Ecoenergetic Comparison of HVAC Systems in Data Centers
Abstract
:1. Introduction
2. Methodology
2.1. Global Warming Potential (GWP)
2.2. Total Equivalent Warming Impact (TEWI)⋅
- Direct Emission—Refrigerant released during the life of the equipment, including losses not recovered on the final disposal.
- Indirect Emission—The impact of CO2 emissions from fossil fuels used to generate the electric energy that is used in the operation of the equipment throughout its life.
2.3. Data
Comparison of GWP Values and Absolute CO2 Emissions for Different Solutions for the Purpose of Cooling the Same Thermal Load. Issuance of Installed Equipment, without Operation (Inactive)
- Variable Refrigerant Flow (VRF) of air installed on the roof and serving all floors;
- Air VRF—placed on each floor to reduce the amount of refrigerant piping;
- VRF water;
- Air chiller;
- Water chiller;
- Water chiller with LOW-GWP technology;
- Window type equipment;
- Conventional split
3. Case Study
- Curitiba—Brazil;
- Chicago—United States of America (USA).
4. Comparison of Energy Efficiency Metrics
- Free Cooling: a system that uses the enthalpy characteristics of the outside air to acclimate rooms;
- Evaporative: direct or indirect adiabatic cooling using the wet bulb temperature;
- System for geothermal condensation (ground source) as a thermal bath option to condense the refrigerant fluid;
- COP: Coefficient of performance, which is used to evaluate the relationship between the cooling powers obtained and the work spent to obtain it.
- A.
- Free Cooling is used when the external air temperature is below 20 °C and the enthalpy is below 42.797 kJ/kg;
- B.
- Evaporative system is used when the temperature is between 15 °C to 24 °C and the enthalpy from 42.7979 kJ/kg to 55.8233 kJ/kg;
- C.
- When the temperature is above 20 °C and enthalpy is above 55.8233 kJ/kg, the normal system is being used under the following conditions:
- COP1: Air intake temperature between 24.0 °C and 27.0 °C;
- COP2: Air intake temperature between 27.1 °C and 30.0 °C;
- COP3: Air intake temperature between 30.1 °C and 33.0 °C;
- COP4: Air intake temperature above 33.1 °C;
- GEO: if the geothermal temperature is available, it will be used to determine the COP, with a 4 °C differential in the geothermal temperature.
Comparison with TEWI DC Metric
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MMA. Programa Brasileiro de Eliminação dos HCFCs; Ministério do Meio Ambiente, República Federativa do Brasil: Brasilia, Brasil, 2017. Available online: https://www.mma.gov.br/informma/item/615-programa-brasileiro-de-elimina%C3%A7%C3%A3o-dos-hcfcs.html (accessed on 29 December 2020). (In Portuguese)
- USGBC. Enhanced Refrigerant Management. Energy and Atmosphere. LEED BD+C: Retail v4—LEED v U.S.; Green Building Council (USGBC): Washington, DC, USA; Available online: https://www.usgbc.org/credits/retail-new-construction/v4/ea126 (accessed on 20 January 2021).
- Scofield, J.H.; Cornell, J. A Critical Look at Energy Savings, Emissions Reductions, and Health Co-Benefits of the Green Building Movement. J. Expo. Sci. Environ. Epidemiol. Nat. 2019, 29, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maykot, R.; Weber, G.C.; Maciel, R.A. Using the TEWI Methodology to Evaluate Alternative Refrigeration Technologies. In Proceedings of the Purdue University International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 12–15 July 2004; Available online: http://docs.lib.purdue.edu/iracc/709 (accessed on 2 October 2020).
- ASHRAE. ASHRAE 90. Standard 90.1-2019 (I-P Edition)—Energy Standard for Buildings Except Low-Rise Residential Buildings; (ANSI Approved; IES Cosponsored); American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2019. [Google Scholar]
- AHRI. AHRI 550 AHRI Standard 550-Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle; Air-Conditioning Heating and Refrigeration Institute (AHRI): Arlington, TX, USA, 2015. [Google Scholar]
- Rasmussen, N. Implementing Energy—Efficient Data Centers; White Paper 154 rev 2; Schneider Electric’s Data Center Science Center, Schneider-Electric: Rueil-Malmaison, France, 2012. [Google Scholar]
- IPCC. Four Assessment Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf (accessed on 16 February 2021).
- Proceedings of the International Conference on Applied Energy, ICAEEnergy Procedia, Taipei, Taiwan, 30 May–2 June 2014; Yan, J.; Lee, D.J.; Chou, S.K.; Desideri, L.H. (Eds.) Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 61, pp. 1–2902. [Google Scholar]
- AIRAH. Best Practice Guideline; The Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH): Melbourne, Australia, 2012; Available online: https://www.airah.org.au/Content_Files/BestPracticeGuides/Best_Practice_Tewi_June2012.pdf (accessed on 20 January 2021).
- EPE. Balanço Energético Nacional Relatório Síntese/Ano Base; Ministério de Minas e Energia—MME/Empresa de Pesquisa Energética—EPE, República Federativa do Brasil: Brasilia, Brasil, 2018. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-377/topico-470/Relat%C3%B3rio%20S%C3%ADntese%20BEN%202019%20Ano%20Base%202018.pdf (accessed on 20 January 2021).
- EIA. How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? U.S. Energy Information Administration (EIA): Washington, DC, USA, 2020. Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 (accessed on 20 January 2021).
- IPCC. Fifth Assessment Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2017; Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 22 January 2021).
- IEA. The Future of Cooling; International Energy Agency (IEA): Paris, France, 2018. [Google Scholar]
- LG. Software LATS-HVAC—MultiV 2. LG HVAC Design Software; LG Air Conditioning Technologies: Alpharetta, GA, USA, 2020. [Google Scholar]
- ABNT. Instalações de Ar Condicionado—Sistemas Centrais e Unitários, Qualidade do Ar Interior; ABNT: Rio de Janeiro, Brasil, 2008. (In Portuguese) [Google Scholar]
- ASHRAE. ASHRAE Weather Data Viewer: WDVIEW v5; American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2020. [Google Scholar]
- Emerson Network Power. Technical Specifications of Dual Fluid Equipment. Available online: http://www.altayisisistem.com.tr/uploaded/_7329675555.pdfhttp://www.emersonnetworkpower.com/en-US/Brands/Liebert/Pages/default.aspx. (accessed on 2 October 2020).
- AHRI Standard 1361 (SI). 2017 Standard for Performance Rating of Computer and Data Processing Room Air Conditioners; AHRI: Arlington, VA, USA, 2017. [Google Scholar]
- IPU. Coolpack—A Collection of Comparison Models for Refrigeration Systems. Available online: https://www.ipu.dk/products/coolpack/ (accessed on 2 October 2020).
- Santos, A.F.; de Souza, H.J.L.; Cantão, M.P.; Gaspar, P.D. Analysis of temperatures for geothermal heat pumps application in Paraná (Brazil). Open Eng. 2016, 6, 485–491. [Google Scholar] [CrossRef]
- Santos, A.F.; de Souza, H.J.L.; Gaspar, P.D. Evaluation of the heat and energy performance of a data center for a new efficiency indicator: Energy Usage Effectiveness Design—EUED. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef]
- ISO. ISO 50006:2014 Energy Management Systems—Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI)—General Principles and Guidance; ISO: Geneva, Switzerland, 2014; p. 33. [Google Scholar]
- BITZER. Software V6 17.0 rev 2548; BITZER: Sindelfingen, Germany, 2021. [Google Scholar]
- Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. New datacenter performance indicator: Perfect Design Datacenter—PDD. Climate 2020, 8, 110. [Google Scholar] [CrossRef]
- Santos, A.F.; Gaspar, P.D.; Souza, H.J.L. A New indicator for sustainability—TWI (Total Water Impact). Energies 2020, 13, 1590. [Google Scholar] [CrossRef] [Green Version]
- AIRHA. Best Practice Guideline: Methods of Calculating Total Equivalent Warming Impact (TEWI); The Australian Institute of Refrigeration, Air Conditioning and Heating (AIRHA): Melbourne, Australia, 2012. [Google Scholar]
- ASHRAE. Thermal Guidelines for Data Processing Environments, 3rd ed.; ASHRAE Datacom Series: ASHRAE Technical Committee (TC) 9.9—Mission Critical Facilities, Technology Spaces, and Electronic Equipment; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2011. [Google Scholar]
- Liu, C.; Wang, H.; Wang, Z.; Zhang, T. Environmental Impact Evaluation and Economy Analysis of Air-conditioning Cold and Heat Source Based on TEWI indicator. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2013; ISSN 1661-8985. [Google Scholar]
- Physicsworld. As Lord Kelvin Said in His Own Words. Available online: https://physicsworld.com/ (accessed on 17 February 2021).
System | Brand Ref. | Model Ref. | Fluid | GWP | Fluid (kg) | CO2 (kg) | CO2 (kg/Ton) * | |
---|---|---|---|---|---|---|---|---|
VRF Air Cooled Coverage | LG | ARUM500LTE5 | R-410A | 2088 | 510 | 1,064,880 | 2662.20 | |
VRF Air Cooled Floor | LG | ARUM500LTE5 | R-410A | 2088 | 499 | 1,041,912 | 260.78 | |
Split | Daikin | STK12P5VL | R-410A | 2088 | 360 | 751,680 | 188.00 | |
Air Cooled chiller | Carrier | 30XAB400 | R-134a | 1430 | 315 | 450,450 | 1126.13 | |
Window air conditioning | Gree | GJC12BL | R-22 | 1810 | 240 | 434,400 | 1086.00 | |
VRF Water cooled | LG | ARWN800LAS4 | R-410A | 2088 | 201 | 419,688 | 1049.22 | |
Water cooled chiller | Carrier | 30XWB400 | R-134a | 1430 | 245 | 350,350 | 876.00 | |
Water cooled chiller Low GWP | Johnson Controls | YZ-MA041AN0 | R-1233zd | 1 | 395 | 395 | 0.99 |
Cities | Frequency year (%) | DB Temperature (°C) | WB Temperature (°C) | Relative Humidity (%) | Enthalpy (kJ/kg) | Altitude (m) |
---|---|---|---|---|---|---|
Curitiba | 0.4 | 30.9 | 23.2 | 53.4 | 74.14 | 908 |
1.0 | 29.8 | 22.6 | 55 | 71.67 | ||
2.0 | 28.7 | 22.0 | 57 | 69.2 | ||
Chicago | 0.4 | 33.0 | 25.4 | 54 | 78.8 | 182 |
1.0 | 31.5 | 24.4 | 56 | 74.2 | ||
2.0 | 30.0 | 23.5 | 58 | 70.9 |
Model | Unit | Value |
---|---|---|
Total cooling power | kW | 104.5 |
Sensible cooling power | kW | 88.7 |
Sensible Heat Rate | 0.85 | |
EER | kW/kW | 3.40 |
Number of compressors | n | 2 |
Air delivery | m³/h | 21,100 |
Maximum available static pressure | Pa | 90 |
Sound pressure level | dB(A) | 66.9 |
Width | mm | 2550 |
Depth | mm | 890 |
Cases | Base Equipment Power (kW) | Condensing Temperature (°C) | Evaporation Temperature (°C) | Cooling Fluid | COP (kW/kW) |
---|---|---|---|---|---|
COP1 | 104.5 | 36.5 | 5 | R410 A | 4.381 |
COP2 | 104.5 | 39.0 | 5 | R 410 A | 4.101 |
COP3 | 104.5 | 42.5 | 5 | R 410 A | 3.745 |
COP4 | 104.5 | 44.0 | 5 | R 410 A | 3.633 |
Cases | COPStopped fans = [kW/kW] | COPWorking fans = [kW/kW] |
---|---|---|
COP4 | ||
COP3 | ||
COP2 | ||
COP1 |
System | COP (kW/kW) | Power (kW) |
---|---|---|
Free Cooling | 19.180 | 41,220 |
Evaporative | 16.780 | 47,116 |
COP1 | 4.381 | 180,462 |
COP2 | 4.101 | 192,782 |
COP3 | 3.795 | 211,108 |
COP4 | 3.633 | 217,616 |
System | Total Thermal Load (kW) | COP (kW/kW) | Power (kW) | hCuritiba (Hours) | hChicago (Hours) |
Free Cooling | 709.6 | 19.180 | 36.997 | 4410 | 6581 |
Evaporative | 709.6 | 16.781 | 42.288 | 3454 | 1178 |
COP1 | 709.6 | 4.381 | 161.972 | 580 | 467 |
COP2 | 709.6 | 4.101 | 173.031 | 270 | 379 |
COP3 | 709.6 | 3.795 | 189.479 | 46 | 122 |
COP4 | 709.6 | 3.633 | 195.321 | 0.5 | 33 |
System | Energy Chicago Air (kWh/year) | Energy Curitiba Air (kWh/year) | Equipment IT (kWh/year) | Lighting (kWh/yea) | Others (kWh/year) |
Free Cooling | 243,482.734 | 163,156.204 | 6,084,696 | 140,160 | 420,480 |
Evaporative | 49,802.164 | 146,059.486 | |||
COP1 | 75,700.115 | 93,902.222 | |||
COP2 | 65,559.011 | 46,696.559 | |||
COP3 | 23,057.168 | 8713.585 | |||
COP4 | 6490.506 | 99.418 |
City | Energy (kWh/yr) | PUE COA (kW/kW) | EUED (kWh/yr)/(kWh/yr) | Difference between PUE COA and EUED (%) |
---|---|---|---|---|
Curitiba (Brazil) | 7,109,427.698 | 1.497 | 1.245 | 16.86% |
Chicago (USA) | 7,103,963.236 | 1.498 | 1.246 | 18.78% |
City | PUE COA | EUED | COP PUE COA | COP EUED |
---|---|---|---|---|
Curitiba (Brazil) | 1.455 | 1.245 | 3.745 | 13.553 |
Chicago (USA) | 1.480 | 1.246 | 3.477 | 13.394 |
City | EUED | COP PUE COA | Consumed Energy HVAC | TEWI DC |
---|---|---|---|---|
Curitiba (Brazil) | 1.245 | 3.745 | 510,979.200 | 1,252,409.640 |
Chicago (USA) | 1.246 | 3.477 | 517,066.640 | 2,784,102.130 |
City | Indirect CO2 Emissions | Direct CO2 Emissions | TEWI DC |
---|---|---|---|
Curitiba (Brazil) | 403,586 | 848,823.600 | 1,252,410 |
Chicago (USA) | 1,935,279 | 848,823.600 | 2,784,102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. Ecoenergetic Comparison of HVAC Systems in Data Centers. Climate 2021, 9, 42. https://doi.org/10.3390/cli9030042
Santos AF, Gaspar PD, de Souza HJL. Ecoenergetic Comparison of HVAC Systems in Data Centers. Climate. 2021; 9(3):42. https://doi.org/10.3390/cli9030042
Chicago/Turabian StyleSantos, Alexandre F., Pedro D. Gaspar, and Heraldo J. L. de Souza. 2021. "Ecoenergetic Comparison of HVAC Systems in Data Centers" Climate 9, no. 3: 42. https://doi.org/10.3390/cli9030042
APA StyleSantos, A. F., Gaspar, P. D., & de Souza, H. J. L. (2021). Ecoenergetic Comparison of HVAC Systems in Data Centers. Climate, 9(3), 42. https://doi.org/10.3390/cli9030042