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Abstract: We qualitatively and quantitatively assessed the factors related to vegetation growth using
Earth system models and corroborated the results with historical climate observations. The Earth
system models showed a systematic greening by the late 21st century, including increases of up to
100% in Gross Primary Production (GPP) and 60% in Leaf Area Index (LAI). A subset of models
revealed that the radiative effects of CO2 largely control changes in climate, but that the CO2

fertilization effect dominates the greening. The ensemble of Earth system model experiments revealed
that the feedback of surface temperature contributed to 17% of GPP increase in temperature-limited
regions, and radiation increase accounted for a 7% increase of GPP in radiation-limited areas. These
effects are corroborated by historical observations. For example, observations confirm that cloud
cover has decreased over most land areas in the last three decades, consistent with a CO2-induced
reduction in transpiration. Our results suggest that vegetation may thrive in the starkly different
climate expected over the coming decades, but only if plants harvest the sort of hypothesized
physiological benefits of higher CO2 depicted by current Earth system models.
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1. Introduction

Climate change caused by increasing atmospheric carbon dioxide (CO2) concentrations has been
extensively studied in the context of global warming, and the land carbon cycle feedback is recognized
as one of the biggest sources of uncertainty in climate projection [1]. Global warming is proceeding with
a greening trend of the Earth, as shown by satellite and ground observations of increases in leaf area
index [2,3], canopy cover [4], and biomass [5]. A greening Earth has significant consequences for the
terrestrial carbon sink, the integrity of ecosystem, and climate [6,7]. Numerous mechanisms appear to
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underlie the observed greening, including changes in the climate system [8,9]. Among the mechanisms
supporting the greening Earth, CO2 fertilization is considered the dominant factor in enhancing
vegetation, with evidence from free-air CO2 enrich (FACE) experiments [10], satellite observations [2,4],
and ground observations [11]. Climate change is also substantially contributing to the increase in
global vegetation productivity because of the indirect effect of increasing CO2 concentrations [9].
For instance, global warming is enhancing vegetation growth in high latitudes [12,13]. As such, each
mechanism contributing to vegetation growth has been scrutinized independently, but, in contrast to
climate change studies, the global factors affecting vegetation response have not been well studied
and summarized. Therefore, the combination and interactions of multiple different climatological
and biophysical mechanisms make it difficult to predict the future growth of vegetation at the
global scale. As a result, the big discrepancy between modeled and observed sensitivity to CO2

concentrations is always a source of controversy in the prediction of the future carbon cycle [14].
If climate constrains increase, climate change can cancel the positive effects of CO2 or of other
biogeochemical fertilization (e.g. nitrogen deposition) on vegetation, and possibly accelerate global
warming. Therefore, understanding the relative strength of climate variables or increasing CO2

concentrations, leading to greening or browning of the Earth, is imperative for future projections.
We firstly summarized and analyzed the trends in climate and vegetation responding to increasing

CO2 concentrations from the subset of the Coupled Model Intercomparison Project Phase 5 (CMIP5).
The CMIP5 dataset includes present run and future projection data produced by Earth system models
following several experimental scenarios. Future vegetation growth depends on the type, magnitude,
and seasonal timing of climatic changes and their interactions with vegetation physiology. To simplify
the understanding of these complex mechanisms, we divided the vegetated areas into three categories,
namely temperature-limited, water-limited, and radiation-limited areas, following Nemani et al. [9].

Then, we decomposed the mechanisms enhancing vegetation growth into three factors: CO2

concentration fertilization effect, radiative climate change, and local climate feedback by vegetation
growth. By assessing these three factors quantitatively, we can answer the question as to whether
increasing CO2 concentrations will tighten or relax climate constrains on vegetation at the global scale.
Friedlingstein et al. [1] evaluated the strengths of the effects of CO2 fertilization and temperature
increase on land vegetation carbon storage. Lemordant et al. [15] decomposed the climate effects on
evapotranspiration into net radiation, precipitation, and vapor pressure deficit (VPD). However, none
of them counted the local climate feedback effect at the global scale. Therefore, contradicting results of
vegetation growth by different mechanisms made future predictions confusing. For instance, it is hard
to discuss the regional trend in precipitation [16–18] and the changes in water use efficiency [11] at the
same time without knowing which mechanism is relatively stronger. Finally, we discussed the validity
of the findings through the analysis of historical observations.

2. Materials and Methods

2.1. CMIP5

CMIP5 is a set of model experiments for assessing past and future climate change in the
Intergovernmental Panel for Climate Change Assessment Report number 5 (IPCC AR5) [19].
To objectively select datasets, the models of CMIP5 data used in this paper met the following criteria.

• The models had monthly data of near-surface air temperature (output variable name in the
standard output is tas; the other variables are showed the same way hereafter), precipitation
(pr), surface downwelling shortwave radiation (rsds), and Leaf Area Index (LAI) (lai) data for
the specific years (1875–2005: historical; and 2006–2099: Representative Concentration Pathway
(RCP) 8.5).

• The land sub-model had year-to-year changes in LAI.

We used three sets of outputs from 21 models from CMIP5 (Table 1).
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Table 1. Coupled Model Intercomparison Project Phase 5 (CMIP5) models and the forcing characteristics.
Models used in the sensitivity analysis (experiment IDs are esmFixClim1, esmFdbk1, and 1pctCO2)
shown in the analysis are highlighted in red.

Model Modeling Group Land Component N
Cycle

Dynamic
Vegetation

bcc-csm1-1
Beijing Climate Center, China

Meteorological Administration,
CHINA

AVIM1.0 N N

bcc-csm1-1-m Meteorological Administration,
CHINA AVIM1.0 N N

BNU-ESM Beijing Normal University, CHINA CoLM3 & BNU
DGVM (C/N) - -

CanESM2 Canadian Center for Climate
Modelling and Analysis, CANADA

CLASS2.7 &
CTEM1 N N

CESM1-CAM5 Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

CESM1-WACCM Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

CESM1-BGC Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

GFDL-CM3 NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

GFDL-ESM2G NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

GFDL-ESM2M NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

HadGEM2-ES Met Office Hadley Centre, UNITED
KINDOM

MOSES2 &
TRIFFID N Y

INMCM4 Russia

IPSL-CM5A-LR Institut Pierre-Simon Laplace,
FRANCE ORCHIDEE N N

IPSL-CM5A-MR Institut Pierre-Simon Laplace,
FRANCE ORCHIDEE N N

MIROC5 JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MIROC-ESM-CHEM JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MIROC-ESM JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MPI-ESM-LR Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

MPI-ESM-MR Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

MPI-ESM1 Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

NorESM1-ME Norwegian Climate Centre, NORWAY CLM4 Y N

NorESM1-M Norwegian Climate Centre, NORWAY CLM4 Y N

The experiments are:
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1. Historical run: Runs covering the historical period 1850–2005. For this period, model forcings
include: greenhouse gases (GHG), volcanoes, aerosols, and land cover.

2. RCP 8.5: Projections forced by pre-determined increasing CO2 concentrations covering 2006
to 2100. For this analysis we chose the RCP 8.5 scenario, a pathway with the highest greenhouse gas
emissions, leading to 8.5 W/m2 radiative forcing at the end of the 21st century [20]. Although just
a decade passed since 2006, it has been reported that the emission concentration in 2100 is projected to
follow RCP 8.5 [21].

3. Sensitivity experiments: In order to assess the contribution of CO2 fertilization and climate
effects on vegetation separately, we used an eight-model (highlighted in Table 1) ensemble to compare
three CMIP5 experiments, each of which was run for 140 years and experiences a constant CO2 of
preindustrial level and/or CO2 increasing by 1%/year to 4xCO2: (1) In the fertilization experiment
CO2 increases by 1%/year to 4xCO2 for the land surface, but stays constant at preindustrial level for
the atmosphere, and thus the climate effect is suppressed and the CO2 fertilization effect is dominant
on land (the official experiment ID is esmFixClim1); (2) in the climate experiment CO2 increases for the
atmosphere, but stays constant for the land surface, and hence the CO2 fertilization effect is suppressed
and the climate impact dominates (esmFdbk1); (3) in the combined experiment CO2 concentration
increases for the full Earth system (1pctCO2).

To calculate the ensemble mean, at first, we remapped all the CMIP5 data into quarter degree grid
data using the bilinear interpolation method. Then, we calculated the ensemble mean for each quarter
degree grid from the available modeled data.

In this paper, gross primary production (GPP) was chosen from available CMIP5 land variables as
the representation of photosynthesis. GPP is the amount of photosynthesis by vegetation per unit area,
from which respiration is not subtracted. In the budget analysis, net biome production (NBP), which
accounts for respiration and disturbance, should be the key flux of vegetation response. However,
these experiments are not CO2 emission driven, but rather CO2 concentration driven, and the results of
the carbon budget of vegetation do not change the atmospheric CO2 concentration. Thus, GPP, which
is equivalent to photosynthesis, can represent vegetation growth better than NBP. We also used LAI as
the representative of carbon storage because LAI can be compared to satellite estimates.

The vegetation response in the historical run, RCP 8.5, and combined experiments in sensitivity
experiments can be simplified by the linear models as follows:

∆GPP = a ∆CO2 + b ∆Clim + f ∆Clim f eedback, (1)

where ∆CO2, ∆Clim, and ∆Clim f eedback represent change in CO2 concentration, change in one of the
limiting climate factors but only caused by the radiative effect of the change in CO2 concentration, and
feedback of climate by changing GPP through the fertilization effect, respectively. The coefficients a, b,
and f assume a simple linear system. The term ∆Clim f eedback represents the feedback of GPP through
effects on climate, such as the effect of a change in cloud cover due to increasing evapotranspiration.

The fertilization experiment examines how higher CO2 affects climate and vegetation via increases
in leaves’ internal CO2 concentration, which should in turn reduce stomatal conductance transpiration.
As a result, climate feedback occurs as decreasing cloud cover whilst increasing soil moisture, runoff,
and solar radiation [11,22,23]. So, the fertilization experiment can be expressed as:

∆GPP = a ∆CO2 + f ∆Clim f eedback, (2)

It is noteworthy that ∆CO2 includes the effect of changing water use efficiency because it is
directly affected by increasing CO2 concentrations, not through changing climate.

The climate experiment shows how higher CO2 affects vegetation via the traditional greenhouse
effect on climate. The fertilization effect of increasing CO2 on vegetation was suppressed. The climate
experiment can be expressed as:

∆GPP = b ∆Clim, (3)
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For mapping purposes, the outputs were firstly re-gridded to 0.5 × 0.5 degree resolution, using
the bilinear interpolation method, to be consistent with the limiting factor data [9].

2.2. GIMMS-LAI3G

The GIMMS-LAI3G data were derived from the Global Inventory Modeling and Mapping Studies
(GIMMS) Normalized Differential Vegetation Index (NDVI) using the neural network algorithm [24].
We aggregated the 1/12 degree spatial resolution LAI data into the half degree data prior to monthly
and annual analysis. To be consistent with historical CMIP5 runs that end in 2005, we used
GIMMS-LAI3g data from overlapping the period 1982–2005.

2.3. CRU/CRUNCEP

We used 0.5 × 0.5 degree monthly temperature and precipitation from Climate Research Unit
(CRU-TS3.23) and solar radiation data from CRU National Centers for Environmental Prediction
version 4 (CRUNCEP-V4, a blend of CRU data and NCEP- National Center for Atmospheric Research
(NCAR) reanalysis data) [25]. CRU data are interpolated gridded datasets from monthly observations.
To be consistent with historical CMIP5 runs, we used CRU/CRUNCEP data from overlapping the
period with Global Inventory Modeling and Mapping Studies (GIMMS)-LAI data during 1982–2005.

2.4. NDP026

We reanalyzed the ground-based total cloud cover observations in Numeric Data Package
NDP06 [26], following methodology outlined in Warren et al. [27]. Briefly, the methodology consists of
estimating seasonal trends at each of the stations, then averaging these trends over a 10 × 10 degree
grid. We compared these estimated trends with those predicted by CMIP5 models for the period of
1971–2005 using a chi-squared test for independence. Several modeling studies showed the connection
between low clouds over land and increased levels of CO2 in the atmosphere [28,29]. As such, it would
have been more appropriate to use changes in low cloud cover in our analysis. However, CMIP5 did
not mandate modeling teams to submit low, medium, and high cloud simulations separately. Only
total cloud cover was required from the modeling teams, hence we used total cloud cover data in
our analysis.

2.5. Limiting Factor Analysis

We analyzed global changes in the three regions defined by the climate factor—temperature,
precipitation, or radiation—that is most limiting to GPP. Following Nemani et al. [9], we calculated the
strength of the limiting factor based on monthly climate data of minimum temperature, precipitation,
and cloudy day. Then, we defined the three regions using the highest value among the three data
(Figure 1a).

2.6. Estimation of Precipitation Equivalent Water

Increases in atmospheric CO2 are known to increase the water use efficiency (WUE) of vegetation,
estimated as amount of carbon gained per unit amount of water used [11,22,30]. While WUE increases
globally with CO2, its changes over precipitation-limited regions are of particular significance for
plant growth. To assess the contribution of improved WUE in precipitation-limited regions, we used
a slightly different metric called precipitation use efficiency (PUE). PUE is estimated as GPP per unit
amount of precipitation. The changes in PUE between the first (2006–2015) and last decades (2090–2099)
are then translated to changes in precipitation equivalent, PEq (mm), as follows:

PEq =
(

GPPlast − GPPf irst

)
×

Pf irst

GPPf irst
−

(
Plast − Pf irst

)
, (4)
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where GPPf irst and GPPlast are GPP (kgC/m2) for the first and last decades of the 21st century, and
Pf irst and Plast are precipitation received at each of the grid cells during the first and last decades.
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Figure 1. Earth system models project easing of temperature, precipitation, and radiation constraints
to growth. A map of potential climate limiting factors to plant growth ((a) air temperature in blue,
precipitation in red, solar radiation in green) was used to guide the spatial analysis of simulated
changes in climate and how such changes could impact plant growth around the world. Using outputs
from Earth system models of CMIP5 we estimated ensemble mean differences in 2090–2099 minus
2006–2015 monthly air temperature (b), solar radiation (c), precipitation (d), and precipitation use
efficiency (expressed as precipitation equivalent; see Methods) (e). Changes in constraints by regional
mean: temperature-limited, easing 94%, and no significant change 6%; precipitation-limited, easing
23%, tightening 16%, and no significant change 61%; radiation-limited, easing 45%, tightening 19%,
and no significant change 36%.

2.7. Mann–Kendall Test

The Mann–Kendall test detects the presence of a monotonic trend in time-series data [31]. The test
is broadly used because it does not require the assumption of normal distribution of the time-series
data. We use the Mann–Kendall test as the significance test for the annual or seasonal data.
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3. Results

3.1. Annual Mean Trend and Climate Feedback to Vegetation

The multi-model ensemble mean shows pervasive future changes in vegetation structure and
function by the end of this century under the high-emission RCP 8.5 scenario: LAI increases by up
to 60% and GPP increases by up to 100% (Figure 2). LAI significantly increases globally except for
Amazon, Mexico, and Southern Africa (Figure 2a). GPP also significantly increases for nearly the entire
vegetated planet (Figure 2b), though the magnitudes may be uncertain [32]. The percentage changes
are higher in the high latitude regions for LAI, while changes in magnitude of LAI and GPP are higher
in both the high latitude and tropical regions. A few tropical and semi-arid areas show decreases in
LAI, but none of the changes are statistically significant. The results of increasing LAI are consistent
with Mahowald et al. [33].Climate 2019, 7, 27 8 of 24 

 

 

Figure 2. Greening of the Earth. Simulated changes in leaf area index (LAI) and gross primary 

production (GPP) from the Earth system models of CMIP5. Shown are differences in annual average 

mean LAI (a) and annual total GPP (b) at each grid cell for 2090–2099 minus 2006–2015. Stippling 

shows statistically significant differences among models from a Wilcoxon signed rank test at the 95% 

level. Right subplots are latitude average of LAI and GPP for 2006–2015 (blue) and 2090–2099 

(green). 

We divided the climate (Figure 3) and the vegetation (Figure 4) response in the RCP 8.5 scenario 

into the temperature-limited, precipitation-limited, and radiation-limited regions. Temperature and 

precipitation increase for all the three regions, while radiation increases only in the radiation-limited 

area (Figure 3). Thus, all the climate factors contribute to vegetation growth in addition to the CO2 

fertilization effect. As a result, all the three different climate-limited regions experience increases in 

ensemble GPP and LAI throughout the 21st century (Figure 4). LAI in the temperature-limited 

region shows large variability among the models compared to GPP, which implies the difficulty in 

modeling respiration and allocation ratios. LAI in the radiation-limited region shows a significant 

increase, but the magnitude of increase is small due to the saturation of the leaf increase. 

Figure 2. Greening of the Earth. Simulated changes in leaf area index (LAI) and gross primary
production (GPP) from the Earth system models of CMIP5. Shown are differences in annual average
mean LAI (a) and annual total GPP (b) at each grid cell for 2090–2099 minus 2006–2015. Stippling
shows statistically significant differences among models from a Wilcoxon signed rank test at the 95%
level. Right subplots are latitude average of LAI and GPP for 2006–2015 (blue) and 2090–2099 (green).

We divided the climate (Figure 3) and the vegetation (Figure 4) response in the RCP 8.5 scenario
into the temperature-limited, precipitation-limited, and radiation-limited regions. Temperature and
precipitation increase for all the three regions, while radiation increases only in the radiation-limited
area (Figure 3). Thus, all the climate factors contribute to vegetation growth in addition to the CO2

fertilization effect. As a result, all the three different climate-limited regions experience increases in
ensemble GPP and LAI throughout the 21st century (Figure 4). LAI in the temperature-limited region



Climate 2019, 7, 27 8 of 22

shows large variability among the models compared to GPP, which implies the difficulty in modeling
respiration and allocation ratios. LAI in the radiation-limited region shows a significant increase, but
the magnitude of increase is small due to the saturation of the leaf increase.

By the last decade of the 21st century, the summary of the projections shows that annual climate
constraints will ease for 51% of the Earth’s vegetated land area (i.e., warmer in the temperature-limited
region), tighten in 11% of the land area, with the remainder experiencing no change. The degree of
easing varies, from 94% in the temperature-limited region and 23% in the precipitation-limited region,
to 45% in the radiation-limited region (Figure 1b–d).
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Figure 3. Climate responses from the Earth system models of CMIP5, summarized over the three
climate-limiting regions. The simulations represent RCP 8.5, a pathway with the highest greenhouse
gas emissions. Ensemble means and the percentiles show progressive relief of the main limiting
factor for each region. Models diverge substantially towards the end of the simulation period, but
almost all trends are statistically significant (see p-values in each panel). Changes in temperature
(a–c), precipitation (d–f), and radiation (g–i) are expressed as percent of initial values in 2006. Outputs
of Community Earth System Model, version 1–Biogeochemistry (CESM1-BGC), red line, are shown
as examples of results from Earth system models incorporating nitrogen cycling. The p-value was
calculated from Mann–Kendall trend test.
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Figure 4. Vegetation responses from the Earth system models of CMIP5, summarized over the three
climate-limiting regions. Same as Figure 3, except for changes in transpiration (a–c), GPP (d–f), and
LAI (g–i).

3.2. Seasonal Trend in Climate and Vegetation

The changes in LAI and GPP are underlain not only by changes in annual climate but also by
seasonal climate changes. Seasonal changes in climate (Figure 5) are associated with increased LAI and
GPP (Figure 6), particularly for the temperature-limited region (note that we present seasonal analyses
for the Northern Hemisphere only, to avoid contrasting seasonal patterns in the Southern Hemisphere
and because the Northern Hemisphere accounts for 68% of total land area).

Boreal summers (June, July, and August: JJA) in temperature-limited regions become warmer,
wetter, and brighter (Figure 5a,d,g); conditions that, at least in current Earth system models, lead to a
summertime spike in LAI and GPP increases (Figure 6m,p). The precipitation increase is largest in
the boreal fall (September, October, and November: SON); warming is at least 4 ◦C in all months, and
increases to nearly 10 ◦C in winter. The JJA increase in solar radiation approaches 10 W/m2, but is
offset by winter decreases (Figure 5g), leading to no net change in the annual mean (Figure 3g).



Climate 2019, 7, 27 10 of 22
Climate 2019, 7, 27 11 of 24 

 

 

Figure 5. Easing of seasonal constraints to vegetation growth. Simulated changes in monthly climate 

and vegetation in the three climate-limiting regions: temperature, a–c; precipitation, d–f; and 

radiation, g–i. Bars show climatological values (2006–2015), lines show ensemble mean monthly 
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Figure 5. Easing of seasonal constraints to vegetation growth. Simulated changes in monthly climate
and vegetation in the three climate-limiting regions: temperature, (a–c); precipitation, (d–f); and
radiation, (g–i). Bars show climatological values (2006–2015), lines show ensemble mean monthly
changes from Earth system models of CMIP5. Circles indicate that the trend in the 2006–2099 ensemble
mean is significant at the 95% level from a Mann–Kendall trend test, while plus signs show that
the Wilcoxon signed rank test is significant at the 95%. Shading is used to highlight changes in the
limiting factor for each of the three regions (e.g., blue shading highlights temperature changes in the
temperature-limited region).
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3.3. Sensitivity Experiments for Climate and Vegetation

Increased CO2 affects LAI and GPP through climate change, through both the greenhouse effect
and CO2 fertilization effect, but the CMIP5 ensemble for the RCP 8.5 scenario cannot separate the
importance of the two processes [19]. To isolate their varying importance, we generate an eight-model
ensemble (highlighted in Table 1), comparing results from the sensitivity experiments.

At first, we summarized the climate responses to increasing CO2 concentration in these sensitivity
experiments. The esmFdbk1 experiment shows that radiative effects clearly dominate projected
warming, the signature feature of climate change (compare black and red lines in Figures 7a–c
and 8a,d,g). Radiative effects also drive other key aspects of climate change, such as Arctic amplification
and land–sea warming contrast (Figure 8a), equatorial and high-latitude increases in precipitation
(Figure 8b), and high-latitude dimming from increases in fall/winter cloud cover (Figure 8c) [34].
Meanwhile, the esmFixClim experiment revealed that, except for increases in radiation for the
temperature-limited region in JJA (Figure 7g), the vegetation physiological effect has little effect
on region-averaged climate (e.g., near-zero changes in Figure 7a–f). Spatially, the physiological effects
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on climate are more consistent than the radiative effects, and include a slight drying (Figure 8e) and
brightening because of reduced cloud cover (Figure 8f) over most land surfaces.
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Figure 7. Additive and counteracting impacts of CO2 on climate. Simulated changes in climate
and vegetation from the CMIP5 eight-model ensemble in response to increasing CO2 from 280 ppm
by 1%/year for 140 years: temperature, a–c; precipitation, d–f; and radiation, g–i. The changes
are the mean of the last ten years minus the mean of the first ten years (see Figures 8 and 10 for
a spatial representation of the changes). In order to assess the contribution of radiative and vegetation
physiological effects on climate and vegetation, three experiments were carried out: (1) CO2 has
a radiative forcing on climate but no direct effect on vegetation; (2) CO2 has a vegetation physiological
impact, primarily on internal CO2 concentration and stomatal conductance, but does not directly
alter radiative forcing; and (3) CO2 has a combined effect on both radiative forcing and physiological
impacts. Shading is used to highlight changes in the limiting factor for each of the three regions (e.g.,
blue shading highlights temperature changes in the temperature-limited region). Circles indicate that
the trend in the 140-year ensemble mean is significant at the 95% level from a Mann–Kendall trend test.
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Figure 8. Spatial distribution of the additive and counteracting impacts of CO2 on climate limiting
factors. Temperature, (a,d,g); precipitation, b,e,h; and solar radiation, (c,f,i). In order to assess the
contribution of radiative and vegetation physiological effects on climate and vegetation, we used an
eight-model [highlighted in Table 1] ensemble to compare three CMIP5 experiments, each of which
was run for 140 years and experiences a constant CO2 at pre-industrial levels and/or CO2 increasing
by 1%/year to 4xCO2: (1) In the radiative experiment (a–c), CO2 increases for the atmosphere but stays
constant for vegetation and the carbon cycle and hence the direct effects of CO2 on plants are suppressed;
(2) in the vegetation physiology experiment (d–f), CO2 increases by 1%/year to 4xCO2 for vegetation
and the carbon cycle—thereby reducing stomatal conductance and providing CO2 fertilization—but
stays constant at 280 ppm for the atmosphere and thus the radiative effect is suppressed; (3) in the
combined experiment (g–i), CO2 concentration increases for the full Earth system. The changes are the
mean of the last ten years minus the mean of the first ten years. Stippling indicates that the trend in the
140-year ensemble mean is significant at the 95% level from a Mann–Kendall trend test.

On the other hand, the summary of the vegetation response to increasing CO2 concentration shows
the opposite of the climate response in the sensitivity experiment. In spite of inducing climate changes
to temperature and precipitation, the CO2 fertilization effect alone can account for much, and in some
cases, almost all, of the simulated changes in GPP and LAI in the combined experiment (compare blue
and red lines in Figure 9d–i). Increases in LAI and GPP in the FixClim1 experiment appear to be driven
by more radiation (because of reduced cloud cover) and reduced transpiration (therefore increased
soil water), both of which are consistent with stomatal down-regulation following CO2 increases [35].
As shown in the esmFdbk1 experiment, in contrast, the climate change induced by radiative forcing
has near-zero effects on simulated GPP for all three regions (black line in Figure 9d–f), except for
a small positive effect on GPP in the boreal spring of the temperature-limited region. Spatially, the
ordinal impact on GPP and LAI often reverses between the esmFdbk1 and esmFixClim1 experiments,
with much of the Southern Hemisphere switching from a reduction (Figure 10b,c) to an enhancement
(Figure 10e,f).
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Figure 9. Additive and counteracting impacts of CO2 on vegetation. Same as Figure 7 except for
transpiration, a–c; GPP, d–f; and LAI, g–i.

For seven out of nine comparisons, the esmFdbk1 and esmFixClim1 experiments produce
offsetting impacts on LAI and GPP (Figure 9). The largest differences are in the radiation-limited region,
where the esmFdbk1 experiment slightly reduces GPP and the esmFixClim1 experiment increases GPP
by as much as 0.15 kg C/m2/month in JJA (compare blue and red lines in Figure 9f); LAI changes
switch from about −0.5 to 1.0 (compare blue and red lines in Figure 9i). The temperature-limited
region is an exception, where, for both LAI and GPP, the esmFdbk1 and esmFixClim1 experiments
are additive (Figure 9m,p). In particular, high northern latitudes are the one clear location where
both the esmFdbk1 and esmFixClim1 experiments increase LAI (Figure 10c,f) and GPP (Figure 10b,e),
supporting recent conclusions of a strong climate imprint on the broad region of high-latitude during
the observational era [36].

The critical role of vegetation physiology is clear in the precipitation-limited region, which
experiences the least easing and an almost equal area with precipitation reductions (Figure 1d). But
the region also sees a statistically significant increase in simulated equivalent precipitation water in
64% of its area (equivalent to up to 50 mm/month of water in some areas, Figure 1e) and increases in
LAI and GPP (Figure 9e,h), in spite of near-zero changes in simulated annual (Figure 4b) and seasonal
(Figure 6b) transpiration. While these patterns depict a more efficient use of available water resources
and a progressive greening, the physiological response of plants to higher CO2 in semi-arid regions
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appears to depend on local variations in simulated precipitation, which remain highly uncertain in
CMIP5 simulations [37].
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3.4. Decomposing Vegetation Growth Into Three Factors

The results indicate that the climate feedback substantially contributed to the growth of vegetation
by relaxing climate constraints. Although it is well known that the climate feedback can positively or
negatively influence the growth of vegetation, it has not been quantitatively assessed at the global scale.
The sensitivity experiments allow us to quantitatively evaluate the climate feedback to vegetation
( f ∆Clim f eedback in Equation (1)). We assumed that the ratio of GPP change to change in climate
variables is constant (i.e., b = f = const.). At first, we calculated ∆GPP / ∆Clim (i.e., b) in the climate
experiment using the linear regression of annual GPP on annual mean climate variables. Then,
we calculated a ∆CO2 by subtracting f ∆Clim f eedback from GPP increase in Equation (2). Finally,
b ∆Clim was derived from Equation (3) by subtracting a ∆CO2 and f ∆Clim f eedback by assuming the
additive relationship of the fertilization effect and the climate change effect.

The percentage ratios of the contribution of each term (i.e., a ∆CO2, b∆Clim, and f ∆Clim f eedback)
were shown for each limited region in Figure 11. In the temperature-limited region, all the three terms
substantially contributed to the increase in GPP, and the annual average of the climate feedback
contribution was 17%. The snow-albedo feedback can account for the climate feedback [38,39].
The climate feedback added 37% more increase in GPP than the radiative warming effect alone.
The total contribution of climate feedback and climate is 63%, which is the highest contribution among
the three climate-limited regions. The contribution is much higher in winter than summer because the
temperature did not limit GPP in the summer.

In the precipitation limited area, there was almost no contribution of the climate feedback effect.
This result can be explained by the relatively low water-recycling ratio compared to the humid area [40].
The moisture from the other regions controls the precipitation trend in the water-limited region, so that
the influence of changing water use efficiency on the region is negligible.

In the radiation-limited area, the contribution of the climate feedback is 7%, while the radiative
climate change negatively affects 24% of the increase in GPP. The feedback was caused by the decreasing
trend in cloud cover through change in water use efficiency [35]. The magnitude of the contribution of
the climate feedback changes with model selection due to the difficulty in modeling clouds in GCMs.
Thus, the feedback contribution can be underestimated, especially when a low resolution GCM cannot
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represent well the increase in regional convective clouds caused by the enhanced water cycle that
results from added vegetation growth.Climate 2019, 7, 27 17 of 24 
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4. Discussion 

Figure 11. Monthly contribution of climate feedback and radiative climate change to vegetation
growth in increases in CO2 by 1%/year to 4xCO2 experiment (1pctCO2) for each climate-limited area.
The monthly contribution was calculated for each climate-limited region. The green and purple bars
show the contribution of climate feedback and radiative climate change, respectively. In each region,
the total of the contribution (CO2 fertilization, climate feedback, and radiative climate change) was
summed up to 100%.

4. Discussion

Our analysis suggests fundamental future increases in the amount of vegetation and
photosynthesis (LAI and GPP in Figure 1), mainly arising from relaxing climate constraints on
vegetation growth. This feedback effect can explain the discrepancy between the models and the
observation in the β factor [14]. We argue that the results are consistent with three lines of observational
evidence and a considerable body of paleoclimatic evidence of dramatically different vegetation
composition during past high-CO2 periods [41,42].
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First, if our central claim that vegetation physiological process reduces transpiration, reduces
cloud cover, and increases radiation is correct, then cloud cover, particularly low-level clouds, which
strongly influence the planetary shortwave radiation budget, should decrease. Recent climate modeling
studies indeed simulate a decrease in low-level cloudiness due to the vegetation physiological
effect [23,29,35]. Further, several modeling studies indicate that the rapid adjustments of the
troposphere for the combined radiative and physiological effects of increased CO2 are associated
with a decrease in low-level cloud cover over land, but increased boundary layer cloud cover over
oceans [29,43,44]. We re-analyzed the NDP026 ground observation of cloud cover [26] and show that
the modeled processes have indeed occurred over the period 1971 to 2005 using the Mann–Kendall
trend test,. During this period, cloud cover significantly decreased by a few percent points per decade
over much of the land surface, and increased over the ocean (Figure 12).
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assessed for the radiation-limited regions of the Northern hemisphere against the CRUNCEP 

Figure 12. Changes in observed (NDP026) and CMIP5-simulated cloud cover are consistent with
a CO2-induced down-regulation of stomatal conductance, resulting in reduced transpiration. Trends
from observations are shown as decreasing (red) or increasing (blue) annual average cloud cover
for 1971–2005: Red would tend to support our hypothesis of reduced transpiration and cloud cover
as a result of stomatal down-regulation. If the CMIP5 trend and the observed trend have the same
sign, the corresponding box is hatched. Location and shape of boxes corresponds to the coverage
in the observational dataset, the 1971–2005 comparison period represent the overlap between the
observational dataset and the historical CMIP5 runs. A change during the mid-1990s in cloud cover
observation methodology in the US precluded their use in trend evaluation in NDP026. A chi-squared
test between the two data sets rejected the null-hypothesis that they are independent (p = 0.05).
Chi-squared tests performed on the two data sets at seasonal scales yielded the following p-values:
December January February (0.22), March April May (0.05), June July August (0.26), and September
October November (0.01).

Second, the same models we used for future projections under RCP 8.5 produce simulations
of the historical climate and vegetation that are broadly consistent with independent observations
(Figure 13). Although historical skill does not guarantee future performance, region-level simulations
of climatological temperature, and precipitation are statistically indistinguishable from the Climate
Research Unit (CRU) product [25] in all months (Figure 13a,b). Simulated radiation, assessed for the
radiation-limited regions of the Northern hemisphere against the CRUNCEP radiation dataset, has
climatological differences of up to 15 W/m2, but a similar seasonal cycle (Figure 13e). The Earth system
models also capture seasonal satellite-observed variations in LAI in all three regions (Figure 13b,d,f).
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Figure 13. Performance of Earth system models used in CMIP5 against observations (1982–2005) in
each of the climate-limiting regions. CMIP5 seasonality for climate and vegetation are ensemble means
of each of the parameters. Shading represents standard deviation around the ensemble mean from the
CMIP5 models. Observed seasonality in climate and vegetation over the same period is calculated from
Climate Research Unit (CRU) (temperature, precipitation), CRU National Centers for Environmental
Prediction version (CRUNCEP) (radiation), and Global Inventory Modeling and Mapping Studies Leaf
Area Index (GIMMS) LAI.

Third, the projected changes in LAI and climate are already apparent in the observational era.
Satellite data show that LAI has increased from 1982 to 2005 for all three regions (Figure 14b,d,f); the
CRU product shows warming in the temperature-limited region (Figure 14a), increased precipitation in
the precipitation-limited region (Figure 14c), and reduced cloud cover in the radiation-limited region
(Figure 14e). Consistent with these changes in climate and the biosphere, terrestrial ecosystems have
been shown as net sink for carbon in recent decades [45,46]. Thus, the 21st century changes to climate
and greening do not appear anomalous or implausible, when viewed in the context of recent history.

Numerous processes, including extreme climatic events [47], could reduce the projected changes
in LAI and GPP. But the paleoclimate record also shows that profound changes in vegetation have
occurred in the past, particularly in high latitudes, where the temperature-limited region appears
to benefit the most from physical climate changes, mediated through vegetation physiological
mechanisms. The early Eocene greenhouse climate, for example, supported redwoods at 78◦ N
paleo-latitude under CO2 levels that are similar to the modern levels [42]. The deep-time perspective,
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albeit associated with different time scales and continental configurations, therefore, does not appear
to rule out the sort of major changes to vegetation seen in the 21st century projections [48].
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Figure 14. Performance of Earth system models in capturing the observed trends in climate and
vegetation. Observed trends in annual mean climate and satellite-derived LAI from 1982 to 2005 are
shown as average responses over the three climate-limiting regions. Ensemble mean of CMIP5 models
over the same period do not capture the inter-annual variability, but appear to capture the overall
trends in climate and vegetation. The first year of each series is set to zero to emphasize the magnitude
of the trend and deviation between the trend lines. The p-values indicate the level of significance for the
trends in observations only (CRU, CRUNCEP, GIMMS, and cloud cover data from NDP026). Shading
around the CMIP5 ensemble mean indicates 25–75 percentile.

We focused on two elemental components of terrestrial ecosystems—the amount of leafy material
and gross carbon fixation—but do not provide insights into respiratory and net carbon fluxes, carbon
stocks, such as biomass and soil carbon, and vegetation dynamics. The CMIP5 models, especially
low-resolution models, cannot count the extreme events, such as forest fires or hurricanes. The FACE
experiments also suggest that non-climate limiting factors, such as nitrogen and phosphorous [49],
might supersede climate limitations in the future (although the inclusion of a nitrogen cycle produces
results that are within the uncertainties of the full ensemble; see red lines in Figures 3 and 4).
The available state-of-the-art Earth system models; however, depict a late 21st century world in
which vegetation physiology interacts with pervasive changes to annual and seasonal climate to create
a greener land surface.
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5. Conclusions

We analyzed the climate feedback on vegetation using CMIP5 model experiments for each
climate-limited region. In contrast to the climate trend induced by the radiative effect, the positive
trend in GPP and LAI can be attributed mainly to the CO2 fertilization effect. While CO2 fertilization
was the main driver of the increasing trend in vegetation, the climate feedback on vegetation also
contributed to 17% and 7% of vegetation growth in temperature-limited and radiation-limited regions,
respectively. These feedbacks provide additional sensitivity to the CO2 fertilization, and can explain
the discrepancy of the β factor between models and observation. The observed trend corroborates the
importance of the climate feedback in explaining the greening earth.
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