Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9275 KB  
Article
Climate Change Impacts on Groundwater Recharge in Cold and Humid Climates: Controlling Processes and Thresholds
by Emmanuel Dubois, Marie Larocque, Sylvain Gagné and Marco Braun
Climate 2022, 10(1), 6; https://doi.org/10.3390/cli10010006 - 12 Jan 2022
Cited by 21 | Viewed by 5869
Abstract
Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This [...] Read more.
Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5 and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are produced only when the temperature change exceeds +2 °C. Temperature changes of >+4.5 °C limit the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment of future GWR in cold and humid climates, thus helping in planning decisions as climate change unfolds. The results are expected to be comparable to those in other regions with similar climates in post-glacial geological environments and future climate change conditions. Full article
(This article belongs to the Special Issue Application of Climatic Data in Hydrologic Models)
Show Figures

Graphical abstract

12 pages, 1348 KB  
Article
Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea
by Dafydd Phillips
Climate 2022, 10(1), 1; https://doi.org/10.3390/cli10010001 - 21 Dec 2021
Cited by 9 | Viewed by 5685
Abstract
South Korea is a signatory of the Paris Agreement and has announced its aim to achieve carbon neutrality by 2050. However, South Korea’s current policy trajectory is not compatible with maintaining a global temperature rise below 2 °C. Climate change has not been [...] Read more.
South Korea is a signatory of the Paris Agreement and has announced its aim to achieve carbon neutrality by 2050. However, South Korea’s current policy trajectory is not compatible with maintaining a global temperature rise below 2 °C. Climate change has not been a dominant electoral issue in South Korea, with national concerns being prioritized. A Paris-Agreement-compatible development pathway could synergistically improve ambient air quality in South Korea. This research examines the gains of a climate action pathway that would achieve 2050 carbon neutrality, compared to a business-as-usual (BAU) pathway, in South Korea. The work aims to add further evidence to the potential national gains from strong climate action across all sectors in South Korea. The paper argues that by focusing on and estimating national gains, the momentum for enhanced climate policy action can be intensified by framing robust climate action as an opportunity rather than a cost. Through a climate action pathway, South Korea could avoid 835 years of life lost (YLL) in 2030, 2237 YLL in 2040 and 3389 YLL in 2050. Through this pathway, South Korea could also cumulatively abate 5539 million tons of CO2 equivalent (MtCO2e) in greenhouse gas emissions over the 2022–2050 period. Full article
(This article belongs to the Special Issue Air and Water Quality in a Changing World)
Show Figures

Figure 1

30 pages, 2444 KB  
Article
Development of a Quality-Controlled and Homogenised Long-Term Daily Maximum and Minimum Air Temperature Network Dataset for Ireland
by Carla Mateus and Aaron Potito
Climate 2021, 9(11), 158; https://doi.org/10.3390/cli9110158 - 29 Oct 2021
Cited by 5 | Viewed by 4718
Abstract
Accurate long-term daily maximum and minimum air temperature series are needed to assess the frequency, intensity, distribution, and duration of extreme climatic events. However, quality control and homogenisation procedures are required to minimise errors and inhomogeneities in climate series before the commencement of [...] Read more.
Accurate long-term daily maximum and minimum air temperature series are needed to assess the frequency, intensity, distribution, and duration of extreme climatic events. However, quality control and homogenisation procedures are required to minimise errors and inhomogeneities in climate series before the commencement of climate data analysis. A semi-automatic quality control procedure consisting of climate consistency, internal consistency, day-to-day step-change, and persistency tests was applied for 12 long-term series registered in Ireland from 1831–1968, Armagh Observatory (Northern Ireland) from 1844–2018, and for 21 short-term series dating to the mid-19th century. There were 976,786 observations quality-controlled, and 27,854 (2.9%) values flagged. Of the flagged records, 98.5% (n = 27,446) were validated, 1.4% (n = 380) corrected and 0.1% (n = 28) deleted. The historical long-term quality-controlled series were merged with the modern series quality-controlled by Met Éireann and homogenised using the software MASHv3.03 in combination with station metadata for 1885–2018. The series presented better homogenisation outcomes when homogenised as part of smaller regional networks rather than as a national network. The homogenisation of daily, monthly, seasonal, and annual series improved for all stations, and the homogenised records showed stronger correlations with the Central England long-term temperature series. Full article
Show Figures

Figure 1

17 pages, 7344 KB  
Article
Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern Italy)
by Arianna Dada, Christian Urich, Francesca Berteni, Michèle Pezzagno, Patrizia Piro and Giovanna Grossi
Climate 2021, 9(10), 152; https://doi.org/10.3390/cli9100152 - 16 Oct 2021
Cited by 16 | Viewed by 5142
Abstract
Climate change is globally causing more intense meteorological phenomena. Our cities experience increased rainfall intensity, more intense heat waves, and prolonged droughts providing economic, social, health and environmental challenges. Combined with population growth and rapid urbanization, the increasing impact of climate change will [...] Read more.
Climate change is globally causing more intense meteorological phenomena. Our cities experience increased rainfall intensity, more intense heat waves, and prolonged droughts providing economic, social, health and environmental challenges. Combined with population growth and rapid urbanization, the increasing impact of climate change will make our cities more and more vulnerable, especially to urban flooding. In order to adapt our urban water systems to these challenges, the adoption of newly emerging water management strategies is required. The complexity and scale of this challenge calls for the integration of knowledge from different disciplines and collaborative approaches. The water sensitive cities principles provide guidance for developing new techniques, strategies, policies, and tools to improve the livability, sustainability, and resilience of cities. In this study, the DAnCE4Water modeling approach promoting the development of water sensitive cities was applied to Parma, an Italian town that has faced serious water issues in the last few years. The city, indeed, had to face the consequences of flooding several times, caused by the inadequacy of both the network of open channels and the sewerage network due to the urban expansion and climate change of the last 30 years. Through the model, the efficiency of decentralized technologies, such as green roofs and porous pavement, and their integration with the existing centralized combined sewer system was assessed under a range of urban development scenarios. The obtained results show that the adoption of an integrated approach, including soft engineering hydraulic strategies, consisting in the use of natural and sustainable solutions, can increase resilience to urban flooding. Further, the study shows that there is a critical need for strategic investment in solutions that will deliver long-term sustainable outcomes. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

14 pages, 835 KB  
Article
Orchestrating the Participation of Women Organisations in the UNFCCC Led Climate Finance Decision Making
by Svetlana Frenova
Climate 2021, 9(9), 135; https://doi.org/10.3390/cli9090135 - 27 Aug 2021
Cited by 7 | Viewed by 3302
Abstract
The study applies orchestration as a conceptual framework to provide early evidence on the engagement of women organisations in UNFCCC-led climate finance governance and reflect on the quality of their mobilisation. Women organisations are one of the non-state stakeholders, whose role is acknowledged [...] Read more.
The study applies orchestration as a conceptual framework to provide early evidence on the engagement of women organisations in UNFCCC-led climate finance governance and reflect on the quality of their mobilisation. Women organisations are one of the non-state stakeholders, whose role is acknowledged in the UNFCCC Decision 3/CP.25 for improving gender-responsiveness of climate finance. Within the UNFCCC, orchestration is used as a governance approach to enhance the mobilisation of non-state actors for facilitating the implementation of policy goals. The study utilises mixed methods including document review and interviews with key informants. The findings of the study indicate that the quality of orchestration has been low, i.e., the engagement of women organisations in the UNFCCC-led climate finance decision making has, so far, been limited. This is due to the lack of policy convergence on the purposes of orchestration, as well as the newness, and complexity of the issues at the intersection of climate finance and gender. While the concept of orchestration is intended to enhance decision making practices, the study suggests that in the case of the engagement of women organisations in the UNFCCC-led climate finance governance, orchestration is used only for symbolic purposes. To make the engagement of women organisations more meaningful, there is a need to diversify the existing orchestration practices and improve consistency in policy framing. Full article
(This article belongs to the Special Issue Anthropogenic Climate Change: Social Science Perspectives)
Show Figures

Figure 1

23 pages, 4524 KB  
Article
Plant Species Richness in Multiyear Wet and Dry Periods in the Chihuahuan Desert
by Debra P. C. Peters, Heather M. Savoy, Susan Stillman, Haitao Huang, Amy R. Hudson, Osvaldo E. Sala and Enrique R. Vivoni
Climate 2021, 9(8), 130; https://doi.org/10.3390/cli9080130 - 13 Aug 2021
Cited by 9 | Viewed by 5809
Abstract
In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) [...] Read more.
In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time frame to examine responses of plant species richness to extreme rainfall in grasslands and shrublands of the Chihuahuan Desert. Our hypothesis was that richness would be related to rainfall amount, and similar in periods with similar amounts of rainfall. Breakpoint analyses of water-year precipitation showed five sequential periods (1993–2018): AVG1 (mean = 22 cm/y), DRY1 (mean = 18 cm/y), WET (mean = 30 cm/y), DRY2 (mean = 18 cm/y), and AVG2 (mean = 24 cm/y). Detailed analyses revealed changes in daily and seasonal metrics of precipitation over the course of the study: the amount of nongrowing season precipitation decreased since 1993, and summer growing season precipitation increased through time with a corresponding increase in frequency of extreme rainfall events. This increase in summer rainfall could explain the general loss in C3 species after the wet period at most locations through time. Total species richness in the wet period was among the highest in the five periods, with the deepest average storm depth in the summer and the fewest long duration (>45 day) dry intervals across all seasons. For other species-ecosystem combinations, two richness patterns were observed. Compared to AVG2, AVG1 had lower water-year precipitation yet more C3 species in upland grasslands, creosotebush, and mesquite shrublands, and more C4 perennial grasses in tarbush shrublands. AVG1 also had larger amounts of rainfall and more large storms in fall and spring with higher mean depths of storm and lower mean dry-day interval compared with AVG2. While DRY1 and DRY2 had the same amount of precipitation, DRY2 had more C4 species than DRY1 in creosote bush shrublands, and DRY1 had more C3 species than DRY2 in upland grasslands. Most differences in rainfall between these periods occurred in the summer. Legacy effects were observed for C3 species in upland grasslands where no significant change in richness occurred from DRY1 to WET compared with a 41% loss of species from the WET to DRY2 period. The opposite asymmetry pattern was found for C4 subdominant species in creosote bush and mesquite shrublands, where an increase in richness occurred from DRY1 to WET followed by no change in richness from WET to DRY2. Our results show that understanding plant biodiversity of Chihuahuan Desert landscapes as precipitation continues to change will require daily and seasonal metrics of rainfall within a wet-dry period paradigm, as well as a consideration of species traits (photosynthetic pathways, lifespan, morphologies). Understanding these relationships can provide insights into predicting species-level dynamics in drylands under a changing climate. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 9136 KB  
Article
Flood Risk Assessment under Climate Change: The Petite Nation River Watershed
by Khalid Oubennaceur, Karem Chokmani, Yves Gauthier, Claudie Ratte-Fortin, Saeid Homayouni and Jean-Patrick Toussaint
Climate 2021, 9(8), 125; https://doi.org/10.3390/cli9080125 - 5 Aug 2021
Cited by 18 | Viewed by 7112
Abstract
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). [...] Read more.
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed. Full article
Show Figures

Figure 1

20 pages, 4437 KB  
Article
A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine
by Nikul Kumari, Ankur Srivastava and Umesh Chandra Dumka
Climate 2021, 9(7), 109; https://doi.org/10.3390/cli9070109 - 30 Jun 2021
Cited by 94 | Viewed by 322462
Abstract
The Himalayas constitute one of the richest and most diverse ecosystems in the Indian sub-continent. Vegetation greenness driven by climate in the Himalayan region is often overlooked as field-based studies are challenging due to high altitude and complex topography. Although the basic information [...] Read more.
The Himalayas constitute one of the richest and most diverse ecosystems in the Indian sub-continent. Vegetation greenness driven by climate in the Himalayan region is often overlooked as field-based studies are challenging due to high altitude and complex topography. Although the basic information about vegetation cover and its interactions with different hydroclimatic factors is vital, limited attention has been given to understanding the response of vegetation to different climatic factors. The main aim of the present study is to analyse the relationship between the spatiotemporal variability of vegetation greenness and associated climatic and hydrological drivers within the Upper Khoh River (UKR) Basin of the Himalayas at annual and seasonal scales. We analysed two vegetation indices, namely, normalised difference vegetation index (NDVI) and enhanced vegetation index (EVI) time-series data, for the last 20 years (2001–2020) using Google Earth Engine. We found that both the NDVI and EVI showed increasing trends in the vegetation greening during the period under consideration, with the NDVI being consistently higher than the EVI. The mean NDVI and EVI increased from 0.54 and 0.31 (2001), respectively, to 0.65 and 0.36 (2020). Further, the EVI tends to correlate better with the different hydroclimatic factors in comparison to the NDVI. The EVI is strongly correlated with ET with r2 = 0.73 whereas the NDVI showed satisfactory performance with r2 = 0.45. On the other hand, the relationship between the EVI and precipitation yielded r2 = 0.34, whereas there was no relationship was observed between the NDVI and precipitation. These findings show that there exists a strong correlation between the EVI and hydroclimatic factors, which shows that changes in vegetation phenology can be better captured using the EVI than the NDVI. Full article
(This article belongs to the Special Issue Forest-Climate Ecosystem Interactions)
Show Figures

Figure 1

15 pages, 3785 KB  
Article
Integrated Water Vapor during Rain and Rain-Free Conditions above the Swiss Plateau
by Klemens Hocke, Leonie Bernet, Wenyue Wang, Christian Mätzler, Maxime Hervo and Alexander Haefele
Climate 2021, 9(7), 105; https://doi.org/10.3390/cli9070105 - 25 Jun 2021
Cited by 5 | Viewed by 4049
Abstract
Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation [...] Read more.
Water vapor column density, or vertically-integrated water vapor (IWV), is monitored by ground-based microwave radiometers (MWR) and ground-based receivers of the Global Navigation Satellite System (GNSS). For rain periods, the retrieval of IWV from GNSS Zenith Wet Delay (ZWD) neglects the atmospheric propagation delay of the GNSS signal by rain droplets. Similarly, it is difficult for ground-based dual-frequency single-polarisation microwave radiometers to separate the microwave emission of water vapor and cloud droplets from the rather strong microwave emission of rain. For ground-based microwave radiometry at Bern (Switzerland), we take the approach that IWV during rain is derived from linearly interpolated opacities before and after the rain period. The intermittent rain periods often appear as spikes in the time series of integrated liquid water (ILW) and are indicated by ILW ≥ 0.4 mm. In the present study, we assume that IWV measurements from radiosondes are not affected by rain. We intercompare the climatologies of IWV(rain), IWV(no rain), and IWV(all) obtained by radiosonde, ground-based GNSS atmosphere sounding, ground-based MWR, and ECMWF reanalysis (ERA5) at Payerne and Bern in Switzerland. In all seasons, IWV(rain) is 3.75 to 5.94 mm greater than IWV(no rain). The mean IWV differences between GNSS and radiosonde at Payerne are less than 0.26 mm. The datasets at Payerne show a better agreement than the datasets at Bern. However, the MWR at Bern agrees with the radiosonde at Payerne within 0.41 mm for IWV(rain) and 0.02 mm for IWV(no rain). Using the GNSS and rain gauge measurements at Payerne, we find that IWV(rain) increases with increase of the precipitation rate during summer as well as during winter. IWV(rain) above the Swiss Plateau is quite well estimated by GNSS and MWR though the standard retrievals are limited or hampered during rain periods. Full article
(This article belongs to the Special Issue Climate Change Impacts at Various Geographical Scales)
Show Figures

Figure 1

21 pages, 1518 KB  
Review
Review and Comparative Study of Decision Support Tools for the Mitigation of Urban Heat Stress
by Aiman Mazhar Qureshi and Ahmed Rachid
Climate 2021, 9(6), 102; https://doi.org/10.3390/cli9060102 - 21 Jun 2021
Cited by 7 | Viewed by 5763
Abstract
Over the last few decades, Urban Heat Stress (UHS) has become a crucial concern of scientists and policy-makers. Many projects have been implemented to mitigate Urban Heat Island (UHI) effects using nature-based solutions. However, decision-making and selecting an adequate framework are difficult because [...] Read more.
Over the last few decades, Urban Heat Stress (UHS) has become a crucial concern of scientists and policy-makers. Many projects have been implemented to mitigate Urban Heat Island (UHI) effects using nature-based solutions. However, decision-making and selecting an adequate framework are difficult because of complex interactions between natural, social, economic and built environments. This paper contributes to the UHI issue by: (i) identifying the most important key factors of a Decision Support Tool (DST) used for urban heat mitigation, (ii) presenting multi-criteria methods applied to urban heat resilience, (iii) reviewing existing spatial and non-spatial DSTs, (iv) and analyzing, classifying and ranking DSTs. It aims to help decision-makers through an overview of the pros and cons of existing DSTs and indicate which tool is providing maximum support for choosing and planning heat resilience measures from the designing phase to the heat mitigation phase. This review shows that Multi-Criteria Decision Analysis (MCDA) can be used for any pilot site and the criteria can be adapted to the given location accordingly. It also highlights that GIS-based spatial tools have an effective decision support system (DSS) because they offer a quick assessment of interventions and predict long-term effects of urban heat. Through a comparative study using specific chosen criteria, we conclude that the DSS tool is well suited and fulfils many prerequisites to support new policies and interventions to mitigate UHS. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

13 pages, 875 KB  
Review
Ecosystem-Based Adaptation to Protect Avian Species in Coastal Communities in the Greater Niagara Region, Canada
by Samantha Gauthier, Bradley May and Liette Vasseur
Climate 2021, 9(6), 91; https://doi.org/10.3390/cli9060091 - 4 Jun 2021
Cited by 8 | Viewed by 4979
Abstract
Coastal communities are increasingly vulnerable to climate change and its effects may push coastal ecosystems to undergo irreversible changes. This is especially true for shorebirds with the loss of biodiversity and resource-rich habitats to rest, refuel, and breed. To protect these species, it [...] Read more.
Coastal communities are increasingly vulnerable to climate change and its effects may push coastal ecosystems to undergo irreversible changes. This is especially true for shorebirds with the loss of biodiversity and resource-rich habitats to rest, refuel, and breed. To protect these species, it is critical to conduct research related to nature-based Solutions (NbS). Through a scoping review of scientific literature, this paper initially identified 85 articles with various ecosystem-based adaptation (EbA) strategies that could help conserve shorebird populations and promote ecotourism. Of these 85 articles, 28 articles had EbA strategies that were examined, with some like coral reefs and mangroves eliminated as they were inappropriate for this region. The scoping review identified four major EbA strategies for the Greater Niagara Region with living shorelines and beach nourishment being the most suitable, especially when combined. These strategies were then evaluated against the eight core principles of nature-based solutions protecting shorebird as well as human wellbeing. Living shoreline strategy was the only one that met all eight NbS principles. As the coastline of the region greatly varies in substrate and development, further research will be needed to decide which EbA strategies would be appropriate for each specific area to ensure their efficacy. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

24 pages, 11711 KB  
Article
A Simple Theoretical Model for Lags and Asymmetries of Surface Temperature
by Gabriele Di Bona and Andrea Giacobbe
Climate 2021, 9(5), 78; https://doi.org/10.3390/cli9050078 - 11 May 2021
Viewed by 4092
Abstract
Here, we study three fundamental climatic phenomena: The seasonal lag, the diurnal lag, and the asymmetry of daily temperature variation. We write a nonlinear ODE based on an energy balance for surface temperature and humidity. The model focuses on small regions of the [...] Read more.
Here, we study three fundamental climatic phenomena: The seasonal lag, the diurnal lag, and the asymmetry of daily temperature variation. We write a nonlinear ODE based on an energy balance for surface temperature and humidity. The model focuses on small regions of the Earth’s surface; it reproduces the three phenomena with a reasonable accuracy if a few parameters are chosen according to the climatic type of the regions. The plots in this manuscript compare real climatic data with numerical solutions of the model we propose. The model takes into account the doubly periodic forcing of the solar radiation (annual and daily), IR radiation, the existence of thermodynamic bodies with different thermal inertia (land and oceans), and the effect of humidity on the thermal inertia of the air. We write the equations using astronomical parameters with the possibility of applications to exoplanets in mind. We conclude this article investigating the evolution of temperatures in Catania and Sydney if the Earth was on an orbit around the Sun with the same mean distance but greater eccentricity. Full article
Show Figures

Figure 1

16 pages, 2554 KB  
Article
Mapping Vulnerability of Cotton to Climate Change in West Africa: Challenges for Sustainable Development
by Mary Ann Cunningham, Nicholas S. Wright, Penelope B. Mort Ranta, Hannah K. Benton, Hassan G. Ragy, Christopher J. Edington and Chloe A. Kellner
Climate 2021, 9(4), 68; https://doi.org/10.3390/cli9040068 - 19 Apr 2021
Cited by 3 | Viewed by 5611
Abstract
Climate models project vulnerability to global warming in low-income regions, with important implications for sustainable development. While food crops are the priority, smallholder cash crops support food security, education, and other priorities. Despite its importance as a populous region subject to substantial climate [...] Read more.
Climate models project vulnerability to global warming in low-income regions, with important implications for sustainable development. While food crops are the priority, smallholder cash crops support food security, education, and other priorities. Despite its importance as a populous region subject to substantial climate change, West Africa has received relatively slight attention in spatial assessments of climate impacts. In this region, rainfed cotton (Gossypium hirsutum) provides essential smallholder income. We used a spatially explicit species distribution model to project likely changes in the spatial distribution of suitable climates for rainfed cotton in West Africa. We modeled suitable climate conditions from the recent past (1970–2000) and projected the range of those conditions in 2050 (Representative Concentration Pathways (RCP) 4.5 and 8.5). The suitable area declined by 60 percent under RCP4.5 and by 80 percent under RCP8.5. Of 15 countries in the study area, all but two declined to less than ten percent suitable under RCP8.5. The annual precipitation was the most influential factor in explaining baseline cotton distribution, but 2050 temperatures appear to become the limiting factor, rising beyond the range in which rainfed cotton has historically been grown. Adaptation to these changes and progress on sustainable development goals will depend on responses at multiple scales of governance, including global support and cooperation. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
Show Figures

Figure 1

17 pages, 4506 KB  
Article
On the Breaking of the Milankovitch Cycles Triggered by Temperature Increase: The Stochastic Resonance Response
by Maria Teresa Caccamo and Salvatore Magazù
Climate 2021, 9(4), 67; https://doi.org/10.3390/cli9040067 - 18 Apr 2021
Cited by 10 | Viewed by 8780
Abstract
Recent decades have registered the hottest temperature variation in instrumentally recorded data history. The registered temperature rise is particularly significant in the so-called hot spot or sentinel regions, characterized by higher temperature increases in respect to the planet average value and by more [...] Read more.
Recent decades have registered the hottest temperature variation in instrumentally recorded data history. The registered temperature rise is particularly significant in the so-called hot spot or sentinel regions, characterized by higher temperature increases in respect to the planet average value and by more marked connected effects. In this framework, in the present work, following the climate stochastic resonance model, the effects, due to a temperature increase independently from a specific trend, connected to the 105 year Milankovitch cycle were tested. As a result, a breaking scenario induced by global warming is forecasted. More specifically, a wavelet analysis, innovatively performed with different sampling times, allowed us, besides to fully characterize the cycles periodicities, to quantitatively determine the stochastic resonance conditions by optimizing the noise level. Starting from these system resonance conditions, numerical simulations for increasing planet temperatures have been performed. The obtained results show that an increase of the Earth temperature boosts a transition towards a chaotic regime where the Milankovitch cycle effects disappear. These results put into evidence the so-called threshold effect, namely the fact that also a small temperature increase can give rise to great effects above a given threshold, furnish a perspective point of view of a possible future climate scenario, and provide an account of the ongoing registered intensity increase of extreme meteorological events. Full article
(This article belongs to the Special Issue Climate Change Dynamics and Modeling: Future Perspectives)
Show Figures

Figure 1

17 pages, 1272 KB  
Article
Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region
by Jesús Rodrigo-Comino, Rosanna Salvia, Giovanni Quaranta, Pavel Cudlín, Luca Salvati and Antonio Gimenez-Morera
Climate 2021, 9(4), 64; https://doi.org/10.3390/cli9040064 - 12 Apr 2021
Cited by 26 | Viewed by 5778
Abstract
Climate change leverages landscape transformations and exerts variable pressure on natural environments and rural systems. Earlier studies outlined how Mediterranean Europe has become a global hotspot of climate warming and land use change. The present work assumes the olive tree, a typical Mediterranean [...] Read more.
Climate change leverages landscape transformations and exerts variable pressure on natural environments and rural systems. Earlier studies outlined how Mediterranean Europe has become a global hotspot of climate warming and land use change. The present work assumes the olive tree, a typical Mediterranean crop, as a candidate bioclimatic indicator, delineating the latent impact of climate aridity on traditional cropping systems at the northern range of the biogeographical distribution of the olive tree. Since the olive tree follows a well-defined latitude gradient with a progressive decline in both frequency and density moving toward the north, we considered Italy as an appropriate case to investigate how climate change may (directly or indirectly) influence the spatial distribution of this crop. By adopting an exploratory approach grounded in the quali-quantitative analysis of official statistics, the present study investigates long-term changes over time in the spatial distribution of the olive tree surface area in Northern Italy, a region traditionally considered outside the ecological range of the species because of unsuitable climate conditions. Olive tree cultivated areas increased in Northern Italy, especially in flat districts and upland areas, while they decreased in Central and Southern Italy under optimal climate conditions, mostly because of land abandonment. The most intense expansion of the olive tree surface area in Italy was observed in the northern region between 1992 and 2000 and corresponded with the intensification of winter droughts during the late 1980s and the early 1990s and local warming since the mid-1980s. Assuming the intrinsic role of farmers in the expansion of the olive tree into the suboptimal land of Northern Italy, the empirical results of our study suggest how climate aridity and local warming may underlie the shift toward the north in the geographical range of the olive tree in the Mediterranean Basin. We finally discussed the implications of the olive range shift as a part of a possible landscape scenario for a more arid future. Full article
(This article belongs to the Special Issue Climate Change and Land)
Show Figures

Figure 1

21 pages, 6174 KB  
Article
Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes
by Jake Wiley and Andrew Mercer
Climate 2021, 9(3), 43; https://doi.org/10.3390/cli9030043 - 5 Mar 2021
Cited by 8 | Viewed by 4482
Abstract
As the mesoscale dynamics of lake-effect snow (LES) are becoming better understood, recent and ongoing research is beginning to focus on the large-scale environments conducive to LES. Synoptic-scale composites are constructed for Lake Michigan and Lake Superior LES events by employing an LES [...] Read more.
As the mesoscale dynamics of lake-effect snow (LES) are becoming better understood, recent and ongoing research is beginning to focus on the large-scale environments conducive to LES. Synoptic-scale composites are constructed for Lake Michigan and Lake Superior LES events by employing an LES case repository for these regions within the U.S. North American Regional Reanalysis (NARR) data for each LES event were used to construct synoptic maps of dominant LES patterns for each lake. These maps were formulated using a previously implemented composite technique that blends principal component analysis with a k-means cluster analysis. A sample case from each resulting cluster was also selected and simulated using the Advanced Weather Research and Forecast model to obtain an example mesoscale depiction of the LES environment. The study revealed four synoptic setups for Lake Michigan and three for Lake Superior whose primary differences were discrepancies in a surface pressure dipole structure previously linked with Great Lakes LES. These subtle synoptic-scale differences suggested that while overall LES impacts were driven more by the mesoscale conditions for these lakes, synoptic-scale conditions still provided important insight into the character of LES forcing mechanisms, primarily the steering flow and air–lake thermodynamics. Full article
(This article belongs to the Special Issue Extreme Weather Events)
Show Figures

Figure 1

14 pages, 944 KB  
Article
Ecoenergetic Comparison of HVAC Systems in Data Centers
by Alexandre F. Santos, Pedro D. Gaspar and Heraldo J. L. de Souza
Climate 2021, 9(3), 42; https://doi.org/10.3390/cli9030042 - 4 Mar 2021
Cited by 12 | Viewed by 4663
Abstract
The topic of sustainability is of high importance today. Global efforts such as the Montreal Protocol (1987) and the Kigali Amendment (2016) are examples of joint work by countries to reduce environmental impacts and improve the level of the ozone layer, the choice [...] Read more.
The topic of sustainability is of high importance today. Global efforts such as the Montreal Protocol (1987) and the Kigali Amendment (2016) are examples of joint work by countries to reduce environmental impacts and improve the level of the ozone layer, the choice of refrigerants and air conditioning systems, which is essential for this purpose. But what indicators are to be used to measure something so necessary? In this article, the types of air conditioning and GWP (Global Warming Potential) levels of equipment in the project phase were discussed, the issue of TEWI (Total Equivalent Warming Impact) that measures the direct and indirect environmental impacts of refrigeration equipment and air conditioning and a new methodology for the indicator was developed, the TEWI DC (DC is the direct application for Data Center), and using the formulas of this new adapted indicator it was demonstrated that the TEWI DC for Chicago (USA) was 2,784,102,640 kg CO2/10 years and Curitiba (Brazil) is 1,252,409,640 kg CO2/10 years. This difference in value corresponds to 222.30% higher annual emissions in Chicago than in Curitiba, showing that it is much more advantageous to install a Data Center in Curitiba than in Chicago in terms of environmental impact. The TEWI indicator provides a more holistic view, helping to combine energy and emissions into the same indicator. Full article
Show Figures

Figure 1

16 pages, 3185 KB  
Article
A Comparative Analysis of Different Future Weather Data for Building Energy Performance Simulation
by Mamak P.Tootkaboni, Ilaria Ballarini, Michele Zinzi and Vincenzo Corrado
Climate 2021, 9(2), 37; https://doi.org/10.3390/cli9020037 - 23 Feb 2021
Cited by 60 | Viewed by 6269
Abstract
The building energy performance pattern is predicted to be shifted in the future due to climate change. To analyze this phenomenon, there is an urgent need for reliable and robust future weather datasets. Several ways for estimating future climate projection and creating weather [...] Read more.
The building energy performance pattern is predicted to be shifted in the future due to climate change. To analyze this phenomenon, there is an urgent need for reliable and robust future weather datasets. Several ways for estimating future climate projection and creating weather files exist. This paper attempts to comparatively analyze three tools for generating future weather datasets based on statistical downscaling (WeatherShift, Meteonorm, and CCWorldWeatherGen) with one based on dynamical downscaling (a future-typical meteorological year, created using a high-quality reginal climate model). Four weather datasets for the city of Rome are generated and applied to the energy simulation of a mono family house and an apartment block as representative building types of Italian residential building stock. The results show that morphed weather files have a relatively similar operation in predicting the future comfort and energy performance of the buildings. In addition, discrepancy between them and the dynamical downscaled weather file is revealed. The analysis shows that this comes not only from using different approaches for creating future weather datasets but also by the building type. Therefore, for finding climate resilient solutions for buildings, care should be taken in using different methods for developing future weather datasets, and regional and localized analysis becomes vital. Full article
Show Figures

Figure 1

14 pages, 564 KB  
Article
Improving the Indoor Air Quality of Residential Buildings during Bushfire Smoke Events
by Priyadarsini Rajagopalan and Nigel Goodman
Climate 2021, 9(2), 32; https://doi.org/10.3390/cli9020032 - 15 Feb 2021
Cited by 26 | Viewed by 7446
Abstract
Exposure to bushfire smoke is associated with acute and chronic health effects such as respiratory and cardiovascular disease. Residential buildings are important places of refuge from bushfire smoke, however the air quality within these locations can become heavily polluted by smoke infiltration. Consequently, [...] Read more.
Exposure to bushfire smoke is associated with acute and chronic health effects such as respiratory and cardiovascular disease. Residential buildings are important places of refuge from bushfire smoke, however the air quality within these locations can become heavily polluted by smoke infiltration. Consequently, some residential buildings may offer limited protection from exposure to poor air quality, especially during extended smoke events. This paper evaluates the impact of bushfire smoke on indoor air quality within residential buildings and proposes strategies and guidance to reduce indoor levels of particulates and other pollutants. The paper explores the different monitoring techniques used to measure air pollutants and assesses the influence of the building envelope, filtration technologies, and portable air cleaners used to improve indoor air quality. The evaluation found that bushfire smoke can substantially increase the levels of pollutants within residential buildings. Notably, some studies reported indoor levels of PM2.5 of approximately 500µg/m3 during bushfire smoke events. Many Australian homes are very leaky (i.e., >15 ACH) compared to those in countries such as the USA. Strategies such as improving the building envelope will help reduce smoke infiltration, however even in airtight homes pollutant levels will eventually increase over time. Therefore, the appropriate design, selection, and operation of household ventilation systems that include particle filtration will be critical to reduce indoor exposures during prolonged smoke events. Future studies of bushfire smoke intrusion in residences could also focus on filtration technologies that can remove gaseous pollutants. Full article
Show Figures

Figure 1

11 pages, 3286 KB  
Article
Impact of the Strong Downwelling (Upwelling) on Small Pelagic Fish Production during the 2016 (2019) Negative (Positive) Indian Ocean Dipole Events in the Eastern Indian Ocean off Java
by Jonson Lumban-Gaol, Eko Siswanto, Kedarnath Mahapatra, Nyoman Metta Nyanakumara Natih, I Wayan Nurjaya, Mochamad Tri Hartanto, Erwin Maulana, Luky Adrianto, Herlambang Aulia Rachman, Takahiro Osawa, Berri Miraz Kholipah Rahman and Arik Permana
Climate 2021, 9(2), 29; https://doi.org/10.3390/cli9020029 - 2 Feb 2021
Cited by 24 | Viewed by 6115
Abstract
Although researchers have investigated the impact of Indian Ocean Dipole (IOD) phases on human lives, only a few have examined such impacts on fisheries. In this study, we analyzed the influence of negative (positive) IOD phases on chlorophyll a (Chl-a) concentrations as an [...] Read more.
Although researchers have investigated the impact of Indian Ocean Dipole (IOD) phases on human lives, only a few have examined such impacts on fisheries. In this study, we analyzed the influence of negative (positive) IOD phases on chlorophyll a (Chl-a) concentrations as an indicator of phytoplankton biomass and small pelagic fish production in the eastern Indian Ocean (EIO) off Java. We also conducted field surveys in the EIO off Palabuhanratu Bay at the peak (October) and the end (December) of the 2019 positive IOD phase. Our findings show that the Chl-a concentration had a strong and robust association with the 2016 (2019) negative (positive) IOD phases. The negative (positive) anomalous Chl-a concentration in the EIO off Java associated with the negative (positive) IOD phase induced strong downwelling (upwelling), leading to the preponderant decrease (increase) in small pelagic fish production in the EIO off Java. Full article
(This article belongs to the Special Issue Climate Change Impacts at Various Geographical Scales)
Show Figures

Figure 1

11 pages, 233 KB  
Article
A Survey Instrument to Measure Skeptics’ (Dis)Trust in Climate Science
by Dilshani Sarathchandra and Kristin Haltinner
Climate 2021, 9(2), 18; https://doi.org/10.3390/cli9020018 - 20 Jan 2021
Cited by 11 | Viewed by 6028
Abstract
Existing survey instruments of trust in science and scientists that focus on the general public are potentially insufficient to assess climate skeptics’ perspectives towards climate science. They may miss important aspects of climate science about which skeptics raise concerns, and may not accurately [...] Read more.
Existing survey instruments of trust in science and scientists that focus on the general public are potentially insufficient to assess climate skeptics’ perspectives towards climate science. They may miss important aspects of climate science about which skeptics raise concerns, and may not accurately measure climate skeptics’ distrust in climatology. We introduce a new survey instrument developed using data gathered from interviewing 33 self-identified climate change skeptics in Idaho. The survey items capture skeptics’ beliefs regarding climate scientists’ trustworthiness and credibility, their deference to scientific authority, and their perceptions of alienation from the climate science community. We validate our survey instrument using data from an online survey administered to 1000 residents in the U.S. Pacific Northwest who are skeptical of climate change. By employing standard survey design principles, we demonstrate how our new (dis)trust in climate science instrument performs in tandem with well-known predictors of science attitudes and pro-environmentalism. Full article
(This article belongs to the Special Issue Human-Induced Climate Change: Truths and Controversies)
17 pages, 2727 KB  
Article
The Effect of Statistical Downscaling on the Weighting of Multi-Model Ensembles of Precipitation
by Adrienne M. Wootten, Elias C. Massoud, Agniv Sengupta, Duane E. Waliser and Huikyo Lee
Climate 2020, 8(12), 138; https://doi.org/10.3390/cli8120138 - 25 Nov 2020
Cited by 26 | Viewed by 4898
Abstract
Recently, assessments of global climate model (GCM) ensembles have transitioned from using unweighted means to weighted means designed to account for skill and interdependence among models. Although ensemble-weighting schemes are typically derived using a GCM ensemble, statistically downscaled projections are used in climate [...] Read more.
Recently, assessments of global climate model (GCM) ensembles have transitioned from using unweighted means to weighted means designed to account for skill and interdependence among models. Although ensemble-weighting schemes are typically derived using a GCM ensemble, statistically downscaled projections are used in climate change assessments. This study applies four ensemble-weighting schemes for model averaging to precipitation projections in the south-central United States. The weighting schemes are applied to (1) a 26-member GCM ensemble and (2) those 26 members downscaled using Localized Canonical Analogs (LOCA). This study is distinct from prior research because it compares the interactions of ensemble-weighting schemes with GCMs and statistical downscaling to produce summarized climate projection products. The analysis indicates that statistical downscaling improves the ensemble accuracy (LOCA average root mean square error is 100 mm less than the CMIP5 average root mean square error) and reduces the uncertainty of the projected ensemble-mean change. Furthermore, averaging the LOCA ensemble using Bayesian Model Averaging reduces the uncertainty beyond any other combination of weighting schemes and ensemble (standard deviation of the mean projected change in the domain is reduced by 40–50 mm). The results also indicate that it is inappropriate to assume that a weighting scheme derived from a GCM ensemble matches the same weights derived using a downscaled ensemble. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

20 pages, 3709 KB  
Article
Assessing Property Level Economic Impacts of Climate in the US, New Insights and Evidence from a Comprehensive Flood Risk Assessment Tool
by Saman Armal, Jeremy R. Porter, Brett Lingle, Ziyan Chu, Michael L. Marston and Oliver E. J. Wing
Climate 2020, 8(10), 116; https://doi.org/10.3390/cli8100116 - 12 Oct 2020
Cited by 35 | Viewed by 13088
Abstract
Hurricanes and flood-related events cause more direct economic damage than any other type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages since 1980. On average, direct flood losses have risen from USD 4 billion [...] Read more.
Hurricanes and flood-related events cause more direct economic damage than any other type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages since 1980. On average, direct flood losses have risen from USD 4 billion annually in the 1980s to roughly USD 17 billion annually from 2010 to 2018. Despite flooding’s tremendous economic impact on US properties and communities, current estimates of expected damages are lacking due to the fact that flood risk in many parts of the US is unidentified, underestimated, or available models associated with high quality assessment tools are proprietary. This study introduces an economic-focused Environmental Impact Assessment (EIA) approach that builds upon an our existing understanding of prior assessment methods by taking advantage of a newly available, climate adjusted, parcel-level flood risk assessment model (First Street Foundation, 2020a and 2020b) in order to quantify property level economic impacts today, and into the climate adjusted future, using the Intergovernmental Panel on Climate Change’s (IPCC) Representative Concentration Pathways (RCPs) and NASA’s Global Climate Model ensemble (CMIP5). This approach represents a first of its kind—a publicly available high precision flood risk assessment tool at the property level developed completely with open data sources and open methods. The economic impact assessment presented here has been carried out using residential buildings in New Jersey as a testbed; however, the environmental assessment tool on which it is based is a national scale property level flood assessment model at a 3 m resolution. As evidence of the reliability of the EIA tool, the 2020 estimated economic impact (USD 5481 annual expectation) was compared to actual average per claim-year NFIP payouts from flooding and found an average of USD 5540 over the life of the program (difference of less than USD 100). Additionally, the tool finds a 41.4% increase in average economic flood damage through the year 2050 when environmental change is included in the model. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Graphical abstract

20 pages, 3623 KB  
Article
Expected Impacts of Mixing European Beech with Silver Fir on Regional Air Quality and Radiation Balance
by Boris Bonn, Jürgen Kreuzwieser, Ruth-Kristina Magh, Heinz Rennenberg, Dirk Schindler, Dominik Sperlich, Raphael Trautmann, Rasoul Yousefpour and Rüdiger Grote
Climate 2020, 8(10), 105; https://doi.org/10.3390/cli8100105 - 26 Sep 2020
Cited by 4 | Viewed by 4380
Abstract
The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate [...] Read more.
The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate for admixture into current pure stands of European beech (Fagus sylvatica) especially in mountainous areas. Such a change in forest structure also has effects on the regional scale, which, however, have been seldomly quantified. Therefore, we measured and modeled radiative balance and air chemistry impacts of admixing Silver fir to European beech stands, including changes in biogenic volatile organic compound emissions. An increased fraction of Silver fir caused a smaller albedo and a (simulated) larger evapotranspiration, leading to a dryer and warmer forest. While isoprene emission was negligible for both species, sesquiterpene and monoterpene emissions were larger for fir than for beech. From these differences, we derived that ozone concentration as well as secondary organic aerosols and cloud condensation nuclei would increase regionally. Overall, we demonstrated that even a relatively mild scenario of tree species change will alter the energy balance and air quality in a way that could potentially influence the climate on a landscape scale. Full article
Show Figures

Graphical abstract

21 pages, 3239 KB  
Article
Modeling and Analysis of Barriers to Climate Change Adaptation in Tehran
by Behnam Ghasemzadeh and Ayyoob Sharifi
Climate 2020, 8(10), 104; https://doi.org/10.3390/cli8100104 - 24 Sep 2020
Cited by 15 | Viewed by 5068
Abstract
Since the impacts of climate change will last for many years, adaptation to this phenomenon should be prioritized in urban management plans. Although Tehran, the capital of Iran, has been subject to a variety of climate change impacts in recent years, appropriate adaptation [...] Read more.
Since the impacts of climate change will last for many years, adaptation to this phenomenon should be prioritized in urban management plans. Although Tehran, the capital of Iran, has been subject to a variety of climate change impacts in recent years, appropriate adaptation measures to address them are yet to be taken. This study primarily aims to categorize the barriers to climate change adaptation in Tehran and analyze the way they interact with each other. The study was done in three steps: first, the focus group discussion (FGD) method was used to identify the barriers; next, the survey and the structural equation modeling (SEM) were used to validate the barriers, identify their importance, and examine their possible inter-relationships; and finally, the interpretive structural modeling (ISM) was applied to categorize and visualize the relationships between the barriers. Results show that barriers related to the ‘structure and culture of research’, ‘laws and regulations’, and ‘planning’ belong to the cluster of independent barriers and are of greater significance. The ‘social’ barrier and barriers related to ‘resources and resource management’ are identified as dependent barriers and are of lesser importance. Barriers related to ‘governance’, ‘awareness’, ‘education and knowledge’, ‘communication and interaction’, and ‘economy’ are identified at the intermediate cluster. The findings of this study can provide planners and decision makers with invaluable insights as to how to develop strategies for climate change adaptation in Tehran. Despite the scope of the study being confined to Tehran, its implications go far beyond this metropolis. Full article
Show Figures

Figure 1

23 pages, 5183 KB  
Article
Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah
by Hadia Akbar, L. Niel Allen, David E. Rosenberg and Yoshimitsu Chikamoto
Climate 2020, 8(9), 96; https://doi.org/10.3390/cli8090096 - 21 Aug 2020
Cited by 1 | Viewed by 4581
Abstract
In the Upper Colorado River Basin, agriculture is a major contributor to Utah’s economy, which may be stressed due to the changing climate. In this study, two data-mining techniques and interview data are used to explore how climate variability affects agricultural production and [...] Read more.
In the Upper Colorado River Basin, agriculture is a major contributor to Utah’s economy, which may be stressed due to the changing climate. In this study, two data-mining techniques and interview data are used to explore how climate variability affects agricultural production and the way the farmers have been adapting their practices to these changes. In the first part of the study, we used multilinear regression and random forest regression to understand the relationship between climate and agricultural production using temperature, precipitation, water availability, hay production, and cattle herd size. The quantitative results showed weak relations among variables. In the second part of the study, we interviewed ranchers to fill the gaps in the quantitative analysis. Over the 35 years (1981–2015), the quantitative analysis shows that temperature has affected cattle and hay production more than precipitation. Among non-climatic variables, resource availability and commodity prices are the most important factors that influence year-to-year production. Farmers are well-aware of these effects and have adapted accordingly. They have changed irrigation practices, cropping patterns, and are experimenting to produce a hybrid species of cattle, that are resilient to a hotter temperature and can use a wider variety of forage. Full article
Show Figures

Figure 1

20 pages, 1660 KB  
Article
Potential Risks of Plant Invasions in Protected Areas of Sri Lanka under Climate Change with Special Reference to Threatened Vertebrates
by Champika S. Kariyawasam, Lalit Kumar and Sujith S. Ratnayake
Climate 2020, 8(4), 51; https://doi.org/10.3390/cli8040051 - 1 Apr 2020
Cited by 16 | Viewed by 8006
Abstract
There is substantial global concern over the potential impacts of plant invasions on native biodiversity in protected areas (PAs). Protected areas in tropical island countries that host rich biodiversity face an imminent risk from the potential spread of invasive alien plant species. Thus, [...] Read more.
There is substantial global concern over the potential impacts of plant invasions on native biodiversity in protected areas (PAs). Protected areas in tropical island countries that host rich biodiversity face an imminent risk from the potential spread of invasive alien plant species. Thus, the aim of this study was to gain a general understanding of the potential risks of multiple plant invasions in PAs located in the tropical island of Sri Lanka under projected climate change. We conducted a further analysis of a multi-species climate suitability assessment, based on a previous study using the Maximum Entropy (MaxEnt) modeling approach, and tested how species invasion may change in protected areas under climate change. We evaluated how the climate suitability of 14 nationally recognized invasive alien plant species (IAPS) will vary within PAs and outside PAs by 2050 under two climate change scenarios, representative concentration pathways (RCP) 4.5 and 8.5. Our findings suggest that there will be increased risks from multiple IAPS inside PAs and outside PAs in Sri Lanka in the future; however, the potential risk is comparatively less in PAs. We provide an overview of the species richness of selected threatened vertebrate groups, which can be potentially impacted by IAPS in PAs. The findings of this study highlight important implications for the strategic management of plant invasions in PAs in order to safeguard native biodiversity, with special reference to vertebrates. Full article
Show Figures

Figure 1

21 pages, 2643 KB  
Article
The Role of Individual and Small-Area Social and Environmental Factors on Heat Vulnerability to Mortality Within and Outside of the Home in Boston, MA
by Augusta A. Williams, Joseph G. Allen, Paul J. Catalano and John D. Spengler
Climate 2020, 8(2), 29; https://doi.org/10.3390/cli8020029 - 7 Feb 2020
Cited by 17 | Viewed by 4950
Abstract
Climate change is resulting in heatwaves that are more frequent, severe, and longer lasting, which is projected to double-to-triple the heat-related mortality in Boston, MA if adequate climate change mitigation and adaptation strategies are not implemented. A case-only analysis was used to examine [...] Read more.
Climate change is resulting in heatwaves that are more frequent, severe, and longer lasting, which is projected to double-to-triple the heat-related mortality in Boston, MA if adequate climate change mitigation and adaptation strategies are not implemented. A case-only analysis was used to examine subject and small-area neighborhood characteristics that modified the association between hot days and mortality. Deaths of Boston, Massachusetts residents that occurred from 2000–2015 were analyzed in relation to the daily temperature and heat index during the warm season as part of the case-only analysis. The modification by small-area (census tract, CT) social, and environmental (natural and built) factors was assessed. At-home mortality on hot days was driven by both social and environmental factors, differentially across the City of Boston census tracts, with a greater proportion of low-to-no income individuals or those with limited English proficiency being more highly represented among those who died during the study period; but small-area built environment features, like street trees and enhanced energy efficiency, were able to reduce the relative odds of death within and outside the home. At temperatures below current local thresholds used for heat warnings and advisories, there was increased relative odds of death from substance abuse and assault-related altercations. Geographic weighted regression analyses were used to examine these relationships spatially within a subset of at-home deaths with high-resolution temperature and humidity data. This revealed spatially heterogeneous associations between at-home mortality and social and environmental vulnerability factors. Full article
Show Figures

Figure 1

14 pages, 1466 KB  
Article
Climate Change and Sustaining Heritage Resources: A Framework for Boosting Cultural and Natural Heritage Conservation in Central Italy
by Ahmadreza Shirvani Dastgerdi, Massimo Sargolini, Shorna Broussard Allred, Allison Chatrchyan and Giuseppe De Luca
Climate 2020, 8(2), 26; https://doi.org/10.3390/cli8020026 - 5 Feb 2020
Cited by 43 | Viewed by 11773
Abstract
Climate change has dramatically affected the rainfall patterns and water systems in Central Italy. The vulnerability of this area to climate change and natural hazards necessitates that appropriate adaptation policies be put in place to protect heritage sites. This study aims to develop [...] Read more.
Climate change has dramatically affected the rainfall patterns and water systems in Central Italy. The vulnerability of this area to climate change and natural hazards necessitates that appropriate adaptation policies be put in place to protect heritage sites. This study aims to develop a cultural and natural heritage conservation framework for Central Italy that enhances the capacity of climate change adaptation for heritage resources. For this purpose, a comparison was made between the UNESCO (United National Educational, Scientific and Cultural Organization) Convention of 1972 and the European Landscape Convention of the Council of Europe to achieve a coherent vision for the protection of heritage resources in Europe. After describing the impacts of climate change on heritage resources in Central Italy, we analyze and suggest improvements to the conservation framework for wisely protecting heritage resources in a changing climate. The findings reveal that conservation sectors require assessments of the value of heritage resources at the territorial scale to effectively define conservation priorities, assess the vulnerabilities, and more precisely direct funding. In this respect, the integration of the European Landscape Convention with territorial planning may boost the unity of a conservation framework in terms of climate change while providing new opportunities for conservation authorities to develop adaptation policies. Full article
(This article belongs to the Special Issue World Heritage and Climate Change: Impacts and Adaptation)
Show Figures

Figure 1

23 pages, 1325 KB  
Article
Mitigating Climate Change in the Cultural Built Heritage Sector
by Elena Sesana, Chiara Bertolin, Alexandre S. Gagnon and John J. Hughes
Climate 2019, 7(7), 90; https://doi.org/10.3390/cli7070090 - 11 Jul 2019
Cited by 65 | Viewed by 9843
Abstract
Climate change mitigation targets have put pressure to reduce the carbon footprint of cultural heritage buildings. Commonly adopted measures to decrease the greenhouse gas (GHG) emissions of historical buildings are targeted at improving their energy efficiency through insulating the building envelope, and upgrading [...] Read more.
Climate change mitigation targets have put pressure to reduce the carbon footprint of cultural heritage buildings. Commonly adopted measures to decrease the greenhouse gas (GHG) emissions of historical buildings are targeted at improving their energy efficiency through insulating the building envelope, and upgrading their heating, cooling and lighting systems. However, there are complex issues that arise when mitigating climate change in the cultural built heritage sector. For instance, preserving the authenticity of heritage buildings, maintaining their traditional passive behaviours, and choosing adaptive solutions compatible with the characteristics of heritage materials to avoid an acceleration of decay processes. It is thus important to understand what the enablers, or the barriers, are to reduce the carbon footprint of cultural heritage buildings to meet climate change mitigation targets. This paper investigates how climate change mitigation is considered in the management and preservation of the built heritage through semi-structured interviews with cultural heritage experts from the UK, Italy and Norway. Best-practice approaches for the refurbishment of historical buildings with the aim of decreasing their energy consumption are presented, as perceived by the interviewees, as well as the identification of the enablers and barriers in mitigating climate change in the cultural built heritage sector. The findings emphasise that adapting the cultural built heritage to reduce GHG emissions is challenging, but possible if strong and concerted action involving research and government can be undertaken to overcome the barriers identified in this paper. Full article
(This article belongs to the Special Issue World Heritage and Climate Change: Impacts and Adaptation)
Show Figures

Graphical abstract

13 pages, 1954 KB  
Article
FCVLP: A Fuzzy Random Conditional Value-at-Risk-Based Linear Programming Model for Municipal Solid Waste Management
by Donglin Wang, Xiangming Kong, Shan Zhao and Yurui Fan
Climate 2019, 7(6), 80; https://doi.org/10.3390/cli7060080 - 6 Jun 2019
Cited by 4 | Viewed by 3956
Abstract
A fuzzy random conditional value-at-risk-based linear programming (FCVLP) model was proposed in this study for dealing with municipal solid waste (MSW) management problems under uncertainty. FCVLP improves upon the existing fuzzy linear programming and fuzzy random conditional value-at-risk methods by allowing analysis of [...] Read more.
A fuzzy random conditional value-at-risk-based linear programming (FCVLP) model was proposed in this study for dealing with municipal solid waste (MSW) management problems under uncertainty. FCVLP improves upon the existing fuzzy linear programming and fuzzy random conditional value-at-risk methods by allowing analysis of the risks of violating constraints that contain fuzzy parameters. A long-term MSW management problem was used to illustrate the applicability of FCVLP. The optimal feasibility solutions under various significance risk levels could be generated in order to analysis the trade-offs among the system cost, the feasibility degree of capacity constraints, and the risk level of waste-disposal-demand constraints. The results demonstrated that (1) a lower system cost may lead to a lower feasibility of waste-facility-capacity constraint and a higher risk of waste-disposal-demand constraint; (2) effects on system cost from vague information in incinerator capacity inputs would be greater than those in landfill capacity inputs; (3) the total allowable waste allocation would vary significantly because of the variations of risk levels and feasibility degrees. The proposed FCVLP method could be used to identify optimal waste allocation scenarios associated with a variety of complexities in MSW management systems. Full article
(This article belongs to the Special Issue Environment Pollution and Climate Change)
Show Figures

Figure 1

20 pages, 2115 KB  
Article
Green Infrastructure Financing as an Imperative to Achieve Green Goals
by Rae Zimmerman, Ryan Brenner and Jimena Llopis Abella
Climate 2019, 7(3), 39; https://doi.org/10.3390/cli7030039 - 9 Mar 2019
Cited by 33 | Viewed by 8859
Abstract
Green infrastructure (GI) has increasingly gained popularity for achieving adaptation and mitigation goals associated with climate change and extreme weather events. To continue implementing GI, financial tools are needed for upfront project capital or development costs and later for maintenance. This study’s purpose [...] Read more.
Green infrastructure (GI) has increasingly gained popularity for achieving adaptation and mitigation goals associated with climate change and extreme weather events. To continue implementing GI, financial tools are needed for upfront project capital or development costs and later for maintenance. This study’s purpose is to evaluate financing tools used in a selected GI dataset and to assess how those tools are linked to various GI technologies and other GI project characteristics like cost and size. The dataset includes over 400 GI U.S. projects, comprising a convenience sample, from the American Society of Landscape Architects (ASLA). GI project characteristics were organized to answer a number of research questions using descriptive statistics. Results indicated that the number of projects and overall cost shares were mostly located in a few states. Grants were the most common financial tool with about two-thirds of the projects reporting information on financial tools receiving grant funding. Most projects reported financing from only one tool with a maximum of three tools. Projects primarily included multiple GI technologies averaging three and a maximum of nine. The most common GI technologies were bioswales, retention, rain gardens, and porous pavements. These findings are useful for decision-makers evaluating funding support for GI. Full article
(This article belongs to the Special Issue Climate Change Resilience and Urban Sustainability)
Show Figures

Figure 1

18 pages, 290 KB  
Article
What Can Policy-Makers Do to Increase the Effectiveness of Building Renovation Subsidies?
by Sibylle Studer and Stefan Rieder
Climate 2019, 7(2), 28; https://doi.org/10.3390/cli7020028 - 1 Feb 2019
Cited by 9 | Viewed by 4435
Abstract
Heating is responsible for a substantial share of global energy consumption and still relies strongly on fossil fuels. In order to reduce energy consumption for heating, subsidies for building renovations are a common policy measure in Europe. Policy makers often combine them with [...] Read more.
Heating is responsible for a substantial share of global energy consumption and still relies strongly on fossil fuels. In order to reduce energy consumption for heating, subsidies for building renovations are a common policy measure in Europe. Policy makers often combine them with information and advice measures. Policy mixes of this kind have been acknowledged widely in the literature, but their effectiveness needs further empirical examination. Based on a survey of the recipients of renovation subsidies and on four focus groups, we examine the (cost) effectiveness of subsidies, as follows: The effectiveness of renovation subsidies was measured by the extent to which receiving subsidies contributed either to the decision to renovate at all, or to the decision to enhance the quality or scope of the renovation. Fifty percent of the recipients surveyed reported that the subsidies contributed to a more energy-efficient renovation than was initially intended. The other fifty percent must be considered as free riders. Multivariate analyses further show that homeowners who used advice services and attributed outstandingly positive characteristics to the policy implementer were more likely to spend subsidies to improve energy efficiency. The findings demonstrate the importance of applying a combination of financial and persuasive policy measures. Additionally, they illustrate the importance of non-financial and non-technical factors, such as the communication competencies of the implementer, when designing policy measures. Full article
22 pages, 6797 KB  
Article
Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate
by Hirofumi Hashimoto, Ramakrishna R. Nemani, Govindasamy Bala, Long Cao, Andrew R. Michaelis, Sangram Ganguly, Weile Wang, Cristina Milesi, Ryan Eastman, Tsengdar Lee and Ranga Myneni
Climate 2019, 7(2), 27; https://doi.org/10.3390/cli7020027 - 1 Feb 2019
Cited by 12 | Viewed by 5627
Abstract
We qualitatively and quantitatively assessed the factors related to vegetation growth using Earth system models and corroborated the results with historical climate observations. The Earth system models showed a systematic greening by the late 21st century, including increases of up to 100% in [...] Read more.
We qualitatively and quantitatively assessed the factors related to vegetation growth using Earth system models and corroborated the results with historical climate observations. The Earth system models showed a systematic greening by the late 21st century, including increases of up to 100% in Gross Primary Production (GPP) and 60% in Leaf Area Index (LAI). A subset of models revealed that the radiative effects of CO2 largely control changes in climate, but that the CO2 fertilization effect dominates the greening. The ensemble of Earth system model experiments revealed that the feedback of surface temperature contributed to 17% of GPP increase in temperature-limited regions, and radiation increase accounted for a 7% increase of GPP in radiation-limited areas. These effects are corroborated by historical observations. For example, observations confirm that cloud cover has decreased over most land areas in the last three decades, consistent with a CO2-induced reduction in transpiration. Our results suggest that vegetation may thrive in the starkly different climate expected over the coming decades, but only if plants harvest the sort of hypothesized physiological benefits of higher CO2 depicted by current Earth system models. Full article
(This article belongs to the Special Issue Climate Variability and Change in the 21th Century)
Show Figures

Figure 1

17 pages, 2912 KB  
Article
Statistical Analysis of Recent and Future Rainfall and Temperature Variability in the Mono River Watershed (Benin, Togo)
by Lawin Agnidé Emmanuel, Nina Rholan Hounguè, Chabi Angelbert Biaou and Djigbo Félicien Badou
Climate 2019, 7(1), 8; https://doi.org/10.3390/cli7010008 - 6 Jan 2019
Cited by 39 | Viewed by 7256
Abstract
This paper assessed the current and mid-century trends in rainfall and temperature over the Mono River watershed. It considered observation data for the period 1981–2010 and projection data from the regional climate model (RCM), REMO, for the period 2018–2050 under emission scenarios RCP4.5 [...] Read more.
This paper assessed the current and mid-century trends in rainfall and temperature over the Mono River watershed. It considered observation data for the period 1981–2010 and projection data from the regional climate model (RCM), REMO, for the period 2018–2050 under emission scenarios RCP4.5 and RCP8.5. Rainfall data were interpolated using ordinary kriging. Mann-Kendall, Pettitt and Standardized Normal Homogeneity (SNH) tests were used for trends and break-points detection. Rainfall interannual variability analysis was based on standardized precipitation index (SPI), whereas anomalies indices were considered for temperature. Results revealed that on an annual scale and all over the watershed, temperature and rainfall showed an increasing trend during the observation period. By 2050, both scenarios projected an increase in temperature compared to the baseline period 1981–2010, whereas annual rainfall will be characterized by high variabilities. Rainfall seasonal cycle is expected to change in the watershed: In the south, the second rainfall peak, which usually occurs in September, will be extended to October with a higher value. In the central and northern parts, rainfall regime is projected to be characterized by late onsets, a peak in September and lower precipitation until June and higher thereafter. The highest increase and decrease in monthly precipitation are expected in the northern part of the watershed. Therefore, identifying relevant adaptation strategies is recommended. Full article
(This article belongs to the Special Issue Climate Variability and Change in the 21th Century)
Show Figures

Figure 1

19 pages, 6919 KB  
Article
Decadal Ocean Heat Redistribution Since the Late 1990s and Its Association with Key Climate Modes
by Lijing Cheng, Gongjie Wang, John P. Abraham and Gang Huang
Climate 2018, 6(4), 91; https://doi.org/10.3390/cli6040091 - 19 Nov 2018
Cited by 22 | Viewed by 10650
Abstract
Ocean heat content (OHC) is the major component of the earth’s energy imbalance. Its decadal scale variability has been heavily debated in the research interest of the so-called “surface warming slowdown” (SWS) that occurred during the 1998–2013 period. Here, we first clarify that [...] Read more.
Ocean heat content (OHC) is the major component of the earth’s energy imbalance. Its decadal scale variability has been heavily debated in the research interest of the so-called “surface warming slowdown” (SWS) that occurred during the 1998–2013 period. Here, we first clarify that OHC has accelerated since the late 1990s. This finding refutes the concept of a slowdown of the human-induced global warming. This study also addresses the question of how heat is redistributed within the global ocean and provides some explanation of the underlying physical phenomena. Previous efforts to answer this question end with contradictory conclusions; we show that the systematic errors in some OHC datasets are partly responsible for these contradictions. Using an improved OHC product, the three-dimensional OHC changes during the SWS period are depicted, related to a reference period of 1982–1997. Several “hot spots” and “cold spots” are identified, showing a significant decadal-scale redistribution of ocean heat, which is distinct from the long-term ocean-warming pattern. To provide clues for the potential drivers of the OHC changes during the SWS period, we examine the OHC changes related to the key climate modes by regressing the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation (ENSO), and Atlantic Multi-decadal Oscillation (AMO) indices onto the de-trended gridded OHC anomalies. We find that no single mode can fully explain the OHC change patterns during the SWS period, suggesting that there is not a single “pacemaker” for the recent SWS. Our observation-based analyses provide a basis for further understanding the mechanisms of the decadal ocean heat uptake and evaluating the climate models. Full article
(This article belongs to the Special Issue Postmortem of the Global Warming Hiatus)
Show Figures

Figure 1

18 pages, 5046 KB  
Article
Changes in Earth’s Energy Budget during and after the “Pause” in Global Warming: An Observational Perspective
by Norman G. Loeb, Tyler J. Thorsen, Joel R. Norris, Hailan Wang and Wenying Su
Climate 2018, 6(3), 62; https://doi.org/10.3390/cli6030062 - 11 Jul 2018
Cited by 79 | Viewed by 33682
Abstract
This study examines changes in Earth’s energy budget during and after the global warming “pause” (or “hiatus”) using observations from the Clouds and the Earth’s Radiant Energy System. We find a marked 0.83 ± 0.41 Wm−2 reduction in global mean reflected shortwave [...] Read more.
This study examines changes in Earth’s energy budget during and after the global warming “pause” (or “hiatus”) using observations from the Clouds and the Earth’s Radiant Energy System. We find a marked 0.83 ± 0.41 Wm−2 reduction in global mean reflected shortwave (SW) top-of-atmosphere (TOA) flux during the three years following the hiatus that results in an increase in net energy into the climate system. A partial radiative perturbation analysis reveals that decreases in low cloud cover are the primary driver of the decrease in SW TOA flux. The regional distribution of the SW TOA flux changes associated with the decreases in low cloud cover closely matches that of sea-surface temperature warming, which shows a pattern typical of the positive phase of the Pacific Decadal Oscillation. Large reductions in clear-sky SW TOA flux are also found over much of the Pacific and Atlantic Oceans in the northern hemisphere. These are associated with a reduction in aerosol optical depth consistent with stricter pollution controls in China and North America. A simple energy budget framework is used to show that TOA radiation (particularly in the SW) likely played a dominant role in driving the marked increase in temperature tendency during the post-hiatus period. Full article
(This article belongs to the Special Issue Postmortem of the Global Warming Hiatus)
Show Figures

Figure 1

21 pages, 4034 KB  
Article
The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago
by Zahra Jandaghian and Hashem Akbari
Climate 2018, 6(2), 19; https://doi.org/10.3390/cli6020019 - 21 Mar 2018
Cited by 59 | Viewed by 10660
Abstract
Increasing surface reflectivity in urban areas can decrease ambient temperature, resulting in reducing photochemical reaction rates, reducing cooling energy demands and thus improving air quality and human health. The weather research and forecasting model with chemistry (WRF-Chem) is coupled with the multi-layer of [...] Read more.
Increasing surface reflectivity in urban areas can decrease ambient temperature, resulting in reducing photochemical reaction rates, reducing cooling energy demands and thus improving air quality and human health. The weather research and forecasting model with chemistry (WRF-Chem) is coupled with the multi-layer of the urban canopy model (ML-UCM) to investigate the effects of surface modification on urban climate in a two-way nested approach over North America focusing on Sacramento, Houston, and Chicago during the 2011 heat wave period. This approach decreases the uncertainties associated with scale separation and grid resolution and equip us with an integrated simulation setup to capture the full impacts of meteorological and photochemical reactions. WRF-ChemV3.6.1 simulated the diurnal variation of air temperature reasonably well, overpredicted wind speed and dew point temperature, underpredicted relative humidity, overpredicted ozone and nitrogen dioxide concentrations, and underpredicted fine particular matters (PM2.5). The performance of PM2.5 is a combination of overprediction of particulate sulfate and underprediction of particulate nitrate and organic carbon. Increasing the surface albedo of roofs, walls, and pavements from 0.2 to 0.65, 0.60, and 0.45, respectively, resulted in a decrease in air temperature by 2.3 °C in urban areas and 0.7 °C in suburban areas; a slight increase in wind speed; an increase in relative humidity (3%) and dew point temperature (0.3 °C); a decrease of PM2.5 and O3 concentrations by 2.7 µg/m3 and 6.3 ppb in urban areas and 1.4 µg/m3 and 2.5 ppb in suburban areas, respectively; minimal changes in PM2.5 subspecies; and a decrease of nitrogen dioxide (1 ppb) in urban areas. Full article
Show Figures

Figure 1

21 pages, 1746 KB  
Article
The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model
by Boris Bonn, Jürgen Kreuzwieser, Felicitas Sander, Rasoul Yousefpour, Tommaso Baggio and Oladeinde Adewale
Climate 2017, 5(4), 78; https://doi.org/10.3390/cli5040078 - 6 Oct 2017
Cited by 11 | Viewed by 6870
Abstract
High levels of air pollution including ground level ozone significantly reduce humans’ life expectancy and cause forest damage and decreased tree growth. The French Vosges and the German Black Forest are regions well-known for having the highest tropospheric ozone concentrations at remote forested [...] Read more.
High levels of air pollution including ground level ozone significantly reduce humans’ life expectancy and cause forest damage and decreased tree growth. The French Vosges and the German Black Forest are regions well-known for having the highest tropospheric ozone concentrations at remote forested sites in Central Europe. This box model study investigates the sensitivity of atmospheric chemistry calculations of derived ozone on differently resolved forest tree composition and volatile organic compound emissions. Representative conditions were chosen for the Upper Rhine area including the Alsatian Vosges/France and the Black Forest/Germany during summer. This study aims to answer the following question: What level of input detail for Alsace and Black Forest tree mixtures is required to accurately simulate ozone formation? While the French forest in Alsace—e.g., in the Vosges—emits isoprene to a substantially higher extent than the forest at the German site, total monoterpene emissions at the two sites are rather similar. However, the individual monoterpene structures, and therefore their reactivity, differs. This causes a higher ozone production rate for Vosges forest mixture conditions than for Black Forest tree mixtures at identical NOx levels, with the difference increasing with temperature. The difference in ozone formation is analyzed in detail and the short-comings of reduced descriptions are discussed. The outcome serves as a to-do-list to allow accurate future ozone predictions influenced by the climate adaptation of forests and the change in forest species composition. Full article
(This article belongs to the Special Issue Modeling Interactions Among Atmosphere, Hydrosphere, and Biosphere)
Show Figures

Figure 1

35 pages, 7141 KB  
Article
The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years
by W. Jackson Davis
Climate 2017, 5(4), 76; https://doi.org/10.3390/cli5040076 - 29 Sep 2017
Cited by 47 | Viewed by 85961
Abstract
Assessing human impacts on climate and biodiversity requires an understanding of the relationship between the concentration of carbon dioxide (CO2) in the Earth’s atmosphere and global temperature (T). Here I explore this relationship empirically using comprehensive, recently-compiled databases of stable-isotope proxies [...] Read more.
Assessing human impacts on climate and biodiversity requires an understanding of the relationship between the concentration of carbon dioxide (CO2) in the Earth’s atmosphere and global temperature (T). Here I explore this relationship empirically using comprehensive, recently-compiled databases of stable-isotope proxies from the Phanerozoic Eon (~540 to 0 years before the present) and through complementary modeling using the atmospheric absorption/transmittance code MODTRAN. Atmospheric CO2 concentration is correlated weakly but negatively with linearly-detrended T proxies over the last 425 million years. Of 68 correlation coefficients (half non-parametric) between CO2 and T proxies encompassing all known major Phanerozoic climate transitions, 77.9% are non-discernible (p > 0.05) and 60.0% of discernible correlations are negative. Marginal radiative forcing (ΔRFCO2), the change in forcing at the top of the troposphere associated with a unit increase in atmospheric CO2 concentration, was computed using MODTRAN. The correlation between ΔRFCO2 and linearly-detrended T across the Phanerozoic Eon is positive and discernible, but only 2.6% of variance in T is attributable to variance in ΔRFCO2. Of 68 correlation coefficients (half non-parametric) between ΔRFCO2 and T proxies encompassing all known major Phanerozoic climate transitions, 75.0% are non-discernible and 41.2% of discernible correlations are negative. Spectral analysis, auto- and cross-correlation show that proxies for T, atmospheric CO2 concentration and ΔRFCO2 oscillate across the Phanerozoic, and cycles of CO2 and ΔRFCO2 are antiphasic. A prominent 15 million-year CO2 cycle coincides closely with identified mass extinctions of the past, suggesting a pressing need for research on the relationship between CO2, biodiversity extinction, and related carbon policies. This study demonstrates that changes in atmospheric CO2 concentration did not cause temperature change in the ancient climate. Full article
Show Figures

Figure 1

12 pages, 632 KB  
Article
Germination Phenological Response Identifies Flora Risk to Climate Change
by Sarala Budhathoki Chhetri and Deepa Shree Rawal
Climate 2017, 5(3), 73; https://doi.org/10.3390/cli5030073 - 18 Sep 2017
Cited by 6 | Viewed by 4817
Abstract
Climate change is prevalent across the world and can have large influence on plant regeneration, recruitment, survival and diversity. Regeneration and recruitment are the key phases in the plant life cycle and these two aspects are related to survival, adaptation and distribution of [...] Read more.
Climate change is prevalent across the world and can have large influence on plant regeneration, recruitment, survival and diversity. Regeneration and recruitment are the key phases in the plant life cycle and these two aspects are related to survival, adaptation and distribution of species. This study thus aims to explore the effect of projected climate change on germination and establishment response of some timber tree species from the tropical/subtropical broad leaf forests of Nepal. Germination experiments were carried out under three different temperature regimes (20, 25 and 30 °C) and germination parameters identified from the experimental component were calibrated in the mechanistic model Tree and Climate Assessment—Germination and Establishment Module (TACA-GEM) that helped in identifying species vulnerability to climate change. The model outcome under varied climatic conditions helped in determining the species risk to projected climatic conditions. The model demonstrates that the studied species were able to increase germination under the projected climate change however, establishment consistently failed for most of the species across the hot tropical sites. This finding indicates that spatial vulnerability may limit recruitment in the future. The species-specific responses suggest that, in general, all three species (Alnus nepalensis, Adina cordifolia, and Bombax ceiba) exhibited enhanced germination and establishment in moderately warm and colder sites, indicating that these species may more likely shift their range towards the north in future. Thus, the general species response exhibited in this study may aid in regional climate change adaptation planning in the sector of forest conservation and management. Full article
(This article belongs to the Special Issue Climate Impacts and Resilience in the Developing World)
Show Figures

Figure 1

19 pages, 5563 KB  
Article
Variations of Rainfall Rhythm in Alto Pardo Watershed, Brazil: Analysis of Two Specific Years, a Wet and a Dry One, and Their Relation with the River Flow
by Pedro Augusto Breda Fontão and João Afonso Zavattini
Climate 2017, 5(3), 47; https://doi.org/10.3390/cli5030047 - 4 Jul 2017
Cited by 4 | Viewed by 7749
Abstract
This research aims to understand the variability and rhythm of rainfall for two specific standard-years, and their relation with the river flow of the Alto Pardo watershed, located in southeastern Brazil, and thus identify atmospheric systems that can cause extreme events, and which [...] Read more.
This research aims to understand the variability and rhythm of rainfall for two specific standard-years, and their relation with the river flow of the Alto Pardo watershed, located in southeastern Brazil, and thus identify atmospheric systems that can cause extreme events, and which may be reflected in heavy rainfall, floods, or drought episodes. Therefore, the research chose to investigate the years 1983 and 1984, rainy and dry standard-years respectively in the study area, where rainfall was described and spatialized through the geostatistical method of kriging at the monthly level and the rhythmic analysis technique was applied in order to identify what weather types are usual and extreme in the area. The results indicate that a high involvement of the frontal system in the year 1983 was responsible for the episodes of greater rainfall and peak water flow, especially in stationary front episodes. The year 1984 presented low rainfall in summer, a meteorological drought during the year, and the predominance of tropical air masses in relation to the frontal systems. The comparison between the two extreme years, a wet and a dry one, made it possible to understand the frequency and the chaining of the atmospheric systems during this period for the Alto Pardo watershed. Full article
(This article belongs to the Special Issue Studies and Perspectives of Climatology in Brazil)
Show Figures

Figure 1

15 pages, 221 KB  
Review
The Vulnerability of Rice Value Chains in Sub-Saharan Africa: A Review
by Fanen Terdoo and Giuseppe Feola
Climate 2016, 4(3), 47; https://doi.org/10.3390/cli4030047 - 19 Sep 2016
Cited by 19 | Viewed by 11891
Abstract
Rice is one of the most important food crops in sub-Saharan Africa. Climate change, variability, and economic globalization threatens to disrupt rice value chains across the subcontinent, undermining their important role in economic development, food security, and poverty reduction. This paper maps existing [...] Read more.
Rice is one of the most important food crops in sub-Saharan Africa. Climate change, variability, and economic globalization threatens to disrupt rice value chains across the subcontinent, undermining their important role in economic development, food security, and poverty reduction. This paper maps existing research on the vulnerability of rice value chains, synthesizes the evidence and the risks posed by climate change and economic globalization, and discusses agriculture and rural development policies and their relevance for the vulnerability of rice value chains in sub-Saharan Africa. Important avenues for future research are identified. These include the impacts of multiple, simultaneous pressures on rice value chains, the effects of climate change and variability on parts of the value chain other than production, and the forms and extent to which different development policies hinder or enhance the resilience of rice value chains in the face of climatic and other pressures. Full article
(This article belongs to the Special Issue Climate Impacts and Resilience in the Developing World)
28 pages, 9728 KB  
Article
Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios
by Shabeh ul Hasson
Climate 2016, 4(3), 40; https://doi.org/10.3390/cli4030040 - 26 Aug 2016
Cited by 50 | Viewed by 11852
Abstract
Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB) suggests that the future of its melt-dominated hydrological regime [...] Read more.
Future of the crucial Himalayan water supplies has generally been assessed under the anthropogenic warming, typically consistent amid observations and climate model projections. However, conflicting mid-to-late melt-season cooling within the upper Indus basin (UIB) suggests that the future of its melt-dominated hydrological regime and the subsequent water availability under changing climate has yet been understood only indistinctly. Here, the future water availability from the UIB is presented under both observed and projected—though likely but contrasting—climate change scenarios. Continuation of prevailing climatic changes suggests decreased and delayed glacier melt but increased and early snowmelt, leading to reduction in the overall water availability and profound changes in the overall seasonality of the hydrological regime. Hence, initial increases in the water availability due to enhanced glacier melt under typically projected warmer climates, and then abrupt decrease upon vanishing of the glaciers, as reported earlier, is only true given the UIB starts following uniformly the global warming signal. Such discordant future water availability findings caution the impact assessment communities to consider the relevance of likely (near-future) climate change scenarios—consistent to prevalent climatic change patterns—in order to adequately support the water resource planning in Pakistan. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water Resources)
Show Figures

Figure 1

24 pages, 2238 KB  
Review
Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden
by Jonas Olsson, Berit Arheimer, Matthias Borris, Chantal Donnelly, Kean Foster, Grigory Nikulin, Magnus Persson, Anna-Maria Perttu, Cintia B. Uvo, Maria Viklander and Wei Yang
Climate 2016, 4(3), 39; https://doi.org/10.3390/cli4030039 - 24 Aug 2016
Cited by 58 | Viewed by 17448
Abstract
Hydrological climate change impact assessment is generally performed by following a sequence of steps from global and regional climate modelling, through data tailoring (bias-adjustment and downscaling) and hydrological modelling, to analysis and impact assessment. This “climate-hydrology-assessment chain” has been developed with a primary [...] Read more.
Hydrological climate change impact assessment is generally performed by following a sequence of steps from global and regional climate modelling, through data tailoring (bias-adjustment and downscaling) and hydrological modelling, to analysis and impact assessment. This “climate-hydrology-assessment chain” has been developed with a primary focus on applicability to a medium-sized rural basin, which has been and still is the main type of domain investigated in this context. However, impact assessment is to an increasing degree being performed at scales smaller or larger than the medium-sized rural basin. Small-scale assessment includes e.g., impacts on solute transport and urban hydrology and large-scale assessment includes e.g., climate teleconnections and continental modelling. In both cases, additional complexity is introduced in the process and additional demands are placed on all components involved, i.e., climate and hydrology models, tailoring methods, assessment principles, and tools. In this paper we provide an overview of recent progress with respect to small- and large-scale hydrological climate change impact assessment. In addition, we wish to highlight some key issues that emerged as a consequence of the scale and that need further attention from now on. While we mainly use examples from work performed in Europe for illustration, the progress generally reflects the overall state of the art and the issues considered are of a generic character. Full article
(This article belongs to the Special Issue Impact of Climate Change on Water Resources)
Show Figures

Figure 1

Back to TopTop