Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Modeling and Analysis
- Business as usual (BAU), representing the current state without implementation of any adaptation measures;
- Porous pavement in which the model reduced the road fraction by 25%;
- Green roof in which 25% of roofs are converted to green roofs;
- New urbanization, a scenario characterized by a new urban development. Urban growth was modeled by splitting the area into parcels and placing new buildings based on predefined preferences of location and building type, as well as high level drivers, such as population growth. Urban development layout details were accounted for in the SWMM model as changes in impervious areas, in the pipe network, or in the terrain.
2.3. Hydraulic and Hydrologic Data and Simulation
2.4. SWMM Model
2.5. DAnCE4Water and Scenario Tool
3. Results
3.1. Hydraulics Results: State-of-the-Art
3.2. DAnCE4Water Results: Comparison among Four Hypotethical Scenarios
3.3. Simulation of the New Urbanized Area: Fourth Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morita, M. Flood risk impact factor for comparatively evaluating the main causes that contribute to flood risk in urban drainage areas. Water 2014, 6, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Piro, P.; Maiolo, M.; Talarico, V.C.; Falco, S.; Nigro, G.; Pezzagno, M.; Pavesi, F.C.; Berteni, F.; Grossi, G. Flood risk mitigation in a Mediterranean Urban Area: The case study of Rossano Scalo (CS-Calabria, Italy). In New Trends in Urban Drainage Modelling, Proceedings of the 11th International Conference on Urban Drainage Modelling (UDM 2018), Palermo, Italy, 23–26 September 2018; Mannina, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 339–343. [Google Scholar] [CrossRef]
- Ashley, R.M.; Balmforth, D.J.; Saul, A.J.; Blanskby, J.D. Flooding in the future: Predicting climate change, risks and responses in urban areas. Water Sci. Technol. 2005, 52, 265–273. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Grossi, G.; Barontini, S.; Berteni, F.; Balistrocchi, M.; Ranzi, R. Nature-based solutions as climate change adaptation and mitigation measures in Italy. In Climate Change-Sensitive Water Resources; Teegavarapu, R.S.V., Kolokytha, E., Galvão, C.D.O., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 90–100. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattum, T.; Blauw, M.; Jensen, M.B.; De Bruin, K. Towards Water Smart Cities—Climate Adaptation is Huge Opportunity to Improve the Quality of Life in Cities; Wageningen Environmental Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Bichai, F.; Flamini, A.C. The Water Sensitive City: Implications of an urban water management paradigm and its globalization. WIREs Water 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Wong, T.H.F. Water sensitive urban design—The journey thus far. Australas. J. Water Resour. 2015, 10, 213–222. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Allen, R.; Brown, R.R.; Deletić, A.; Gangadharan, L.; Gernjak, W.; Jakob, C.; Johnstone, P.; Reeder, M.; Tapper, N.; et al. Stormwater Management in a Water Sensitive City; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia, 2013. [Google Scholar]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Ballard, B.W.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R. The SUDS Manual; CIRIA C753: London, UK, 2015. [Google Scholar]
- Cristiano, E.; Farris, S.; Deidda, R.; Viola, F. Comparison of blue-green solutions for urban flood mitigation: A multi-city large-scale analysis. PLoS ONE 2021, 16, e0246429. [Google Scholar] [CrossRef] [PubMed]
- Parizotto, S.; Lamberts, R. Investigation of green roof thermal performance in temperature climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy Build. 2011, 43, 1712–1722. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Semprini, G.; Villani, V.; Bonoli, A. Green roofs as a strategy for urban heat island mirigation in Bologna (Italy). Acta Hortic. 2018, 1215, 295–300. [Google Scholar] [CrossRef]
- Rogers, B.C.; Bertram, N.; Gersonius, B.; Gunn, A.; Löwe, R.; Murphy, C.; Pasman, R.; Radhakrishnan, M.; Urich, C.; Wong, T.H.F.; et al. An Interdisciplinary and catchment approach to enhancing urban flood resilience: A Melbourne case. Philos. Trans. R. Soc. A 2020, 378, 20190201. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, D.; Casado, E.S.; Berteni, F.; Barisani, F.; Bautista-Puig, N.; Grossi, G. Assessing citizen science methods in IWRM for a new science shop: A bibliometric approach. Hydrol. Sci. J. 2020, 66, 179–192. [Google Scholar] [CrossRef]
- Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; De Bièvre, B.; Bhusal, J.; Clark, J.; Dewulf, A.; et al. Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2014, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Antwi, S.H.; Linnane, S.; Getty, D.; Rolston, A. River basin management planning in the Republic of Ireland: Past, present and the future. Water 2021, 13, 2074. [Google Scholar] [CrossRef]
- Urich, C.; Bach, P.M.; Hellbach, C.; Sitzenfrei, R.; Kleidorfer, M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Dynamics of cities and water infrastructure in the DAnCE4Water model. In Proceedings of the 12th International Conference on Urban Drainage, Porto Alegre, Brazil, 10–15 September 2011. [Google Scholar]
- Urich, C.; Rauch, W. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties. Water Res. 2014, 66, 374–389. [Google Scholar] [CrossRef]
- Urich, C.; Bach, P.M.; Sitzenfrei, R.; Kleidorfer, M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Modelling cities and water infrastructure dynamics. Proc. Inst. Civ. Eng. Eng. Sustain. 2013, 166, 301–308. [Google Scholar] [CrossRef]
- Scenario Tool-CRC for Water Sensitive Cities. Available online: https://www.wsc-scenario.org.au/ (accessed on 2 August 2021).
- Urich, C.; Sitzenfrei, R.; Kleidorfer, M.; Bach, P.M.; McCarthy, D.T.; Deletic, A.; Rauch, W. Evolution of urban drainage networks in DAnCE4Water. In Proceedings of the 9th International Conference on Urban Drainage Modelling, Belgrade, Serbia, 3–7 September 2012. [Google Scholar]
- Löwe, R.; Urich, C.; Domingo, N.S.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef] [Green Version]
- IAHR. Available online: https://www.iahr.org/index/detail/337 (accessed on 7 October 2021).
- Nones, M.; Pescaroli, G. Implications of cascading effects for the EU Floods Directive. Int. J. River Basin Manag. 2016, 14, 195–204. [Google Scholar] [CrossRef]
- EU, European Union. Directive 2007/60/CE of the European Parliament and of the Council of 23 October 2007 on the assessment and the management of flood risks. Off. J. L 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (accessed on 22 September 2021).
- Comune di Parma. Sistema economico e sociale (SS 1). In PSC 2030-Quadro Conoscitivo–Sistema Ambientale–DCC n.53; Municipality of Parma: Italy, Parma, 2019. (In Italian) [Google Scholar]
- Comune di Parma. Suolo e sottosuolo (SA1). In PSC 2030-Quadro Conoscitivo–Sistema Ambientale, Suolo e Sottosuolo–DCC n.53; Municipality of Parma: Italy, Parma, 2019. (In Italian) [Google Scholar]
- Comune di Parma. Acque superficiali e sotterranee (SA5). In PSC 2030-Quadro Conoscitivo–Sistema Ambientale, Acque Superficiali e Sotterranee–DCC n.53; Municipality of Parma: Italy, Parma, 2019. (In Italian) [Google Scholar]
- Rossman, L.A. Storm Water Management Model User’s Manual, SWMM Version 5.1; Water Supply and Water Resources Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2015.
- Maidment, D.R. Handbook of Hydrology, 1st ed.; McGraw-Hill Education: New York, NY, USA, 1993. [Google Scholar]
- ARPAE Emilia-Romagna DEXT3R. Available online: https://simc.arpae.it/dext3r/ (accessed on 20 August 2021).
- Calomino, F.; Paoletti, A. Le Misure di Pioggia e di Portata Nei Bacini Sperimentali Urbani in Italia, 1st ed.; Centro Studi Deflussi Urbani: Milano, Italy, 2004. [Google Scholar]
- Paoletti, A. Sistemi di Fognature e Drenaggio: Fondamenti e Nuove Tendenze, 2nd ed.; Cooperativa Universitaria Studio e Lavoro: Milano, Italy, 2010; pp. 4–10. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics, 3rd ed.; McGraw-Hill Book Company: Tokyo, Japan, 1959. [Google Scholar]
- Comune di Parma. Fase 2 Analisi idrologiche-idrauliche—Fase 3 Individuazione interventi, A—Relazione generale con stima degli interventi di progetto. In Studio per L’analisi del Rischio Idraulico ed Alluvionale sul Territorio Comunale–DGC n. 372; Municipality of Parma: Parma, Italy, 2015. (In Italian) [Google Scholar]
- Rauch, W.; Urich, C.; Bach, P.M.; Rogers, B.C.; de Haan, F.J.; Brown, R.R.; Mair, M.; McCarthy, D.T.; Kleidorfer, M.; Sitzenfrei, R.; et al. Modelling transition in urban water system. Water Res. 2017, 126, 501–514. [Google Scholar] [CrossRef]
- Rogers, B.C.; Arnbjerg-Nielson, K.; Bertram, N.; Gunn, A.; Löwe, R.; Murphy, C.; Pasman, R.; Radhakrishnan, M.; Urich, C.; Wong, T.H.F. An integrated approach to enhancing urban flood resilience in Elwood, Melbourne. In Proceedings of the Australian International Water Conference & Exhibition OzWater, Melbourne, Australia, 10–12 May 2016. [Google Scholar]
- Brown, R.; Rogers, B.; Werbeloff, L. Moving Toward Water Sensitive Cities: A Guidance Manual for Strategists and Policy Makers; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia, 2016; pp. 10–12. [Google Scholar]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2015, 14, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Turco, M.; Brunetti, G.; Palermo, S.A.; Capano, G.; Grossi, G.; Maiolo, M.; Piro, P. On the environmental benefits of a permeable pavement: Metals potential removal efficiency and Life Cycle Assessment. Urban Water J. 2020, 17, 619–627. [Google Scholar] [CrossRef]
- Melbourne Water. WSUD Engineering Procedures: Stormwater; CSIRO Publishing: Collingwood, Australia, 2005. [Google Scholar]
SCENARIO | Total Precipitation 1 [mm] | Infiltration Loss 2 [mm] | Surface Runoff 3 [mm] | Final Storage 4 [mm] | Runoff Coefficient 5 [-] |
---|---|---|---|---|---|
BAU | 24.0 | 1.7 | 19.4 | 2.9 | 0.808 |
Porous Pavement | 24.0 | 5.3 | 15.0 | 3.7 | 0.625 |
Green Roofs | 24.0 | 5.8 | 14.9 | 3.3 | 0.620 |
New Urbanization | 24.0 | 1.5 | 19.7 | 2.8 | 0.820 |
Variables | Unit | Range |
---|---|---|
City Blocks | [m] | - |
Street Offset | [m] | - |
City Parcels | [m] | - |
Building Dimensions | [m] | - |
N° of people per building | - | - |
Hardstand fraction per lots | - | 0–1 |
Garden fraction of each building | - | 0–1 |
N° Trees per building | - | 0–4 |
% of lots with tree | - | - |
Lots Characteristics | Value |
---|---|
Area [ha] | 5.5 |
Impervious Fraction | |
Impervious Fraction | 0.65 |
Pervious Fraction | 0.35 |
Land Cover | |
Tree Fraction | 0.09 |
Roof Fraction | 0.16 |
Road Fraction | 0.43 |
Concrete Fraction | 0.06 |
Grass Fraction | 0.06 |
Water Fraction | - |
Household | |
1 | 31 |
2 | 98 |
3 | 126 |
4 | 152 |
Overview | |
Population | 407 |
Households | 160 |
Parcels | 44 |
Buildings | 40 |
Land Surface Temperature [°C] | 52.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dada, A.; Urich, C.; Berteni, F.; Pezzagno, M.; Piro, P.; Grossi, G. Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern Italy). Climate 2021, 9, 152. https://doi.org/10.3390/cli9100152
Dada A, Urich C, Berteni F, Pezzagno M, Piro P, Grossi G. Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern Italy). Climate. 2021; 9(10):152. https://doi.org/10.3390/cli9100152
Chicago/Turabian StyleDada, Arianna, Christian Urich, Francesca Berteni, Michèle Pezzagno, Patrizia Piro, and Giovanna Grossi. 2021. "Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern Italy)" Climate 9, no. 10: 152. https://doi.org/10.3390/cli9100152