Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Climatology Development Methodology
2.3. Numerical Simulation
3. Results
3.1. Lake Michigan
3.1.1. Synoptic Composites
3.1.2. Mesoscale Analysis
3.1.3. Meteorological Differences among Lake Michigan Composites
3.2. Lake Superior
3.2.1. Synoptic Composites
3.2.2. Mesoscale Analysis
3.2.3. Meteorological Differences among Lake Superior Composites
4. Conclusions
- An upper-level trough-ridge pattern centered across the Great Lakes region with an associated surface dipole structure from a mid-latitude cyclone off the New England coast and an anticyclone over the Great Plains (Clusters 1 and 4). This pattern was enhanced by DCVA from the mid-level trough west of the study region. The predominant flow regime in this pattern was westerly across Lake Michigan.
- A static low-pressure system in the northeastern Atlantic that strengthens via DCVA from an upper level synoptic-scale trough and an associated anticyclone that propagates across the Midwest (Clusters 2 and 3). Synoptic-scale forcing mechanisms were minimal with this composite, and the predominant flow regime was northwesterly, contrasting the results of the first synoptic-scale pattern.
- A mid-latitude cyclone off the northeast U.S. coupled with an anticyclone over the central U.S. that resulted in northerly flow over Lake Superior (Clusters 1 and 2).
- Broad surface low pressure structure in the northeast Atlantic coupled with a strong anticyclone over the lower Great Plains that produced westerly winds over Lake Superior (Cluster 3).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changnon, S.A.; Jones, D.M.A. Review of the influences of the Great Lakes on weather. Water Res. Res. 1972, 8, 360–371. [Google Scholar] [CrossRef]
- Eichenlaub, V.L. Weather and Climate of the Great Lakes Region; University of Notre Dame Press: Notre Dame, IN, USA; 335p.
- Suriano, Z.J.; Leathers, D.J. Synoptically classified lake-effect snowfall trends to the lee of Lakes Erie and Ontario. Clim. Res. 2017, 74, 1–13. [Google Scholar] [CrossRef]
- Xiao, C.; Lofgren, B.M.; Wang, J. WRF-based assessment of the Great Lakes’ impact on cold season synoptic cyclones. Atmos. Res. 2018, 214, 189–203. [Google Scholar] [CrossRef]
- Shi, Q.; Xue, P. Impact of Lake Surface Temperature Variations on Lake Effect Snow Over the Great Lakes Region. J. Geophys. Res. Atmos. 2019, 124, 12553–12567. [Google Scholar] [CrossRef]
- Wiggin, B.L. Great Snows of the Great Lakes. Weatherwise 1950, 3, 123–126. [Google Scholar] [CrossRef]
- Rothrock, H.J. An Aid in Forecasting Significant Lake Snows; ESSA Tech. Memo. WBTM CR-30, NOAA/NWS; National Weather Serivce: Kansas City, MO, USA, 1969; 18p. [Google Scholar]
- Niziol, T.A. Operational Forecasting of Lake Effect Snowfall in Western and Central New York. Weather Forecast. 1987, 2, 310–321. [Google Scholar] [CrossRef]
- Niziol, T.A.; Synder, W.R.; Waldstreicher, J.S. Winter Weather Forecasting throughout the Eastern United States. Part IV: Lake Effect Snow. Weather Forecast. 1995, 10, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Sousounis, P.J. Lake-Effect Storms. Encycl. Atmos. Sci. 2003, 1104–1115. [Google Scholar] [CrossRef]
- Campbell, L.S.; James Steenburgh, W. The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Weather Rev. 2017, 145, 2461–2478. [Google Scholar] [CrossRef]
- Kristovich, D.A.R.; Clark, R.D.; Frame, J.; Geerts, B.; Knupp, K.R.; Kosiba, K.; Laird, N.F.; Metz, N.D.; Minder, J.R.; Sikora, T.D.; et al. The Ontario Winter Lake-Effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Am. Meteorol. Soc. 2017, 98, 315–332. [Google Scholar] [CrossRef]
- Holroyd, E.W. Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci. 1971, 28, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Minder, J.R.; Bartolini, W.M.; Spence, C.; Hedstrom, N.R.; Blanken, P.D.; Lenters, J.D. Characterizing and constraining uncertainty associated with surface and boundary layer turbulent fluxes in simulations of lake-effect snowfall. Weather Forecast. 2020, 35, 467–488. [Google Scholar] [CrossRef]
- Steenburgh, W.J.; Campbell, L.S. The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Weather Rev. 2017, 145, 2421–2436. [Google Scholar] [CrossRef]
- Minder, J.R.; Letcher, T.W.; Campbell, L.S.; Veals, P.G.; Steenburgh, W.J. The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Weather Rev. 2015, 143, 4422–4442. [Google Scholar] [CrossRef]
- Villani, J.P.; Jurewicz, M.L., Sr.; Reinhold, K. Forecasting the Inland Extent of Lake Effect Snow Bands Downwind of Lake Ontario. J. Oper. Meteorol. 2017, 5, 53–70. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; Wiley-Blackwell: Hoboken, NJ, USA, 2011; p. 407. [Google Scholar]
- Kunkel, K.E.; Westcott, N.E.; Kristovich, D.A.R. Assessment of Potential Effects of Climate Change on Heavy Lake-Effect Snowstorms Near Lake Erie. J. Great Lakes Res. 2002, 28, 521–536. [Google Scholar] [CrossRef]
- Steiger, S.M.; Hamilton, R.; Keeler, J.; Orville, R.E. Lake-effect thunderstorms in the lower great lakes. J. Appl. Meteorol. Clim. 2009, 48, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Steiger, S.M.; Schrom, R.; Stamm, A.; Ruth, D.; Jaszka, K.; Kress, T.; Rathbun, B.; Frame, J.; Wurman, J.; Kosiba, K. Circulations, bounded weak echo regions, and horizontal vortices observed within long-lake-axis-parallel-lake-effect storms by the doppler on wheels. Mon. Weather Rev. 2013, 141, 2821–2840. [Google Scholar] [CrossRef]
- Forbes, G.S.; Merritt, J.H. Mesoscale vortices over the Great Lakes in wintertime. Mon. Weather Rev. 1984, 112, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Hjelmfelt, M.R. Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Weather Rev. 1990, 118, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Laird, N.F.; Kristovich, D.A.R.; Walsh, J.E. Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon. Weather Rev. 2003, 131, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Mercer, A.E.; Richman, M.B. Statistical differences of quasigeostrophic variables, stability, and moisture profiles in North American storm tracks. Mon. Weather Rev. 2007, 135, 2312–2338. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.W.; Leathers, D.J. A synoptic climatological approach to the analysis of lake-effect snowfall: Potential forecasting applications. Weather Forecast. 1996, 11, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.; Mercer, A. An Updated Synoptic Climatology of Lake Erie and Lake Ontario Heavy Lake-Effect Snow Events. Atmosphere 2020, 11, 872. [Google Scholar] [CrossRef]
- Campbell, L.S.; Steenburgh, W.J.; Veals, P.G.; Letcher, T.W.; Minder, J.R. Lake-effect mode and precipitation enhancement over the Tug Hill Plateau during OWLeS IOP2b. Mon. Weather Rev. 2016, 144, 1729–1748. [Google Scholar] [CrossRef]
- Liu, A.Q.; Moore, G.W.K. Lake-effect snowstorms over southern Ontario, Canada, and their associated synoptic-scale environment. Mon. Weather Rev. 2004, 132, 2595–2609. [Google Scholar] [CrossRef]
- NOAA Great Lakes Environmental Research Laboratory. Available online: https://www.glerl.noaa.gov/education/ourlakes/lakes.html (accessed on 5 February 2020).
- Storm Events Database. Available online: https://www.ncdc.noaa.gov/stormevents/ (accessed on 29 January 2020).
- National Weather Service Instruction 10-1605. Available online: http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf (accessed on 15 March 2020).
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation for cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; No. NCAR/TN-556+STR; Corporation for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Shi, J.J.; Tao, W.K.; Matsui, T.; Cifelli, R.; Hou, A.; Lang, S.; Tokay, A.; Wang, N.Y.; Peters-Lidard, C.; Skofronick-Jackson, G.; et al. WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteorol. Climatol. 2010, 49, 2246–2266. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.M.; Posselt, D.J.; Steiner, A.L. Sensitivity of lake-effect snowfall to lake ice cover and temperature in the great lakes region. Mon. Weather Rev. 2013, 141, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Mallard, M.S.; Nolte, C.G.; Bullock, O.R.; Spero, T.L.; Gula, J. Using a coupled lake model with WRF for dynamical downscaling. J. Geophys. Res. Atmos. 2014, 119, 7193–7208. [Google Scholar] [CrossRef]
- Trumpickas, J.; Shuter, B.J.; Minns, C.K. Potential Changes in Future Surface Water Temperatures in the Ontario Great Lakes as a Result of Climate Change. Clim. Chang. Res. Note Ont. For. Res. Inst. 2008, 7, 1–8. [Google Scholar]
- Cordeira, J.M.; Laird, N.F. The influence of ice cover on two lake-effect snow events over Lake Erie. Mon. Weather Rev. 2008, 136, 2747–2763. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Lofgren, B.M.; Wang, J.; Chu, P.Y. Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes. J. Adv. Model. Earth Syst. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki-Manome, A.; Fitzpatrick, L.E.; Gronewold, A.D.; Anderson, E.J.; Lofgren, B.M.; Spence, C.; Chen, J.; Shao, C.; Wright, D.M.; Xiao, C. Turbulent heat fluxes during an extreme lake-effect snow event. J. Hydrometeorol. 2017, 18, 3145–3163. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J. Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci. 1993, 4, 35–72. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 1–16. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. The role of the convective “trigger function” in numerical prediction of mesoscale convective systems. Meteorol. Atmos. Phys. 1993, 49, 93–106. [Google Scholar] [CrossRef]
- Janjic, Z.I. The Surface Layer in the NCEP Eta MODEL. In Proceedings of the 11th Conference on Numerical Weather Prediction, Norfolk, VA, USA, 19–23 August 1996; American Meteorological Society: Boston, MA, USA, 1996; pp. 354–355. [Google Scholar]
- Notaro, M.; Zarrin, A.; Vavrus, S.; Bennington, V. Simulation of heavy lake-effect snowstorms across the great lakes basin by RegCM4: Synoptic climatology and variability. Mon. Weather Rev. 2013, 141, 1990–2014. [Google Scholar] [CrossRef]
- Rose, B.L. The Role of Upstream Lakes in Determining Downstream Severe Lake-Effect Snowstorms. Ph.D. Thesis, University of Illinois at Urbana—Champaign, Champaign, IL, USA, 2000; 182p. [Google Scholar]
- Rodriguez, Y.; Kristovich, D.A.R.; Hjelmfelft, M.R. Lake-to-lake cloud bands: Frequencies and locations. Mon. Weather Rev. 2007, 135, 4202–4213. [Google Scholar] [CrossRef]
- Metz, N.D.; Bruick, Z.S.; Capute, P.K.; Neureuter, M.M.; Ott, E.W.; Sessa, M.F. An investigation of cold-season short-wave troughs in the Great Lakes region and their concurrence with lake-effect clouds. J. Appl. Meteorol. Climatol. 2019, 58, 605–614. [Google Scholar] [CrossRef]
PC 2 | PC 3 | PC 4 | PC 5 | PC 6 | |
---|---|---|---|---|---|
Individual Variance Explained | 9.17% | 7.69% | 5.91% | 4.95% | 4.59% |
Cumulative Variance Explained | 19.68% | 27.37% | 33.28% | 38.23% | 42.82% |
Silhouette Coefficient Using Four Clusters | 0.37 | 0.30 | 0.24 | 0.20 | 0.16 |
PC 2 | PC 3 | PC 4 | PC 5 | PC 6 | |
---|---|---|---|---|---|
Individual Variance Explained | 8.79% | 7.61% | 5.34% | 4.99% | 4.25% |
Cumulative Variance Explained | 21.51% | 29.12% | 34.46% | 39.45% | 43.70% |
Silhouette Coefficient Using Three Clusters | 0.40 | 0.26 | 0.22 | 0.20 | 0.16 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |
---|---|---|---|---|
Event Start | 2014-01-02 6:30 CST | 2008-01-24 0:00 EST | 1997-11-15 18:00 EST | 2008-02-27 17:00 EST |
Event End | 2014-01-03 0:00 CST | 2008-01-24 15:00 EST | 1997-11-16 10:00 EST | 2008-02-28 18:00 EST |
Duration | 17.5 h | 15 h | 16 h | 25 h |
Silhouette Coefficient | 0.62 | 0.58 | 0.59 | 0.63 |
Highest Snowfall Total Recorded (in.) | 13.7 | 8.6 | 18 | 9 |
WRF-ARW Simulation Duration | 48 h | 48 h | 48 h | 48 h |
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
Event Start | 2005-12-10 20:00 EST | 2005-12-30 10:00 EST | 2008-01-21 15:00 CST |
Event End | 2005-12-11 18:00 EST | 2005-12-31 7:00 EST | 2008-01-23 0:00 CST |
Duration | 22 h | 21 h | 33 h |
Silhouette Coefficient | 0.59 | 0.64 | 0.61 |
Highest Snowfall Total Recorded (in.) | 11 | 12 | 12 |
WRF-ARW Simulation Duration | 48 h | 48 h | 48 h |
Parameterization | Scheme/Model |
---|---|
Microphysics | Goddard microphysics scheme [43] |
Planetary Boundary Layer | Mellor-Yamada-Janjic [44] |
Land Surface Model | Noah Land Surface Model [45] |
Shortwave Radiation Physics | Dudhia shortwave scheme [46] |
Longwave Radiation Physics | Rapid Radiative Transfer Model [47] |
Cumulus Scheme | Kain-Fritsch * [48] |
Surface Layer Physics | Eta similarity [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiley, J.; Mercer, A. Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes. Climate 2021, 9, 43. https://doi.org/10.3390/cli9030043
Wiley J, Mercer A. Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes. Climate. 2021; 9(3):43. https://doi.org/10.3390/cli9030043
Chicago/Turabian StyleWiley, Jake, and Andrew Mercer. 2021. "Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes" Climate 9, no. 3: 43. https://doi.org/10.3390/cli9030043
APA StyleWiley, J., & Mercer, A. (2021). Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes. Climate, 9(3), 43. https://doi.org/10.3390/cli9030043