Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data and Land Use Mapping
2.2.1. Climate Data Sources
2.2.2. Aridity Index
2.3. Land Use Analysis
3. Results
3.1. Trends in Climate Aridity in Italy (1951–2010)
3.2. Land Use Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Land Degradation in Mediterranean Environments of the World: Nature and Entent, Causes and Solutions; Conacher, A.J.; Sala, M. (Eds.) John Wiley and Sons Ltd.: Chichester, UK; New York, NY, USA, 1998; ISBN 978-0-471-96317-2. [Google Scholar]
- Sivakumar, M.V.K. Interactions between Climate and Desertification. Agric. For. Meteorol. 2007, 142, 143–155. [Google Scholar] [CrossRef]
- Helldén, U.; Tottrup, C. Regional Desertification: A Global Synthesis. Glob. Planet. Chang. 2008, 64, 169–176. [Google Scholar] [CrossRef]
- Barnett, J. Global Environmental Change II: Political Economies of Vulnerability to Climate Change. Prog. Hum. Geogr. 2020, 44, 1172–1184. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation Strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romm, J. The next Dust Bowl. Nature 2011, 478, 450–451. [Google Scholar] [CrossRef]
- Bárcena-Martín, E.; Molina, J.; Hueso, P.; Ruiz-Sinoga, J.D. A Class of Indices and a Graphical Tool to Monitor Temperature Anomalies. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Assessing Drought Risk and Irrigation Need in Northern Ethiopia. Agric. For. Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Terol, E.; Mora, G.; Gimenez-Morera, A.; Cerdà, A. Vicia Sativa Roth. Can Reduce Soil and Water Losses in Recently Planted Vineyards (Vitis vinifera L.). Earth Syst. Environ. 2020. [Google Scholar] [CrossRef]
- Kosmas, C.; Gerontidis, S.; Marathianou, M. The Effect of Land Use Change on Soils and Vegetation over Various Lithological Formations on Lesvos (Greece). Catena 2000, 40, 51–68. [Google Scholar] [CrossRef]
- Marathianou, M.; Kosmas, C.; Gerontidis, S.; Detsis, V. Land-Use Evolution and Degradation in Lesvos (Greece): A Historical Approach. Land Degrad. Dev. 2000, 11, 63–73. [Google Scholar] [CrossRef]
- Maracchi, G.; Sirotenko, O.; Bindi, M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. In Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry; Salinger, J., Sivakumar, M.V.K., Motha, R.P., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 117–135. ISBN 978-1-4020-4166-2. [Google Scholar]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential Impact of Climate Change on Fire Risk in the Mediterranean Area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Akter, T.; Quevauviller, P.; Eisenreich, S.J.; Vaes, G. Impacts of Climate and Land Use Changes on Flood Risk Management for the Schijn River, Belgium. Environ. Sci. Policy 2018, 89, 163–175. [Google Scholar] [CrossRef]
- Antrop, M. Changing Patterns in the Urbanized Countryside of Western Europe. Landsc. Ecol. 2000, 15, 257–270. [Google Scholar] [CrossRef]
- Antrop, M. Landscape Change and the Urbanization Process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Latorre, J.G.; Garcı́a-Latorre, J.; Sanchez-Picón, A. Dealing with Aridity: Socio-Economic Structures and Environmental Changes in an Arid Mediterranean Region. Land Use Policy 2001, 18, 53–64. [Google Scholar] [CrossRef]
- Salvati, L.; Sabbi, A. Exploring Long-Term Land Cover Changes in an Urban Region of Southern Europe. Int. J. Sustain. Dev. World Ecol. 2011, 18, 273–282. [Google Scholar] [CrossRef]
- Tanrivermis, H. Agricultural Land Use Change and Sustainable Use of Land Resources in the Mediterranean Region of Turkey. J. Arid Environ. 2003, 54, 553–564. [Google Scholar] [CrossRef]
- Solecki, W.D.; Oliveri, C. Downscaling Climate Change Scenarios in an Urban Land Use Change Model. J. Environ. Manag. 2004, 72, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Visser, S.; Keesstra, S.; Maas, G.; de Cleen, M.; Molenaar, C. Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The Potential of Straw Mulch as a Nature-Based Solution for Soil Erosion in Olive Plantation Treated with Glyphosate: A Biophysical and Socioeconomic Assessment. Land Degrad. Dev. 2020, 31, 1877–1889. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Baumber, A.; Berry, E.; Metternicht, G. Synergies between Land Degradation Neutrality Goals and Existing Market-Based Instruments. Environ. Sci. Policy 2019, 94, 174–181. [Google Scholar] [CrossRef]
- Porter, J.R.; Howden, M.; Smith, P. Considering Agriculture in IPCC Assessments. Nat. Clim. Chang. 2017, 7, 680–683. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.; Mahony, M. The IPCC and the New Map of Science and Politics. Wires Clim. Chang. 2018, 9, e547. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.; Pal, J.; Giorgi, F.; Gao, X. Heat Stress Intensification in the Mediterranean Climate Change Hotspot. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Pasqui, M.; Di Giuseppe, E. Climate Change, Future Warming, and Adaptation in Europe. Anim. Front. 2019, 9, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Millán, M.M. Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience 2019, 69, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Navarra, A. Droughts and Extreme Events in Regional Daily Italian Precipitation Series. Int. J. Climatol. 2002, 22, 543–558. [Google Scholar] [CrossRef]
- Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Battista, F.D.; Scarascia, M.E.V. Italy’s Renewable Water Resources as Estimated on the Basis of the Monthly Water Balance. Irrig. Drain. 2008, 57, 507–515. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Sanjuán, M.E.; Alcalá, F.J.; Martínez-Vicente, S.; Ruiz, A.; Puigdefábregas, J. Present and Future of Desertification in Spain: Implementation of a Surveillance System to Prevent Land Degradation. Sci. Total Environ. 2016, 563–564, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Dale, V.H. The Relationship Between Land-Use Change and Climate Change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Pielke, R.A. Land Use and Climate Change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rounsevell, M.D.A.; Reay, D.S. Land Use and Climate Change in the UK. Land Use Policy 2009, 26, S160–S169. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Asner, G.P.; Loarie, S.R.; Heyder, U. Combined Effects of Climate and Land-Use Change on the Future of Humid Tropical Forests. Conserv. Lett. 2010, 3, 395–403. [Google Scholar] [CrossRef]
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-Use Protection for Climate Change Mitigation. Nat. Clim. Chang. 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Tasser, E.; Leitinger, G.; Tappeiner, U. Climate Change versus Land-Use Change—What Affects the Mountain Landscapes More? Land Use Policy 2017, 60, 60–72. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-Cover and Land-Use Change in a Mediterranean Landscape: A Spatial Analysis of Driving Forces Integrating Biophysical and Human Factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Bindi, M.; Olesen, J.E. The Responses of Agriculture in Europe to Climate Change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Palombo, C.; Chirici, G.; Marchetti, M.; Tognetti, R. Is Land Abandonment Affecting Forest Dynamics at High Elevation in Mediterranean Mountains More than Climate Change? Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 147, 1–11. [Google Scholar] [CrossRef]
- Gauquelin, T.; Michon, G.; Joffre, R.; Duponnois, R.; Génin, D.; Fady, B.; Bou Dagher-Kharrat, M.; Derridj, A.; Slimani, S.; Badri, W.; et al. Mediterranean Forests, Land Use and Climate Change: A Social-Ecological Perspective. Reg. Environ. Chang. 2018, 18, 623–636. [Google Scholar] [CrossRef]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the Ecological Niche of Long-Term Land Use Changes: The Role of Biophysical Factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Forino, G.; Ciccarelli, S.; Bonamici, S.; Perini, L.; Salvati, L. Developmental Policies, Long-Term Land-Use Changes and the Way Towards Soil Degradation: Evidence from Southern Italy. Scott. Geogr. J. 2015, 131, 123–140. [Google Scholar] [CrossRef]
- Dunkerley, D. Sub-Daily Rainfall Events in an Arid Environment with Marked Climate Variability: Variation among Wet and Dry Years at Fowlers Gap, New South Wales, Australia. J. Arid Environ. 2013, 96, 23–30. [Google Scholar] [CrossRef]
- Stooksbury, D.E.; Idso, C.D.; Hubbard, K.G. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study. J. Clim. 1999, 12, 1524–1533. [Google Scholar] [CrossRef]
- Iyer, S.G.; Banerjee, A.K.; Bhowmick, A.R. Making Choices That Matter—Use of Statistical Regularization in Species Distribution Modelling for Identification of Climatic Indicators—A Case Study with Mikania Micrantha Kunth in India. Ecol. Indic. 2019, 98, 92–103. [Google Scholar] [CrossRef]
- Nekhay, O.; Arriaza, M. How Attractive Is Upland Olive Groves Landscape? Application of the Analytic Hierarchy Process and GIS in Southern Spain. Sustainability 2016, 8, 1160. [Google Scholar] [CrossRef] [Green Version]
- Perujo Villanueva, M.; Colombo, S. Cost Analysis of Parcel Fragmentation in Agriculture: The Case of Traditional Olive Cultivation. Biosyst. Eng. 2017, 164, 135–146. [Google Scholar] [CrossRef]
- Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban Sprawl and the ‘Olive’ Landscape: Sustainable Land Management for ‘Crisis’ Cities. GeoJournal 2019, 84, 237–255. [Google Scholar] [CrossRef]
- Braudel, F. La Méditerranée: L’espace et L’histoire; Editions Flammarion; Flammarion: Paris, France, 2009; ISBN 978-2-08-122866-5. [Google Scholar]
- Makhzoumi, J.M. The Changing Role of Rural Landscapes: Olive and Carob Multi-Use Tree Plantations in the Semiarid Mediterranean. Landsc. Urban Plan. 1997, 37, 115–122. [Google Scholar] [CrossRef]
- Campos, P.; Ovando, P.; Montero, G. Does Private Income Support Sustainable Agroforestry in Spanish Dehesa? Land Use Policy 2008, 25, 510–522. [Google Scholar] [CrossRef]
- Cerdà, A.; Schnabel, S.; Ceballos, A.; Gómez-Amelia, D. Soil Hydrological Response under Simulated Rainfall in the Dehesa Ecosystem (Extremadura, SW Spain) under Drought Conditions. Earth Surf. Process. Landf. 1998, 23, 195–209. [Google Scholar] [CrossRef]
- Alfonso Torreño, A.; Lavado Contador, J.F. Cambios en los sistemas de explotación ganaderos, agrícolas y forestales de la Dehesa de la Luz. In La Dehesa de la Luz en la Vida de los Arroyanos; Editorial Luz y Progreso; Campos, P., Pulido, F., Eds.; Ayuntamiento de Arroyo de la Luz: Cáceres, Spain, 2015; pp. 67–86. [Google Scholar]
- Loumou, A.; Giourga, C. Olive Groves: “The Life and Identity of the Mediterranean”. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Taguas, E.V.; Guzmán, E.; Guzmán, G.; Vanwalleghem, T.; Gómez, J.A. Characteristics and importance of rill and gully erosion: A case study in a small catchment of a marginal olive grove. Cuad. De Investig. Geográfica 2015, 41, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Duarte, F.; Jones, N.; Fleskens, L. Traditional Olive Orchards on Sloping Land: Sustainability or Abandonment? J. Environ. Manag. 2008, 89, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Emmanouilides, C.; Fousekis, P.; Grigoriadis, V. Price Dependence in the Principal EU Olive Oil Markets. Span J. Agric. Res. 2013, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Scarascia, M.E.V.; Battista, F.D.; Salvati, L. Water Resources in Italy: Availability and Agricultural Uses. Irrig. Drain. 2006, 55, 115–127. [Google Scholar] [CrossRef]
- Incerti, G.; Feoli, E.; Salvati, L.; Brunetti, A.; Giovacchini, A. Analysis of Bioclimatic Time Series and Their Neural Network-Based Classification to Characterise Drought Risk Patterns in South Italy. Int. J. Biometeorol. 2007, 51, 253–263. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected Climate Changes Are Expected to Decrease the Suitability and Production of Olive Varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Silva, J.S.; Scariot, A.; Sampaio, A.B.; Mascia, D.L.; Garcia, E.; Sano, E.; Fernandes, G.W.; Durigan, G.; Roitman, I.; et al. Ecological Restoration as a Strategy for Mitigating and Adapting to Climate Change: Lessons and Challenges from Brazil. Mitig. Adapt. Strat. Glob. Chang. 2019, 24, 1249–1270. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Viola, F.; Santos, J.A. Climate Change Projections for Olive Yields in the Mediterranean Basin. Int. J. Climatol. 2020, 40, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Regni, L.; Rinaldi, S.; Sdringola, P.; Calisti, R.; Brunori, A.; Dini, F.; Proietti, P. Long-Term Water Footprint Assessment in a Rainfed Olive Tree Grove in the Umbria Region, Italy. Agriculture 2020, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Dore, M.H.I. Climate Change and Changes in Global Precipitation Patterns: What Do We Know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Kizos, T.; Koulouri, M. Agricultural Landscape Dynamics in the Mediterranean: Lesvos (Greece) Case Study Using Evidence from the Last Three Centuries. Environ. Sci. Policy 2006, 9, 330–342. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Benhadi-Marín, J.; Pereira, J.A.; Sousa, J.P.; Santos, S.A.P. Distribution of the Spider Community in the Olive Grove Agroecosystem (Portugal): Potential Bioindicators. Agric. For. Entomol. 2020, 22, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Núñez, C.; Manzaneda, A.J.; Rey, P.J. Plant-Solitary Bee Networks Have Stable Cores but Variable Peripheries under Differing Agricultural Management: Bioindicator Nodes Unveiled. Ecol. Indic. 2020, 115, 106422. [Google Scholar] [CrossRef]
- Kraushaar, S.; Herrmann, N.; Ollesch, G.; Vogel, H.-J.; Siebert, C. Mound Measurements—Quantifying Medium-Term Soil Erosion under Olive Trees in Northern Jordan. Geomorphology 2014, 213, 1–12. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Laguna, A.; Giráldez, J.V.; Jiménez-Hornero, F.J. Applying a Simple Methodology to Assess Historical Soil Erosion in Olive Orchards. Geomorphology 2010, 114, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Taguas, E.V.; Gómez, J.A. Vulnerability of Olive Orchards under the Current CAP (Common Agricultural Policy) Regulations on Soil Erosion: A Study Case in Southern Spain. Land Use Policy 2015, 42, 683–694. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of Soil and Water Losses in an Extensive Olive Orchard Catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez-García, J.L.; Gómez-López, J.M.; Cardenal, J.; Calero, J.; Sánchez-Gómez, M.; Delgado, J.; Tovar-Pescador, J. Multitemporal Analysis of Gully Erosion in Olive Groves by Means of Digital Elevation Models Obtained with Aerial Photogrammetric and LiDAR Data. ISPRS Int. J. Geo-Inf. 2020, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Peres, D.J.; Senatore, A.; Nanni, P.; Cancelliere, A.; Mendicino, G.; Bonaccorso, B. Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean Area) Historical Simulations by High-Quality Observational Datasets in Southern Italy: Insights on Drought Assessment. Nat. Hazards Earth Syst. Sci. 2020, 20, 3057–3082. [Google Scholar] [CrossRef]
- Berteni, F.; Grossi, G. Water Soil Erosion Evaluation in a Small Alpine Catchment Located in Northern Italy: Potential Effects of Climate Change. Geosciences 2020, 10, 386. [Google Scholar] [CrossRef]
- Febbraro, M.D.; Menchetti, M.; Russo, D.; Ancillotto, L.; Aloise, G.; Roscioni, F.; Preatoni, D.G.; Loy, A.; Martinoli, A.; Bertolino, S.; et al. Integrating Climate and Land-Use Change Scenarios in Modelling the Future Spread of Invasive Squirrels in Italy. Divers. Distrib. 2019, 25, 644–659. [Google Scholar] [CrossRef] [Green Version]
- Shirvani Dastgerdi, A.; Sargolini, M.; Broussard Allred, S.; Chatrchyan, A.; De Luca, G. Climate Change and Sustaining Heritage Resources: A Framework for Boosting Cultural and Natural Heritage Conservation in Central Italy. Climate 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.L.; Seddaiu, G.; Roggero, P.P. Declarative or Procedural Knowledge? Knowledge for Enhancing Farmers’ Mitigation and Adaptation Behaviour to Climate Change. J. Rural Stud. 2019, 67, 46–56. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating Input Use Efficiency in Agriculture through a Stochastic Frontier Production: An Application on a Case Study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Manfron, G.; Toreti, A.; Duveiller, G.; Romani, M.; Rocca, C.; Scoccimarro, E.; Podrascanin, Z.; Djurdjevic, V. Adaptation and Sustainability of Water Management for Rice Agriculture in Temperate Regions: The Italian Case-Study. Land Degrad. Dev. 2019, 30, 2033–2047. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Stefanini, F.M.; Bindi, M. Reproduction of Olive Tree Habitat Suitability for Global Change Impact Assessment. Ecol. Model. 2008, 218, 95–109. [Google Scholar] [CrossRef]
- Rosti, L.; Yamaguchi, C.; Castagnetti, C. Educational Performance as Signalling Device: Evidence from Italy. Econ. Bull. 2005, 9, 1–7. [Google Scholar]
- Chelli, F.; Gigliarano, C.; Mattioli, E. The Impact of Inflation on Heterogeneous Groups of Households: An Application to Italy. Econ. Bull. 2009, 29, 1276–1295. [Google Scholar]
- Biasi, R.; Colantoni, A.; Ferrara, C.; Ranalli, F.; Salvati, L. In-between Sprawl and Fires: Long-Term Forest Expansion and Settlement Dynamics at the Wildland–Urban Interface in Rome, Italy. Int. J. Sustain. Dev. World Ecol. 2015, 22, 467–475. [Google Scholar] [CrossRef]
- Ciommi, M.; Gentili, A.; Ermini, B.; Gigliarano, C.; Chelli, F.M.; Gallegati, M. Have Your Cake and Eat It Too: The Well-Being of the Italians (1861–2011). Soc. Indic Res. 2017, 134, 473–509. [Google Scholar] [CrossRef]
- Ciommi, M.; Gigliarano, C.; Emili, A.; Taralli, S.; Chelli, F.M. A New Class of Composite Indicators for Measuring Well-Being at the Local Level: An Application to the Equitable and Sustainable Well-Being (BES) of the Italian Provinces. Ecol. Indic. 2017, 76, 281–296. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M. The Environmental “Risky” Region: Identifying Land Degradation Processes Through Integration of Socio-Economic and Ecological Indicators in a Multivariate Regionalization Model. Environ. Manag. 2009, 44, 888. [Google Scholar] [CrossRef] [PubMed]
- Colantoni, A.; Ferrara, C.; Perini, L.; Salvati, L. Assessing Trends in Climate Aridity and Vulnerability to Soil Degradation in Italy. Ecol. Indic. 2015, 48, 599–604. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar Plants, Environmental Degradation and Local Socioeconomic Contexts: A Case Study in a Mediterranean Country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Costantini, E.a.C.; Urbano, F.; Aramini, G.; Barbetti, R.; Bellino, F.; Bocci, M.; Bonati, G.; Fais, A.; L’Abate, G.; Loj, G.; et al. Rationale and Methods for Compiling an Atlas of Desertification in Italy. Land Degrad. Dev. 2009, 20, 261–276. [Google Scholar] [CrossRef]
- Salvati, L.; Bajocco, S. Land Sensitivity to Desertification across Italy: Past, Present, and Future. Appl. Geogr. 2011, 31, 223–231. [Google Scholar] [CrossRef]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land Degradation and Long-Term Changes in Agro-Pastoral Systems: An Empirical Analysis of Ecological Resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Karamesouti, M.; Detsis, V.; Kounalaki, A.; Vasiliou, P.; Salvati, L.; Kosmas, C. Land-Use and Land Degradation Processes Affecting Soil Resources: Evidence from a Traditional Mediterranean Cropland (Greece). Catena 2015, 132, 45–55. [Google Scholar] [CrossRef]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Mugnai, G.; Zanchi, C.A. Simulation of Field-Measured Soil Loss in Mediterranean Hilly Areas (Chianti, Italy) with RUSLE. Catena 2016, 145, 246–256. [Google Scholar] [CrossRef]
- Novara, A.; Keesstra, S.; Cerdà, A.; Pereira, P.; Gristina, L. Understanding the Role of Soil Erosion on CO2-c Loss Using 13c Isotopic Signatures in Abandoned Mediterranean Agricultural Land. Sci. Total Environ. 2016, 550, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Slaymaker, O. Why so Much Concern about Climate Change and so Little Attention to Land Use Change. Can. Geogr. Géogr. Can. 2001, 45, 71–78. [Google Scholar] [CrossRef]
- Brunori, G.; Rossi, A. Differentiating Countryside: Social Representations and Governance Patterns in Rural Areas with High Social Density: The Case of Chianti, Italy. J. Rural Stud. 2007, 23, 183–205. [Google Scholar] [CrossRef]
- Gigliarano, C.; Chelli, F.M. Measuring Inter-Temporal Intragenerational Mobility: An Application to the Italian Labour Market. Qual Quant 2016, 50, 89–102. [Google Scholar] [CrossRef]
- Brunetti, M.; Buffoni, L.; Mangianti, F.; Maugeri, M.; Nanni, T. Temperature, Precipitation and Extreme Events during the Last Century in Italy. Glob. Planet. Chang. 2004, 40, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Martelli, G.P. The Current Status of the Quick Decline Syndrome of Olive in Southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar] [CrossRef]
- De Luca, A.I.; Falcone, G.; Stillitano, T.; Iofrida, N.; Strano, A.; Gulisano, G. Evaluation of Sustainable Innovations in Olive Growing Systems: A Life Cycle Sustainability Assessment Case Study in Southern Italy. J. Clean. Prod. 2018, 171, 1187–1202. [Google Scholar] [CrossRef]
- Russo, G.; Beritognolo, I.; Bufacchi, M.; Stanzione, V.; Pisanelli, A.; Ciolfi, M.; Lauteri, M.; Brush, S.B. Advances in Biocultural Geography of Olive Tree (Olea europaea L.) Landscapes by Merging Biological and Historical Assays. Sci. Rep. 2020, 10, 7673. [Google Scholar] [CrossRef]
- Taylor, M. The Political Ecology of Climate Change Adaptation: Livelihoods, Agrarian Change and the Conflicts of Development; Routledge: London, UK; New York, NY, USA, 2014; ISBN 978-0-415-70381-9. [Google Scholar]
- Kelly, P.M.; Adger, W.N. Theory and Practice in Assessing Vulnerability to Climate Change AndFacilitating Adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing Soil Carbon for Climate Change Mitigation and Adaptation in Mediterranean Cropping Systems: A Meta-Analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning Agriculture and Climate Policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Barneveld, R.J.; Bruggeman, A.; Sterk, G.; Turkelboom, F. Comparison of Two Methods for Quantification of Tillage Erosion Rates in Olive Orchards of North-West Syria. Soil Tillage Res. 2009, 103, 105–112. [Google Scholar] [CrossRef]
- Gómez, J.A.; Infante-Amate, J.; de Molina, M.G.; Vanwalleghem, T.; Taguas, E.V.; Lorite, I. Olive Cultivation, Its Impact on Soil Erosion and Its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty. Agriculture 2014, 4, 170–198. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Trombi, G.; Ferrise, R.; Brandani, G.; Dibari, C.; Ammann, C.M.; Lippi, M.M.; Bindi, M. Olive Trees as Bio-Indicators of Climate Evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 2013, 22, 818–833. [Google Scholar] [CrossRef]
- Smit, B. Global Change, Climate, and Geography. Can. Geogr. Géogr. Can. 1994, 38, 81–89. [Google Scholar] [CrossRef]
- Kaniewski, D.; Campo, E.V.; Boiy, T.; Terral, J.-F.; Khadari, B.; Besnard, G. Primary Domestication and Early Uses of the Emblematic Olive Tree: Palaeobotanical, Historical and Molecular Evidence from the Middle East. Biol. Rev. 2012, 87, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Tempesta, T.; Vecchiato, D. Analysis of the Factors That Influence Olive Oil Demand in the Veneto Region (Italy). Agriculture 2019, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Avolio, E.; Orlandi, F.; Bellecci, C.; Fornaciari, M.; Federico, S. Assessment of the Impact of Climate Change on the Olive Flowering in Calabria (Southern Italy). Theor. Appl. Climatol. 2012, 107, 531–540. [Google Scholar] [CrossRef]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; López-Vicente, M.; Kumar, V.; Rodríguez-Seijo, A.; Valkó, O.; Rojas, C.; Pourghasemi, H.R.; Salvati, L.; Bakr, N.; Vaudour, E.; et al. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Gambella, F.; Colantoni, A.; Egidi, G.; Morrow, N.; Prokopová, M.; Salvati, L.; Giménez-Morera, A.; Rodrigo-Comino, J. Uncovering the Role of Biophysical Factors and Socioeconomic Forces Shaping Soil Sensitivity to Degradation: Insights from Italy. Soil Syst. 2021, 5, 11. [Google Scholar] [CrossRef]
Region | 1951–2010 | 1951–1980 | 1981–2010 | % Change over Time | ||
---|---|---|---|---|---|---|
Minimum | Average | Maximum | ||||
Emilia Romagna | 0.54 | 0.89 | 1.47 | 0.96 | 0.81 | −15.3 |
Friuli Venezia Giulia | 0.89 | 1.56 | 3.01 | 1.82 | 1.30 | −28.6 |
Lombardy | 0.56 | 1.16 | 2.21 | 1.32 | 1.00 | −24.2 |
Piedmont | 0.54 | 1.15 | 2.12 | 1.28 | 1.01 | −21.3 |
Trentino Alto Adige | 0.73 | 1.32 | 2.39 | 1.43 | 1.20 | −16.5 |
Aosta Valley | 0.52 | 1.43 | 3.08 | 1.51 | 1.34 | −11.3 |
Veneto | 0.65 | 1.08 | 1.73 | 1.18 | 0.98 | −17.2 |
Italy | 0.49 | 0.90 | 1.54 | 0.99 | 0.81 | −18.4 |
Year | Inland Mountain | Inland Uplands | Littoral Uplands | Lowlands | Total |
---|---|---|---|---|---|
1992 | 1422 | 2829 | 605 | 1022 | 5878 |
2000 | 1392 | 4361 | 938 | 1643 | 8334 |
2009 | 1761 | 6185 | 957 | 3502 | 12,405 |
2018 | 1892 | 5432 | 734 | 3463 | 11,521 |
Region | 1982 | 1990 | 2000 | 2010 | 2019 |
---|---|---|---|---|---|
Piedmont | - | 1 | 47 | 1020 | 132 |
Aosta Valley | - | - | - | 45 | - |
Lombardy | 1130 | 1325 | 1314 | 1963 | 2394 |
Trentino Alto Adige | 243 | 261 | 362 | 394 | 392 |
Veneto | 2591 | 2302 | 3730 | 5180 | 5160 |
Friuli Venezia Giulia | 19 | 123 | 122 | 425 | 625 |
Emilia Romagna | 1475 | 1306 | 2643 | 3814 | 4155 |
Province Name | 1982 | 1990 | 2000 | 2010 | Annual Increase (%) |
---|---|---|---|---|---|
Turin | - | 1 | 10 | 183 | 4.8 |
Vercelli | - | - | 3 | 19 | 0.5 |
Novara | - | - | - | 21 | 0.6 |
Cuneo | - | - | 27 | 184 | 4.8 |
Asti | - | - | 3 | 51 | 1.3 |
Alessandria | - | - | 3 | 540 | 14.2 |
Biella | - | - | - | 13 | 0.3 |
Verbano-Cusio-Ossola | - | - | - | 9 | 0.2 |
Aosta | - | - | - | 45 | 1.2 |
Varese | - | - | 3 | 45 | 1.2 |
Como | - | 14 | 33 | 60 | 1.6 |
Sondrio | - | - | - | 92 | 2.4 |
Milan | - | - | 2 | 23 | 0.6 |
Bergamo | 60 | 60 | 128 | 194 | 3.5 |
Brescia | 1069 | 1197 | 1027 | 1359 | 7.6 |
Pavia | - | - | 64 | 21 | 0.5 |
Cremona | - | 34 | 1 | 34 | 0.9 |
Mantova | - | - | 29 | 75 | 2.0 |
Lecco | - | 20 | 22 | 56 | 1.5 |
Lodi | - | - | - | 3 | 0.1 |
Monza-Brianza | - | - | 5 | 3 | 0.1 |
Bolzano | 1 | 1 | 2 | 11 | 0.3 |
Trento | 242 | 260 | 360 | 383 | 3.7 |
Verona | 2253 | 1919 | 2695 | 3471 | 32.1 |
Vicenza | 227 | 233 | 549 | 696 | 12.3 |
Belluno | - | - | - | 23 | 0.6 |
Treviso | 20 | 26 | 210 | 425 | 10.7 |
Venice | - | - | 2 | 111 | 2.9 |
Padua | 92 | 124 | 273 | 431 | 8.9 |
Rovigo | - | - | - | 22 | 0.6 |
Udine | 2 | 96 | 40 | 158 | 4.1 |
Gorizia | - | - | 7 | 27 | 0.7 |
Trieste | 17 | 27 | 51 | 88 | 1.9 |
Pordenone | - | - | 25 | 152 | 4.0 |
Piacenza | - | - | 7 | 35 | 0.9 |
Parma | - | - | 2 | 33 | 0.9 |
Reggio Emilia | - | - | 2 | 92 | 2.4 |
Modena | - | 1 | 5 | 40 | 1.1 |
Bologna | - | 12 | 45 | 257 | 6.8 |
Ferrara | - | - | - | 12 | 0.3 |
Ravenna | 349 | 250 | 388 | 540 | 5.0 |
Forlì-Cesena | 322 | 336 | 789 | 1238 | 24.1 |
Rimini | 805 | 707 | 1405 | 1566 | 20.0 |
Number of provinces with olive trees | 13 | 19 | 34 | 43 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo-Comino, J.; Salvia, R.; Quaranta, G.; Cudlín, P.; Salvati, L.; Gimenez-Morera, A. Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate 2021, 9, 64. https://doi.org/10.3390/cli9040064
Rodrigo-Comino J, Salvia R, Quaranta G, Cudlín P, Salvati L, Gimenez-Morera A. Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate. 2021; 9(4):64. https://doi.org/10.3390/cli9040064
Chicago/Turabian StyleRodrigo-Comino, Jesús, Rosanna Salvia, Giovanni Quaranta, Pavel Cudlín, Luca Salvati, and Antonio Gimenez-Morera. 2021. "Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region" Climate 9, no. 4: 64. https://doi.org/10.3390/cli9040064
APA StyleRodrigo-Comino, J., Salvia, R., Quaranta, G., Cudlín, P., Salvati, L., & Gimenez-Morera, A. (2021). Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate, 9(4), 64. https://doi.org/10.3390/cli9040064