, K.; Shin, H.S. Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J. Mater. Sci. 2010, 45, 2967–2973. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Yang, H.-W. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells. J. Solid State Chem. 2011, 184, 615–623. [Google Scholar] [CrossRef]
- Tong, F.; Kim, K.; Wang, Y.; Thapa, R.; Sharma, Y.; Modic, A.; Ahyi, A.; Issacs-Smith, T.; Williams, J.; Park, H.; et al. Growth of ZnO nanorod arrays on flexible substrates: Effect of precursor solution concentration. ISRN Nanomater. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Shabannia, R.; Abu Hassan, H. Growth of aligned ZnO Nanorods grown on polyethylene naphthalate substrates: Effect of the growth duration. Adv. Mater. Res. 2014, 925, 195–199. [Google Scholar] [CrossRef]
- Patil, G.R.; Gaikwad, R.S.; Shelar, M.B.; Mane, R.S.; Han, S.H.; Pawar, B.N. Role of concentration and temperature on well-aligned ZnO nanorod by low- temperature wet chemical bath deposition method. Arch. Phys. Res. 2012, 3, 401–406. [Google Scholar]
- Shabannia, R.; Abu Hassan, H. Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis. Appl. Phys. A Mater. Sci. Process. 2014, 114, 579–584. [Google Scholar] [CrossRef]
- Chee, C.Y.; Nadarajah, K.; Siddiqui, M.K.; Wong, Y. Optical and structural characterization of solution processed zinc oxide nanorods via hydrothermal method. Ceram. Int. 2014, 40, 9997–10004. [Google Scholar] [CrossRef]
- Thambidurai, M.; Muthukumarasamy, N.; Velauthapillai, D.; Lee, C. Chemical bath deposition of ZnO nanorods for dye sensitized solar cell applications. J. Mater. Sci. Mater. Electron. 2013, 24, 1921. [Google Scholar] [CrossRef]
- Fuad, A.; Fibriyanti, A.A.; Mufti, N.; Taufiq, A. Effect of precursor concentration ratio on the crystal structure, morphology, and band gap of ZnO nanorods. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012074. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Yu, C.F.; Chien, C.S. Nanoscale electrical properties of ZnO nanorods grown by chemical bath deposition. Microsc. Res. Tech. 2017, 80, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Abuelsamen, A.A.; Mahmud, S.; Seeni, A.; Kaus NH, M.; Farhat, O.F. Effects of precursor concentrations on the optical and morphological properties of ZnO nanorods on glass substrate for UV photodetector. Superlattices Microstruct. 2017, 111, 536–545. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M. The influence of the growth time on the size and alignment of Zno nanorods. Sci. J. Univ. Zakho 2017, 5, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Tang, D.; Jiang, E.; Gu, S.; Han, S. Solution growth of vertical aligned ZnO nanorod arrays on ZnO seed layers fabricated by Langmuir-Blodgett method. J. Alloys Compd. 2013, 578, 228. [Google Scholar] [CrossRef]
- Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci. 2014, 9, 2080. [Google Scholar]
- Fang, M.; Liu, Z.W. Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method. Ceram. Int. 2017, 43, 6955. [Google Scholar] [CrossRef]
- Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 2009, 311, 2549–2554. [Google Scholar] [CrossRef]
- Wang, Z.L.; Kong, X.Y.; Ding, Y.; Gao, P.; Hughes, W.L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wu, T.H.; Cheng, C.Y.; Su, Y.K. Homogeneous ZnO nanostructure arrays on GaAs substrates by two-step chemical bath synthesis. J. Nanopart. Res. 2012, 14, 866. [Google Scholar] [CrossRef]
- Kumar, P.S.; Sundaramurthy, J.; Zhang, X.; Mangalaraj, D.; Thavasi, V.; Ramakrishna, S. Superhydrophobic and antireflecting behavior of densely packed and size controlled ZnO nanorods. J. Alloys Compd. 2013, 553, 375–382. [Google Scholar] [CrossRef]
- Fang, X.; Peng, L.; Shang, X.; Zhang, Z. Controlled synthesis of ZnO branched nanorod arrays by hierarchical solution growth and application in dye-sensitized solar cells. Thin Solid Films 2011, 519, 6307–6312. [Google Scholar] [CrossRef]
- Malek, M.F.; Mamat, M.H.; Sahdan, M.Z.; Zahidi, M.M.; Khusaimi, Z.; Mahmood, M.R. Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol-gel technique. Thin Solid Films 2013, 527, 102–109. [Google Scholar] [CrossRef]
- Han, Z.; Chu, J.; Li, S.; Chen, Y. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J. Semicond. 2013, 34. [Google Scholar] [CrossRef]
- Kim, K.H.; Umakoshi, T.; Abe, Y.; Kawamura, M.; Kiba, T. Determination of effective growth time for zinc oxide nanorods using chemical solution deposition. Superlatti. Microstruct. 2015, 88, 150. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef]
- Elias, J.; Tena-Zaera, R.; Lévy-Clément, C. Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer. Thin Solid Films 2007, 515, 8553–8557. [Google Scholar] [CrossRef]
- Lee, T.H.; Ryu, H.; Lee, W.J. Fast vertical growth of ZnO nanorods using a modified chemical bath deposition. J. Alloys Compd. 2014, 597, 85–90. [Google Scholar] [CrossRef]
- Roza, L.; Fairuzy KA, J.; Dewanta, P.; Umar, A.A.; Rahman MY, A.; Salleh, M.M. Effect of molar ratio of zinc nitrate: Hexamethylenetetramine on the properties of ZnO thin film nanotubes and nanorods and the performance of dye-sensitized solar cell (DSSC). J. Mater. Sci. Mater. Electron. 2015, 26, 7955–7966. [Google Scholar] [CrossRef]
- Chae, K.W.; Zhang, Q.; Kim, J.S.; Jeong, Y.H.; Cao, G. Low-temperature solution growth of ZnO nanotube arrays. Beilstein J. Nanotechnol. 2010, 1, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhao, Q.X.; Willander, M. Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method. J. Alloys Compd. 2009, 469, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Zhu, J.; Huang, K.; Meng, F.; Song, X.; Sun, Z. Tunable surface wettability of ZnO nanorods prepared by two-step method. Appl. Surf. Sci. 2011, 257, 7534–7538. [Google Scholar] [CrossRef]
- Liang, S.; Bi, X. Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions. J. Appl. Phys. 2008, 104, 1–6. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, A.; Kaur, D. Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis. J. Cryst. Growth 2007, 306, 303–310. [Google Scholar] [CrossRef]
- Nagayasamy, N.; Gandhimathination, S.; Veerasamy, V. The effect of ZnO thin film and its structural and optical properties prepared by sol-gel spin coating method. Open J. Met. 2013, 3, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Ab Aziz, A.; Khusaimi, Z.; Rusop Mahmood, M. Effect of precursor concentration in the synthesization of ZnO nanostructures by solution-immersion method. Adv. Mater. Res. 2013, 667, 501–506. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M.; Almessiere, M.A. Fabrication, characterization of ZnO nanorods on the flexible substrate (Kapton tape) via chemical bath deposition for UV photodetector applications. AIP Conf. Proc. 2017, 1875, 020004. [Google Scholar]
- Abdulrahman, A.F.; Ahmed, S.M.; Almessiere, M.A. Effect of the growth time on the optical properties of Zno nanorods grown by low temperature method. Dig. J. Nanomater. Biostruct. 2017, 12, 1001–1009. [Google Scholar]
- Siregar, N.; Marlianto, E.; Gea, S. The effect of concentration of structure and optical properties of thin films synthesized by sol-gel methods spin coating. IJSBAR 2015, 22, 428–434. [Google Scholar]
- Endo, H.; Sugibuchi, M.; Takahashi, K.; Goto, S.; Sugimura, S.; Hane, K.; Kashiwaba, Y. Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate. Appl. Phys. Lett. 2007, 90, 88–91. [Google Scholar] [CrossRef]
- Benramache, S.; Belahssen, O.; Guettaf, A.; Arif, A. Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films. J. Semicond. 2014, 35, 042001. [Google Scholar] [CrossRef]
- Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M.; Almessiere, M.A. Different substrates effects on the topography and the structure of the Zno nanorods grown by chemical bath deposition method. Dig. J. Nanomater. Biostruct. 2016, 11, 1007–1016. [Google Scholar]
- Gusatti, M.; Campos, C.E.M.; Souza, D.A.R.; Moser, V.M.; Kuhnen, N.C.; Riella, H.G. Effect of reaction parameters on the formation and properties of ZnO nanocrystals synthesized via a rapid solochemical processing. J. Nanosci. Nanotechnol. 2013, 13, 8307–8314. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Hashim, U.; Ali, M.E.; Ali SM, U.; Rusop, M.; Ibupoto, Z.H.; Willander, M. Effect of different seed solutions on the morphology and electrooptical properties of ZnO NRs. J. Nanomater. 2012. [Google Scholar] [CrossRef]
- Zahedi, F.; Dariani, R.S.; Rozati, S.M. Structural, Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Bull Mater Sci 2014, 37, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Ting, C.C.; Li, C.H.; Kuo, C.Y.; Hsu, C.C.; Wang, H.C.; Yang, M.H. Compact and vertically-aligned ZnO nanorod thin films by the low-temperature solution method. Thin Solid Films 2010, 518, 4156. [Google Scholar] [CrossRef]
- Akhiruddin, A.; Sugianto, S.; Irmansyah, I. The influence of hydrothermal duration on structures and optical properties of ZnO nanoparticles. J. Mater. Phys. Chem. 2015, 2, 34–37. [Google Scholar] [CrossRef]
- Malek, M.F.; Mamat, M.H.; Soga, T.; Rahman, S.A.; Bakar, S.A.; Ismail, A.S.; Ruziana, M.; Salman, A.H.A.; Haseeb, A.K.; Mahmood, M.R. Thickness-controlled synthesis of vertically aligned c -axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol–gel process. Jpn. J. Appl. Phys. 2016, 55. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.H.; El-Rahman, A.A.; Salem, A.M.; Pichon, L.; El-Hossary, F.M. Effect of rf plasma nitriding time on electrical and optical properties of ZnO thin films. J. Phys. Chem. Solids 2006, 67, 2351–2357. [Google Scholar] [CrossRef]
- Farhat, O.F.; Halim, M.M.; Abdullah, M.J.; Ali, M.K.; Allam, N.K. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates. Beilstein J. Nanotechnol. 2015, 6, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Roza, L.; Rahman MY, A.; Umar, A.A.; Salleh, M.M. Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. J. Alloys Compd. 2015, 618, 153–158. [Google Scholar] [CrossRef]
- Benramache, S.; Benhaoua, B.; Bentrah, H. Preparation of transparent, conductive ZnO:Co and ZnO:In thin films by ultrasonic spray method. J. Nanostruct. Chem. 2013, 3, 54. [Google Scholar] [CrossRef]
- Subramanian, M.; Tanemura, M.; Hihara, T.; Ganesan, V.; Soga, T.; Jimbo, T. Magnetic anisotropy in nanocrystalline Co-doped ZnO thin films. Chem. Phys. Lett. 2010, 487, 97–100. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; McCune, M.; He, G.; Deng, Y. I–V characteristics of the p-n junction between vertically aligned ZnO nanorods and polyaniline thin film. Synth. Met. 2010, 160, 499–503. [Google Scholar] [CrossRef]
- Jain, A.; Sagar, P.; Mehra, R.M. Band gap widening and narrowing in moderately and heavily doped n-ZnO films. Solid State Electron. 2006, 50, 1420–1424. [Google Scholar] [CrossRef]
- Onem, H.; Nadaroglu, H. Preparation and properties of purified phytase from oakbug milkcap (lactarius quietus) immobilised on coated chitosan with iron nano particles and investigation of its usability in food industry. J. Food Nutr. Res. 2014, 2, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Srikant, V.; Speck, J.S.; Clarke, D.R. Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 1997, 82, 4286–4295. [Google Scholar] [CrossRef]
- Foo, K.L.; Hashim, U.; Muhammad, K.; Voon, C.H. Sol–gel synthesized ZnO nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 2014, 9, 429. [Google Scholar] [CrossRef] [Green Version]
Precursor Concentration (Mol) | 2θ | I (a. u) | a (Å) | c (Å) | Ƹa% | Ƹc% | d (Å) |
---|---|---|---|---|---|---|---|
0.010 | 34.33 | 116 | 3.013 | 5.219 | −7.38 | 0.075 | 2.609 |
0.025 | 34.36 | 156 | 3.011 | 5.215 | −7.45 | 0.0079 | 2.607 |
0.050 | 34.42 | 465 | 3.006 | 5.206 | −7.62 | −0.0691 | 2.603 |
0.075 | 34.40 | 242 | 3.008 | 5.209 | −7.55 | −0.1006 | 2.605 |
Precursor Concentration (Mol) | 2θ | I (a. u) | a (Å) | c (Å) | Ƹa% | Ƹc% | d (Å) |
---|---|---|---|---|---|---|---|
0.010 | 34.36 | 398 | 3.010 | 5.214 | −7.47 | −0.015 | 2.607 |
0.025 | 34.38 | 529 | 3.009 | 5.212 | −7.50 | −0.049 | 2.606 |
0.050 | 34.40 | 3206 | 3.008 | 5.209 | −7.55 | −0.102 | 2.605 |
0.075 | 34.42 | 5300 | 3.006 | 5.206 | −7.61 | −0.170 | 2.603 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrahman, A.F.; Ahmed, S.M.; Ahmed, N.M.; Almessiere, M.A. Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 2020, 10, 386. https://doi.org/10.3390/cryst10050386
Abdulrahman AF, Ahmed SM, Ahmed NM, Almessiere MA. Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals. 2020; 10(5):386. https://doi.org/10.3390/cryst10050386
Chicago/Turabian StyleAbdulrahman, Ahmed Fattah, Sabah Mohammed Ahmed, Naser Mahmoud Ahmed, and Munirah Abullah Almessiere. 2020. "Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration" Crystals 10, no. 5: 386. https://doi.org/10.3390/cryst10050386