Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah
Abstract
:1. Introduction
2. Case Study: Colorado River Basin in Utah
3. Methods
3.1. Statistical Analysis
3.1.1. Data
3.1.2. Climate Extreme Indices
3.1.3. Correlation Test
3.1.4. Multiple Linear Regression
3.1.5. Random Forest Regression
3.2. Qualitative Interview Analysis
4. Results
4.1. Statistical Analysis
4.1.1. Correlation Test
4.1.2. Multilinear Regression
4.1.3. Random Forest Regression
4.2. Qualitative Interview Analysis
4.2.1. Changes in Cattle and Hay Production
“In some years, the hay doesn’t do as good and I really haven’t narrowed it down if it’s dry or if it’s just hot. It seems like that there are some years when things are so hot that you can’t keep [hay] wet and you have a little bit of drop in yield in those years”.
“Multi-generations of cattle that have lived in this landscape have an intuition of the landscape that allows them to adapt to climate change… potentially quicker than the other livestock.”
“I haven’t observed a whole lot of changes in cattle production [over the last 20 years] … I am living from one extreme year to the next. I got a dry year where I reduce herd size and then I got a year like this [2019] that is so wet that I don’t know what to do”.
4.2.2. Most Important Factors
“If they [the government] need to manipulate [prices], they should do it in a way that farmers can do well and thrive, so it incentivizes more people to be in agriculture … The American government wants people to have cheap food, well that’s fine as long as the American farmers can afford to be successful and make money. But it’s not that way, 95–98% of farmers and ranchers that I know in Utah have to have another job and source of income. In other industries, people can set prices, make money, and do well. It looks like agriculture is left at the bottom of the scale.”
4.2.3. Adaptation Strategies
“I think every farmer and rancher has their own way of doing things, and every farm is different with different soil conditions, what everyone needs to know what is best for their soil.
“We have learned to adapt management and use of certain pastures or permits to compensate for the type of condition we have to deal with. This is on a yearly basis or even a semi-year issue. “
“The only real change that I have noticed is that I have moved from flood irrigation to sprinkler, and part of that is just to be more efficient with water, and part of it is just for convenience… it was a lot more work to irrigate with ditches; with pivots, you hit a button and they are watering”.
“I have a big block of private ground that is rangeland … on bad years, I have to use that but on good years I don’t. So that just sits there and grows, gets healthy and recovers in the years when I don’t have to use it. On dry years when I can’t put my cows on the BLM ranges, I have got a private range to fall back on, I can feed on it, I can haul hay out there and supplement on it without worrying about any federal regulations about not doing it on BLM land. Having a private range has been a real help that I can use or not use depending on my needs.”
“On drier years, my farm is a lot less productive and on wetter years when I have water, I can grow more hay than I need… On years when it’s dry, I am using hay early, I am running out of grazing. The last few years I have to keep my cows off the spring range and feed them. That hurts when you can’t take them to spring range, feeding them 90 or 100 days longer than you expected to, that’s tough!”.
5. Discussion
Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability and Reproducibility Statement
References
- Adams, R.M.; Hurd, B.H.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, U. Section B: Agriculture: A key driver and a major victim of global warming. In Key Development Challenges of a Fundamental Transformation of Agriculture; Trade and Environment Review; United Nations Conference on Trade and Development (UNCTAD): Geneva, Switzerland, 2013; pp. 3–5. [Google Scholar]
- Yohannes, H. A Review on Relationship between Climate Change and Agriculture. J. Earth Sci. Clim. Chang. 2015, 7. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Prischepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Bird, D.N.; Benabdallah, S.; Gouda, N.; Hummel, F.; Koeberl, J.; La Jeunesse, I.; Meyer, S.; Prettenthaler, F.; Soddu, A.; Woess-Gallasch, S. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk. Sci. Total Environ. 2016, 543, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, N. Regional Crop Modeling: How Future Climate May Impact Crop Yields in Switzerland. YSA 2011, 4, 269–291. [Google Scholar]
- Birthal, P.S.; Khan, M.T.; Negi, D.S.; Agarwal, S. Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security. Agric. Econ. Res. Rev. 2014, 27, 145–155. [Google Scholar] [CrossRef]
- Bhattarai, M.D.; Secchi, S.; Schoof, J. Projecting corn and soybeans yields under climate change in a Corn Belt watershed. Agric. Syst. 2017, 152, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Roberts, M.J. Estimating the Impact of Climate Change on Crop Yields: The importance of nonlinear temperature effects. NBER Work. Pap. 2008. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Salvo, D. Measuring the effect of climate change on agriculture: A literature review of analytical models. J. Dev. Agric. Econ. 2013, 5, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Soler, C.M.T.; Sentelhas, P.C.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- Walker, N.J.; Schulze, R.E. An assessment of sustainable maize production under different management and climate scenarios for smallholder agro-ecosystems in KwaZulu-Natal, South Africa. Phys. Chem. Earth Parts ABC 2006, 31, 995–1002. [Google Scholar] [CrossRef]
- Yao, F.; Xu, Y.; Lin, E.; Yokozawa, M.; Zhang, J. Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim. Chang. 2007, 80, 395–409. [Google Scholar] [CrossRef]
- Dhungana, P.; Eskridge, K.M.; Weiss, A.; Baenziger, P.S. Designing crop technology for a future climate: An example using response surface methodology and the CERES-Wheat model. Agric. Syst. 2006, 87, 63–79. [Google Scholar] [CrossRef]
- Eitzinger, J.; Štastná, M.; Žalud, Z.; Dubrovský, M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric. Water Manag. 2003, 61, 195–217. [Google Scholar] [CrossRef]
- Luo, Q.; Williams, M.A.J.; Bellotti, W.; Bryan, B. Quantitative and visual assessments of climate change impacts on South Australian wheat production. Agric. Syst. 2003, 77, 173–186. [Google Scholar] [CrossRef]
- Krishnan, P.; Swain, D.K.; Chandra Bhaskar, B.; Nayak, S.K.; Dash, R.N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric. Ecosyst. Environ. 2007, 122, 233–242. [Google Scholar] [CrossRef]
- Anwar, M.R.; O’Leary, G.; McNeil, D.; Hossain, H.; Nelson, R. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Res. 2007, 104, 139–147. [Google Scholar] [CrossRef]
- Hua, X.; Eheart, J. Wayland Assessing Vulnerability of Water Resources to Climate Change in Midwest. In Proceedings of the World Water and Environmental Resources Congress 2003, Philadelphia, PA, USA, 23–26 June 2003; pp. 1–10. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Kikoyo, D.A.; Nobert, J. Assessment of impact of climate change and adaptation strategies on maize production in Uganda. Phys. Chem. Earth 2016, 93, 37–45. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chenu, K.; Porter, J.R.; Martre, P.; Basso, B.; Chapman, S.C.; Ewert, F.; Bindi, M.; Asseng, S. Contribution of Crop Models to Adaptation in Wheat. Trends Plant Sci. 2017, 22, 472–490. [Google Scholar] [CrossRef]
- Crescio, M.I.; Forastiere, F.; Maurella, C.; Ingravalle, F.; Ru, G. Heat-related mortality in dairy cattle: A case crossover study. Prev. Vet. Med. 2010, 97, 191–197. [Google Scholar] [CrossRef]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Key, N.; Sneeringer, S. Potential effects of climate change on the productivity of U.S. dairies. Am. J. Agric. Econ. 2014, 96, 1136–1156. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Craine, J.M.; Elmore, A.J.; Olson, K.C.; Tolleson, D. Climate change and cattle nutritional stress. Glob. Chang. Biol. 2010, 16, 2901–2911. [Google Scholar] [CrossRef]
- Henry, B.; Charmley, E.; Eckard, R.; Gaughan, J.B.; Hegarty, R. Livestock production in a changing climate: Adaptation and mitigation research in Australia. Crop Pasture Sci. 2012, 63, 191–202. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Reeves, M.C.; Bagne, K.E. Vulnerability of Cattle Production to Climate Change on U.S. Rangelands; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; Volume 39, p. 343. [Google Scholar]
- Rust, J.; Rust, T. Climate change and livestock production: A review with emphasis on Africa. S. Afr. J. Anim. Sci. 2013, 43, 255. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Arendse, A.; Crane, T.A. Impacts of climate change on smallholder farmers in Africa and their adaptation strategies: What are the roles for research. In Proceedings of the International Symposium and Consultation, Arusha, Tanzania, 29–31 March 2010. [Google Scholar]
- Bhatta, G.D.; Aggarwal, P.K.; Kristjanson, P.; Shrivastava, A.K. Climatic and non-climatic factors influencing changing agricultural practices across different rainfall regimes in South Asia. Curr. Sci. 2016, 110, 1272–1281. [Google Scholar] [CrossRef]
- Crane, T.A.; Roncoli, C.; Hoogenboom, G. Adaptation to climate change and climate variability: The importance of understanding agriculture as performance. NJAS Wagening. J. Life Sci. 2011, 57, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Takahashi, T.; Suzuki, N.; Kaiser, H.M. The impact of climate change on maize yields in the United States and China. Agric. Syst. 2011, 104, 348–353. [Google Scholar] [CrossRef]
- Sandve, G.K.; Nekrutenko, A.; Taylor, J.; Hovig, E. Ten Simple Rules for Reproducible Computational Research. PLoS Comput. Biol. 2013, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Uddin, M.N.; Bokelmann, W.; Entsminger, J.S. Factors Affecting Farmers’ Adaptation Strategies to Environmental Degradation and Climate Change Effects: A Farm Level Study in Bangladesh. Climate 2014, 2, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Richards, P. Cultivation: Knowledge or performance. In An Anthropological Critique of Development: The Growth of Ignorance; Routledge: Abingdon-on-Thames, UK, 1993; pp. 61–78. [Google Scholar]
- Mendelsohn, R.; Dinar, A. Climate change, agriculture, and developing countries: Does adaptation matter? World Bank Res. Obs. 1999, 14, 277–293. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, N.; Lipper, L.; Branca, G. Climate-Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaptation and Mitigation. Mitig. Clim. Chang. Agric. Work. Pap. 2011, 3, 1–37. [Google Scholar]
- Colloff, M.J.; Martín-López, B.; Lavorel, S.; Locatelli, B.; Gorddard, R.; Longaretti, P.Y.; Walters, G.; van Kerkhoff, L.; Wyborn, C.; Coreau, A.; et al. An integrative research framework for enabling transformative adaptation. Environ. Sci. Policy 2017, 68, 87–96. [Google Scholar] [CrossRef]
- Rickards, L.; Howden, S.M. Transformational adaptation: Agriculture and climate change. Crop Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Rippke, U.; Ramirez-Villegas, J.; Jarvis, A.; Vermeulen, S.J.; Parker, L.; Mer, F.; Diekkrüger, B.; Challinor, A.J.; Howden, M. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Chang. 2016, 6, 605. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691. [Google Scholar] [CrossRef] [Green Version]
- Clow, D.W. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P. The importance of warm season warming to western U.S. streamflow changes. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [Green Version]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Clim. 2007, 20, 1468–1486. [Google Scholar] [CrossRef] [Green Version]
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430–431, 127–141. [Google Scholar] [CrossRef]
- Wehner, M.F.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N. Droughts, floods, and wildfires. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; pp. 231–256. [Google Scholar]
- Hoerling, M.; Jon, E. Past Peak Water in Southweast. Southwest Hydrol. 2007, 6, 18–19. [Google Scholar]
- McCabe, G.J.; Wolock, D.M. Warming may create substantial water supply shortages in the Colorado River basin. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- McMurrray, C. The Colorado River Basin and Climate: Perfect Storm for the Twenty-First Century. Available online: https://www.coloradocollege.edu/dotAsset/74e91de4-a1ff-4062-b628-030e997b4e0b.pdf (accessed on 20 April 2018).
- Vano, J.A.; Das, T.; Lettenmaier, D.P. Hydrologic Sensitivities of Colorado River Runoff to Changes in Precipitation and Temperature *. J. Hydrometeorol. 2012, 13, 932–949. [Google Scholar] [CrossRef] [Green Version]
- Christensen, N.; Lettenmaier, D.P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol. Earth Syst. Sci. 2007, 3, 3727–3770. [Google Scholar] [CrossRef] [Green Version]
- Udall, B.; Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 2017, 53, 2404–2418. [Google Scholar] [CrossRef] [Green Version]
- United States Bureau of Reclamation. Colorado River Basin Water Supply and Demand Study. 2011. Available online: https://www.usbr.gov/lc/region/programs/crbstudy/Report1/StatusRpt.pdf/ (accessed on 20 April 2018).
- United States Bureau of Reclamation. Colorado River Basin Water Supply and Demand Study-Executive Summary. 2012. Available online: https://www.usbr.gov/watersmart/bsp/docs/finalreport/ColoradoRiver/CRBS_Executive_Summary_FINAL.pdf/ (accessed on 20 April 2018).
- Cohen, M.; Christian-Smith, J.; John, B. Water Supply to the Land; Pacific Institute: Oakland, CA, USA, 2013. [Google Scholar]
- Chapman, A. Colorado River Compact (1922). Encycl. Polit. Am. West 1922, 1921. [Google Scholar] [CrossRef]
- Xiao, M.; Udall, B.; Lettenmaier, D.P. On the causes of declining Colorado River streamflows. Water Resour. Res. 2018, 2, 1–18. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huan, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C.; et al. Model projections of an imminent transition to a more arid climate in southwesterna North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef]
- Ward, R.A.; Paul, M.J. The Economic Contribution of Agriculture to the Utah Economy in 2011; Utah State University: Logan, UT, USA, 2013; pp. 1–10. [Google Scholar]
- Ward, R.A.; Salisbury, K. The Economic Contribution of Agriculture to the Utah Economy in 2014; Utah State University: Logan, UT, USA, 2016; pp. 1–10. [Google Scholar]
- PRISM Climate Group Parameter-Elevation Regressions on Independent Slopes Model. Available online: http://www.prism.oregonstate.edu/recent/ (accessed on 17 April 2018).
- Bureau of Reclamation Colorado River Basin Natural Flow and Salt Data. Available online: https://www.usbr.gov/lc/region/g4000/NaturalFlow/ (accessed on 4 April 2019).
- USDA National Agricultural Statistics Service. Available online: https://quickstats.nass.usda.gov/ (accessed on 15 May 2018).
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Wang, X.L. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Wang, X.L. Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmospheric Ocean. Technol. 2008, 25, 368–384. [Google Scholar] [CrossRef]
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteorol. Climatol. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New techniques for detection and adjustment of shifts in daily precipitation data series. J. Appl. Meteorol. Climatol. 2012, 4, 1–51. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y. RHtestsV4 User Manual: Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. p. 28. Available online: http://etccdi.pacificclimate.org/RHtest/RHtestsV4_UserManual_10Dec2014.pdf/ (accessed on 26 April 2018).
- Wang, X.L.; Feng, Y. RHtests_dlyPrcp User Manual: Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. Available online: http://etccdi.pacificclimate.org/RHtest/RHtests_dlyPrcp_UserManual_10Dec2014.pdf/ (accessed on 26 April 2018).
- Alexander, L.; Herold, N. ClimPACT2-Indices and Software; UNSW Sydney: Sydney, Australia, 2016. [Google Scholar]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Grömping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Pang, B.; Yue, J.; Zhao, G.; Xu, Z. Statistical Downscaling of Temperature with the Random Forest Model. Adv. Meteorol. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Cootes, T.F.; Ionita, M.C.; Lindner, C.; Sauer, P. Robust and accurate shape model fitting using random forest regression voting. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma. 2012, 7578, 278–291. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Jennifer, A.-S. Thematic networks: An analytic tool for qualitative research. Qual. Res. 2001, 1, 385–405. [Google Scholar] [CrossRef]
- Liu, Z.; Smith, W.J.; Safi, A.S. Rancher and farmer perceptions of climate change in Nevada, USA. Clim. Chang. 2014, 122, 313–327. [Google Scholar] [CrossRef]
- Crane, T.A.; Roncoli, C.; Paz, J.; Breuer, N.; Broad, K.; Ingram, K.T.; Hoogenboom, G. Forecast skill and farmers’ skills: Seasonal climate forecasts and agricultural risk management in the southeastern United States. Weather Clim. Soc. 2010, 2, 44–59. [Google Scholar] [CrossRef]
- Hadia, A. Ranchers Adapting to Climate Variability in Upper Colorado River Basin, Utah. Available online: https://www.hydroshare.org/resource/b984a0cb5fc34a329240b4eea2402373/ (accessed on 30 November 2019).
- Hadia, A. Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah. Master’s Thesis, Utah State University, Logan, UT, USA, 2019. [Google Scholar]
Data | Source | Data Format | Spatial Scale | Time Step |
---|---|---|---|---|
Precipitation and Temperature | PRISM | Csv files | County | Daily |
Natural Streamflow | Bureau of Reclamation | Csv files | Station data | Daily |
Agriculture Data | NASS–USDA | Csv files | County | Annual |
Predictor Variables | Hay Model | Cattle Model | |
---|---|---|---|
t-statistic | |||
Hay Acreage | 15.019 | –0.17 | |
Continuous dry days | –0.28 | –0.64 | |
Continuous wet days | 2.19 | 1.37 | |
Frost days | 3.11 | 3.54 | |
Icing days | –2.45 | –2.17 | |
Natural Streamflow | 0.62 | –0.89 | |
Model fit | F statistic | 43.67 | 2.20 |
p-value for F statistic | 6.08e-13 | 0.07 | |
Model Accuracy | R2 value | 0.90 | 0.32 |
Adjusted R2 | 0.88 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, H.; Allen, L.N.; Rosenberg, D.E.; Chikamoto, Y. Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah. Climate 2020, 8, 96. https://doi.org/10.3390/cli8090096
Akbar H, Allen LN, Rosenberg DE, Chikamoto Y. Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah. Climate. 2020; 8(9):96. https://doi.org/10.3390/cli8090096
Chicago/Turabian StyleAkbar, Hadia, L. Niel Allen, David E. Rosenberg, and Yoshimitsu Chikamoto. 2020. "Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah" Climate 8, no. 9: 96. https://doi.org/10.3390/cli8090096
APA StyleAkbar, H., Allen, L. N., Rosenberg, D. E., & Chikamoto, Y. (2020). Ranchers Adapting to Climate Variability in the Upper Colorado River Basin, Utah. Climate, 8(9), 96. https://doi.org/10.3390/cli8090096