The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago
Abstract
:1. Introduction
2. Methodology
2.1. Model Description and Simulation Setup
2.2. Increasing Surface Reflectivity
3. Results and Analyses
3.1. Model Performance Evaluation
3.2. Effects of Increasing Urban Albedo
4. Discussion
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Taha, H. Urban surface modification as a potential ozone air-quality improvement strategy in California: A mesoscale modeling study. Bound. Layer Meteorol. 2008, 127, 219–239. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2013, 138, 364–377. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A. A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol. 2012, 32, 2372–2386. [Google Scholar] [CrossRef]
- Fallmann, J.; Emeis, S.; Suppan, P. Mitigation of urban heat stress—A modelling case study for the area of Stuttgart. J. Geogr. Soc. Berl. 2013, 144, 202–216. [Google Scholar]
- Fallmann, J.; Forkel, R.; Emeis, S. Secondary effects of urban heat island mitigation measures on air quality. Atmos Environ. 2016, 125, 199–211. [Google Scholar]
- Touchaei, A.G.; Akbari, H.; Tessum, C.W. Effects of increasing urban albedo on meteorology and air quality Montreal (Canada)—Episodic simulation of heat wave in 2005. Atmos. Environ. 2016, 132, 188–206. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Touchaei, G.A.; Akbari, H. Sensitivity analysis of physical parameterizations in WRF for urban climate simulations and heat island mitigation in Montreal. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Ahmadov, R.; McKeen, S.A.; Robinson, A.L.; Bahreini, R.; Middlebrook, A.M.; de Gouw, J.A.; Meagher, J.; Hsie, E.-Y.; Edgerton, E.; Shaw, S.; et al. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. 2012, 117, 06–31. [Google Scholar] [CrossRef]
- Chuang, M.-T.; Zhang, Y.; Kang, D. Application of WRF/Chem-MADRID for real-time air quality forecasting over the southeastern United States. Atmos. Environ. 2011, 45, 6241–6250. [Google Scholar] [CrossRef]
- Misenis, C.; Zhang, Y. An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res. 2010, 97, 315–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Sarwar, G.; Schere, K. Impact of gas-phase mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions: Mechanism implementation and comparative evaluation. J. Geophys. Res. 2012, 117, D01301. [Google Scholar] [CrossRef]
- Yahya, K.; Wang, K.; Gudoshava, M.; Glotfelty, T.; Zhang, Y. Application of WRF/Chem over North America under the AQMEII Phase 2: Part I. Comprehensive evaluation of 2006 simulation. Atmos. Environ. 2015, 155, 733–755. [Google Scholar] [CrossRef]
- Tessum, C.W.; Hill, J.D.; Marshall, J.D. Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: Performance evaluation. Geosci. Model. Dev. 2015, 8, 957–973. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M. An urban surface exchange parameterization for mesoscale models. Bound. Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Liao, J.; Wang, T.; Wang, X.; Xie, M.; Jiang, Z.; Huang, X.; Zhu, J. Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China. Atmos. Res. 2014, 146, 226–243. [Google Scholar] [CrossRef]
- US-National Climate Data Centre (NOAA). Available online: https://www.ncdc.noaa.gov (accessed on 28 January 2018).
- NOAA. National Oceanic and Atmospheric Administration Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in Resolution, New Cloud Microphysics, Modified Precipitation Assimilation, Modified 3DVAR Analysis. 2001. Available online: http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/ (accessed on 28 January 2018).
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Lin, Y.; Farley, R.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies; NASA Technical Memorandum NASA/Goddard Space Flight Center Greenbelt: Greenbelt, MD, USA, 1999. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by longelived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, 131–153. [Google Scholar] [CrossRef]
- Janjic, Z.I. The stepemountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38–48. [Google Scholar] [CrossRef]
- NCAR. WRF User’s Guide; Mesoscale & Microscale Meteorology Division; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2016. [Google Scholar]
- ARW User Guide. ARW Version 3 Modeling System User’s Guide; National Center for Atmospheric Research: Boulder, CO, USA, 2012. [Google Scholar]
- US EPA (US Environmental Protection Agency). 2011 National Emissions Inventory (NEI). Available online: http://www.epa.gov/ttn/ chief/emch/index.html (accessed on 7 March 2016).
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 1997, 102, 25847–25879. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. 2006, 111, 203–213. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- NCAR. WRF-CHEM Emission Guide; National Center for Atmospheric Research (NCAR) and The University Corporation for Atmospheric Research (UCAR): Boulder, CO, USA, 2016. [Google Scholar]
- NCAR. WRF-CHEM User’s Guide, WRF-Chem Emissions Guide; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2016. [Google Scholar]
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Metropolitan Chicago, Illinois; Report LBNL-49275; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001.
- Akbari, H.; Rose, L.S. Characterizing the Fabric of the Urban Environment: A Case Study of Salt Lake City, Utah; Report No. LBNL-47851; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001.
- Akbari, H.; Rose, L.S.; Taha, H. Analyzing the land cover of an urban environment using high-resolution orthophotos. Landsc. Urban Plan. 2003, 63, 1–14. [Google Scholar] [CrossRef]
- Rose, L.S.; Akbari, H.; Taha, H. Characterizing the Fabric of the Urban Environment: A Case Study of Greater Houston, Texas; Report LBNL-51448; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003.
- Millstein, D.; Menon, S. Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environ. Res. Lett. 2011, 6, 34–44. [Google Scholar] [CrossRef]
- EPA. 2005. Available online: http://www.epa.gov/ttnchie1/net/2005inventory.html (accessed on 28 January 2017).
- US EPA (Environmental Protection Agency). Technology Transfer Network (TTN) Air Quality System (AQS). 2005. Available online: http: //www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm (access on 6 March 2016).
- US EPA (US Environmental Protection Agency). Air Quality Modeling Technical Support Document for the Regulatory Impact Analysis for the Revisions to the National Ambient Air Quality Standards for Particulate Matter, Research Triangle Park, NC 27711. 2012. Available online: http://www.regulations.gov/ (accessed on 28 January 2018).
- UCAR (University Corporation for Atmospheric Research). GCIP NCEP Eta Model Output. 2005. Available online: http://rda.ucar.edu/ datasets/ds609.2/ (accessed on 15 January 2017).
- University of California Davis. IMPROVE Data Guide: A Guide to Interpret Data; Prepared for National Park Service, Air Quality Research Division: Fort Collins, CO, USA, 1995; Available online: http://vista.cira.colostate.edu/improve/publications/OtherDocs/IMPROVEDataGuide/IMPROVEdataguide.htm (accessed on 18 September 2017).
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Pun, B.; Seigneur, C. A comprehensive performance evaluation of MM5-CMANQ for the summer 1999 southern oxidant study episode—Part I. Evaluation protocols, databases and meteorological predictions. Atmos. Environ. 2006, 40, 4825–4838. [Google Scholar] [CrossRef]
- Gilliam, R.C.; Hogrefe, C.; Rao, S.T. New methods for evaluating meteorological models used in air quality applications. Atmos. Environ. 2006, 40, 5073–5086. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Krishnan, S.; Zhang, Y.; Aneja, V. Modelling atmospheric transport and fate of ammonia in North Carolina, part I. Evaluation of meteorological and chemical predictions. Atmos. Environ. 2008, 42, 3419–3436. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Jang, C.J.; Phillips, S.; Wang, B.-Y. Modelling study of Intercontinental air pollution transport over the Trans-Pacific region in 2001 using the community multiscale air quality (CMAQ) modelling system. J. Geophys. Res. 2009, 114, 4–19. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, Y.; Olsen, K.; Wang, W.-X.; Do, B.; Bridgers, G. Responses of future air quality to emission controls over North Carolina—Part I: Model evaluation for current-year simulations. Atmos. Environ. 2010, 44, 2443–2456. [Google Scholar] [CrossRef]
- Appel, K.W.; Chemel, C.; Roselle, S.J.; Francis, X.V.; Hu, R.-M.; Sokhi, R.S.; Rao, S.T.; Galmarini, S. Examination of the Community Multiscale Air Quality (CMAQ) model perfor-mance over the North American and European domains. Atmos. Environ. 2012, 53, 142–155. [Google Scholar] [CrossRef] [Green Version]
- US Census Bureau. Cartographic Boundary Shapefiles Regions. 2013. Available online: https://www.census.gov/geo/maps-data/data/cbf/cbf_region.html (accessed on 10 February 2017).
- US Census Bureau. Year-2014 US Urban Areas and Clusters. 2014. Available online: ftp://ftp2.census.gov/geo/tiger/TIGER2014/UAC/ (accessed on 10 February 2017).
- American Lung Association. 2017. Available online: http://www.lung.org/our-initiatives/healthy-air/sota/city-rankings/most-polluted-cities.html (accessed on 28 January 2018).
- Taha, H. Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmos. Environ. 2008, 42, 8795–8809. [Google Scholar] [CrossRef]
- Taha, H.; Wilkinson, J.; Bornstein, R.; Xiao, Q.; McPherson, G.; Simpson, J.; Anderson, C.; Lau, S.; Lam, J.; Blain, C. An urban–forest control measure for ozone in the Sacramento, CA Federal Non-Attainment Area (SFNA). Sustain. Cities Soc. 2015, 21, 51–65. [Google Scholar] [CrossRef]
- Taha, H. Meteorological, emissions, and air-quality modeling of heat-island mitigation: Recent findings for California, USA. Int. J. Low Carbon Technol. 2013, 10, 3–14. [Google Scholar] [CrossRef]
- Taha, H. Ranking and Prioritizing the Deployment of Community-Scale Energy Measures Based on Their Indirect Effects in California’s Climate Zones. 2013. Available online: http://www.energy.ca.gov/2011publications/CEC-500-2011-FS/CEC-500-2011-FS-021.pdf (accessed on 28 January 2018).
- Taha, H. Potential Meteorological and Air-Quality Implications of Heat-Island Reduction Strategies in the Houston-Galveston TX Region; Technical Note HIG-12-2002-01; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003.
- Taha, H. Episodic Performance and Sensitivity of the Urbanized MM5 (uMM5) to Perturbations in Surface Properties in Houston Texas. Bound. Layer Meteorol. 2008, 127, 193–218. [Google Scholar] [CrossRef]
- Taha, H. Evaluating Meteorological Impacts of Urban Forest and Albedo Changes in the Houston-Galveston Region: A Fine-Resolution (UCP) Meso-Urban Modeling Study of the August–September 2000 Episode; Report Prepared for the Houston Advanced Research Center by Altostratus Inc.; Altostratus Inc.: Martinez, CA, USA, 2005. [Google Scholar]
- Taha, H.; Konopacki, S.; Gabersek, S. Impacts of Large-Scale Surface Modifications on Meteorological Conditions and Energy Use: A 10-Region Modeling Study. Theor. Appl. Climatol. 1999, 62, 175–185. [Google Scholar] [CrossRef]
Category | Option Used |
---|---|
Microphysics | Lin scheme |
Shortwave radiation | Goddard |
Longwave radiation | RRTMG |
Land surface model | NOAH |
Planetary boundary layer scheme | Mellor–Yamada–Janjic Scheme |
Cumulus parameterization | Grell Devenyi |
Chemistry option | RACM |
Photolysis scheme | Fast_J |
Aerosol option | MADE/SORGAM |
Advection scheme | Runge–Kutta third order |
LULC data | USGS 24-class |
Anthropogenic emissions | US-NEI11 |
Biogenic emissions | MEGAN |
Urban canopy model | ML-UCM |
Metropolitan Areas | Roofs (%) | Pavements (%) |
---|---|---|
Sacramento | 20 | 45 |
Chicago | 25 | 37 |
Houston | 22 | 30 |
Variables | Mean Bias Error (MBE) | Average | |||||
---|---|---|---|---|---|---|---|
Sacramento | Houston | Chicago | |||||
Suburb | Urban | Suburb | Urban | Suburb | Urban | ||
T2 (°C) | 0.15 | −0.34 | 0.22 | −0.34 | −0.30 | 0.19 | −0.07 |
WS10 (m/s) | 1.90 | 3.15 | 0.87 | 0.34 | 1.28 | 1.05 | 1.43 |
Td (°C) | 0.21 | 0.61 | 0.24 | 0.47 | 0.33 | 0.47 | 0.39 |
RH2 (%) | −5.43 | −5.63 | −1.03 | 8.16 | 1.88 | −6.45 | −1.42 |
24-h avg. O3 (ppb) | 9.72 | 4.68 | 3.17 | 3.85 | 2.31 | 4.38 | 4.68 |
24-h avg. PM2.5 (µg/m3) | −5.94 | 2.30 | −3.26 | 2.07 | −3.86 | −2.33 | −1.84 |
24-h avg. SO42.5 (µg/m3) | - | 4.20 | - | 5.30 | - | 3.89 | 4.46 |
24-h avg. NO32.5 (µg/m3) | - | −3.75 | - | −4.40 | - | −3.52 | −3.91 |
24-h avg. OC2.5 (µg/m3) | - | −1.80 | - | −2.33 | - | −3.68 | −2.60 |
24-h avg. NO2 (ppb) | - | 2.61 | - | 3.40 | - | 1.25 | 2.42 |
Variables | Mean Absolute Error (MAE) | Average | |||||
---|---|---|---|---|---|---|---|
Sacramento | Houston | Chicago | |||||
Suburb | Urban | Suburb | Urban | Suburb | Urban | ||
T2 (°C) | 1.05 | 0.88 | 1.20 | 0.88 | 0.77 | 1.12 | 0.99 |
WS10 (m/s) | 1.96 | 3.33 | 1.26 | 1.20 | 2.31 | 1.79 | 1.97 |
Td (°C) | 0.56 | 0.30 | 0.49 | 0.63 | 0.56 | 0.66 | 0.53 |
RH2 (%) | 15.32 | 9.45 | 5.38 | 9.54 | 8.98 | 10.11 | 9.80 |
24-h avg. O3 (ppb) | 9.72 | 9.90 | 6.92 | 6.01 | 2.56 | 5.88 | 6.83 |
24-h avg. PM2.5 (µg/m3) | 6.24 | 3.05 | 3.26 | 3.70 | 3.86 | 2.33 | 3.74 |
24-h avg. SO42.5 (µg/m3) | - | 4.20 | - | 5.30 | - | 3.89 | 4.46 |
24-h avg. NO32.5 (µg/m3) | - | 3.75 | - | 4.45 | - | 3.52 | 3.91 |
24-h avg. OC2.5 (µg/m3) | - | 1.80 | - | 2.33 | - | 3.68 | 2.60 |
24-h avg. NO2 (ppb) | - | 4.71 | - | 3.40 | - | 2.54 | 3.55 |
Variables | Root Mean Square Error (RMSE) | Average | |||||
---|---|---|---|---|---|---|---|
Sacramento | Houston | Chicago | |||||
Suburb | Urban | Suburb | Urban | Suburb | Urban | ||
T2 (°C) | 1.35 | 1.13 | 1.44 | 1.13 | 1.01 | 1.32 | 1.23 |
WS10 (m/s) | 2.29 | 3.68 | 1.58 | 1.47 | 2.86 | 2.22 | 2.35 |
Td (°C) | 0.68 | 0.37 | 0.58 | 0.77 | 0.67 | 0.80 | 0.65 |
RH2 (%) | 18.94 | 12.32 | 7.52 | 12.26 | 11.36 | 13.48 | 12.65 |
24-h avg. O3 (ppb) | 10.51 | 14.21 | 7.89 | 6.71 | 3.09 | 8.21 | 8.44 |
24-h avg. PM2.5 (µg/m3) | 7.74 | 3.25 | 4.04 | 4.30 | 4.82 | 2.81 | 4.49 |
24-h avg. SO42.5 (µg/m3) | - | 4.44 | - | 6.24 | - | 3.93 | 4.87 |
24-h avg. NO32.5 (µg/m3) | - | 3.96 | - | 4.87 | - | 4.28 | 4.37 |
24-h avg. OC2.5 (µg/m3) | - | 1.93 | - | 2.39 | - | 3.76 | 2.69 |
24-h avg. NO2 (ppb) | - | 5.74 | - | 4.10 | - | 2.89 | 4.24 |
Δ ALBEDO | |||||||
---|---|---|---|---|---|---|---|
CTRL-ALBEDO | Sacramento | Houston | Chicago | Average | |||
Suburb | Urban | Suburb | Urban | Suburb | Urban | ||
Δ T2 (°C) | 0.72 | 2.37 | 0.81 | 2.68 | 0.75 | 1.76 | 1.52 |
Δ WS10 (m/s) | 0.03 | 0.02 | 0.33 | 0.02 | −0.08 | 0.00 | 0.05 |
Δ Td (°C) | −0.26 | −0.39 | −0.27 | −0.46 | −0.21 | −0.34 | −0.32 |
Δ RH2 (%) | −2.99 | −6.88 | −2.44 | −6.89 | −0.81 | 0.21 | −3.30 |
24-h avg. O3 (ppb) | 2.98 | 7.52 | 2.85 | 7.23 | 1.77 | 4.23 | 4.43 |
24-h avg. PM2.5 (µg/m3) | 0.98 | 2.36 | 2.59 | 3.49 | 0.61 | 2.48 | 2.08 |
24-h avg. SO42.5 (µg/m3) | - | 0.02 | - | 0.01 | - | 0.06 | 0.03 |
24-h avg. NO32.5 (µg/m3) | - | 0.01 | - | 0.05 | - | 0.23 | 0.09 |
24-h avg. OC2.5 (µg/m3) | - | 0.00 | - | 0.00 | - | 0.00 | 0.00 |
24-h avg. NO2 (ppb) | - | 0.82 | - | 1.21 | - | 0.91 | 0.98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandaghian, Z.; Akbari, H. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate 2018, 6, 19. https://doi.org/10.3390/cli6020019
Jandaghian Z, Akbari H. The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate. 2018; 6(2):19. https://doi.org/10.3390/cli6020019
Chicago/Turabian StyleJandaghian, Zahra, and Hashem Akbari. 2018. "The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago" Climate 6, no. 2: 19. https://doi.org/10.3390/cli6020019
APA StyleJandaghian, Z., & Akbari, H. (2018). The Effect of Increasing Surface Albedo on Urban Climate and Air Quality: A Detailed Study for Sacramento, Houston, and Chicago. Climate, 6(2), 19. https://doi.org/10.3390/cli6020019