Journal Description
Actuators
Actuators
is an international, peer-reviewed, open access journal on the science and technology of actuators and control systems published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within SCIE (Web of Science), Scopus, Inspec, and other databases.
- Journal Rank: JCR - Q2 (Engineering, Mechanical) / CiteScore - Q1 (Control and Optimization)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19 days after submission; acceptance to publication is undertaken in 1.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.3 (2024);
5-Year Impact Factor:
2.4 (2024)
Latest Articles
Coordinating the Redundant DOFs of Humanoid Robots
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with
[...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions.
Full article
(This article belongs to the Special Issue Design and Application of Actuators with Multi-DOF Movement-2nd Edition)
Open AccessArticle
Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators
by
Jhon Rodriguez-Torres, Paola Niño-Suarez and Mauricio Mauledoux
Actuators 2025, 14(7), 353; https://doi.org/10.3390/act14070353 - 18 Jul 2025
Abstract
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly
[...] Read more.
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments.
Full article
(This article belongs to the Special Issue Biomechanics, Actuation, and Control Strategies of Prosthetics, Orthotics, and Exoskeletons)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Soft Actuator Control in a Continuum Robot
by
Oleksandr Sokolov, Serhii Sokolov, Angelina Iakovets and Miroslav Malaga
Actuators 2025, 14(7), 352; https://doi.org/10.3390/act14070352 - 17 Jul 2025
Abstract
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data
[...] Read more.
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data were collected using a high-frequency electromagnetic tracking system under monotonic pressurization to minimize hysteresis effects. Transfer functions were identified for each coordinate–actuator pair using the System Identification Toolbox in MATLAB, and optimal actuator pressures were computed analytically by solving a constrained quadratic program via a manual active-set method. The resulting control strategy achieved sub-millimeter positioning error while minimizing the number of actuators engaged. The approach is computationally efficient, sensor-minimal, and fully implementable in open-loop settings. Despite certain limitations due to sensor nonlinearity and actuator hysteresis, the method provides a robust foundation for feedforward control and the real-time deployment of soft robots in quasi-static tasks.
Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Fuzzy Adaptive Control for a 4-DOF Hand Rehabilitation Robot
by
Paul Tucan, Oana-Maria Vanta, Calin Vaida, Mihai Ciupe, Dragos Sebeni, Adrian Pisla, Simona Stiole, David Lupu, Zoltan Major, Bogdan Gherman, Vasile Bulbucan, Ionut Zima, Jose Machado and Doina Pisla
Actuators 2025, 14(7), 351; https://doi.org/10.3390/act14070351 - 17 Jul 2025
Abstract
This paper presents the development of a fuzzy-PID control able to adapt to several robot–patient interaction modes by monitoring patient evolution during the rehabilitation procedure. This control system is designed to provide targeted rehabilitation therapy through three interaction modes: passive; active–assistive; and resistive.
[...] Read more.
This paper presents the development of a fuzzy-PID control able to adapt to several robot–patient interaction modes by monitoring patient evolution during the rehabilitation procedure. This control system is designed to provide targeted rehabilitation therapy through three interaction modes: passive; active–assistive; and resistive. By integrating a fuzzy inference system into the classical PID architecture, the FPID controller dynamically adjusts control gains in response to tracking error and patient effort. The simulation results indicate that, in passive mode, the FPID controller achieves a 32% lower RMSE, reduced overshoot, and a faster settling time compared to the conventional PID. In the active–assistive mode, the FPID demonstrates enhanced responsiveness and reduced error lag when tracking a sinusoidal reference, while in resistive mode, it more effectively compensates for imposed load disturbances. A rehabilitation scenario simulating repeated motion cycles on a healthy subject further confirms that the FPID controller consistently produces a lower overall RMSE and variability.
Full article
(This article belongs to the Special Issue Biomechanics, Actuation, and Control Strategies of Prosthetics, Orthotics, and Exoskeletons)
Open AccessArticle
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by
Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such
[...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances.
Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
►▼
Show Figures

Figure 1
Open AccessArticle
Gaussian Process Regression-Based Fixed-Time Trajectory Tracking Control for Uncertain Euler–Lagrange Systems
by
Tong Li, Tianqi Chen and Liang Sun
Actuators 2025, 14(7), 349; https://doi.org/10.3390/act14070349 - 16 Jul 2025
Abstract
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this
[...] Read more.
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this paper is applicable to periodic motion scenarios, such as spacecraft autonomous orbital rendezvous and repetitive motions of robotic manipulators. Gaussian process regression is employed to establish an offline data-driven model, which is utilized for compensating parametric uncertainties and external disturbances. The non-singular terminal sliding-mode control strategy is used to avoid singularity and ensure fast convergence of tracking errors. In addition, under the Lyapunov framework, the fixed-time convergence stability of the closed-loop system is rigorously demonstrated. The effectiveness of the proposed control scheme is verified through simulations on a spacecraft rendezvous mission and periodic joint trajectory tracking for a robotic manipulator.
Full article
(This article belongs to the Section Aerospace Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Distributed Sensing Enabled Embodied Intelligence for Soft Finger Manipulation
by
Chukwuemeka Ochieze, Zhen Liu and Ye Sun
Actuators 2025, 14(7), 348; https://doi.org/10.3390/act14070348 - 15 Jul 2025
Abstract
Soft continuum robots are constructed from soft and compliant materials and can provide high flexibility and adaptability to various applications. They have theoretically infinite degrees of freedom (DOFs) and can generate highly nonlinear behaviors, which leads to challenges in accurately modeling and controlling
[...] Read more.
Soft continuum robots are constructed from soft and compliant materials and can provide high flexibility and adaptability to various applications. They have theoretically infinite degrees of freedom (DOFs) and can generate highly nonlinear behaviors, which leads to challenges in accurately modeling and controlling their deformation, compliance, and behaviors. Inspired by animals, embodied intelligence utilizes physical bodies as an intelligent resource for information processing and task completion and offloads the computational cost of central control, which provides a unique approach to understanding and modeling soft robotics. In this study, we propose a theoretical framework to explain and guide distributed sensing enabled embodied intelligence for soft finger manipulation from a physics-based perspective. Specifically, we aim to provide a theoretical foundation to guide future sensor design and placement by addressing two key questions: (1) whether and why the state of a specific material point such as the tip trajectory of a soft finger can be predicted using distributed sensing, and, (2) how many sensors are sufficient for accurate prediction. These questions are critical for the design of soft and compliant robotic systems with embedded sensing for embodied intelligence. In addition to theoretical analysis, the study presents a feasible approach for real-time trajectory prediction through optimized sensor placement, with results validated through both simulation and experiment. The results showed that the tip trajectory of a soft finger can be predicted with a finite number of sensors with proper placement. While the proposed method is demonstrated in the context of soft finger manipulation, the framework is theoretically generalizable to other compliant soft robotic systems.
Full article
(This article belongs to the Special Issue Soft Robotics: Actuation, Control, and Application)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by
Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy
[...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems.
Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
►▼
Show Figures

Figure 1
Open AccessProject Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by
Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The
[...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory.
Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Open AccessArticle
Numerical Investigation of the Tribological Performance of Surface-Textured Bushings in External Gear Pumps Under Transient Lubrication Conditions
by
Paolo Casoli, Masoud Hatami Garousi, Massimo Rundo and Carlo Maria Vescovini
Actuators 2025, 14(7), 345; https://doi.org/10.3390/act14070345 - 11 Jul 2025
Abstract
This study presents a computational fluid dynamics (CFDs) investigation of the hydrodynamic behavior of surface-textured lateral bushings in external gear pumps (EGPs), emphasizing the effects of combined sliding and squeezing motions within the lubrication gap. A comprehensive numerical model was developed to analyze
[...] Read more.
This study presents a computational fluid dynamics (CFDs) investigation of the hydrodynamic behavior of surface-textured lateral bushings in external gear pumps (EGPs), emphasizing the effects of combined sliding and squeezing motions within the lubrication gap. A comprehensive numerical model was developed to analyze how surface texturing implemented through different dimple shapes and texture densities influences pressure distribution and load-carrying capacity under transient lubrication conditions. The analysis demonstrates that the interaction between shear-driven flow and squeeze-film compression significantly amplifies pressure, particularly when optimal dimple configurations are applied. Results indicate that dimple geometry, depth, and arrangement critically influence hydrodynamic performance, while excessive texturing reduces effectiveness due to increased average gap height. Cavitation was intentionally not modeled in the early single dimple evaluations to allow clear comparison between configurations. The findings offer a design guideline for employing surface textures to enhance tribological performance and efficiency in EGP applications under realistic dynamic conditions.
Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamic Study on a Passive Damping Scheme for Permanent Magnet Electrodynamic Suspension Vehicle Utilizing Onboard Magnets End Effects
by
Shanqiang Fu, Mingang Chi, Anqi Shu, Junzhi Liu, Shuqing Zhang, Hongfu Shi and Zigang Deng
Actuators 2025, 14(7), 344; https://doi.org/10.3390/act14070344 - 11 Jul 2025
Abstract
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates
[...] Read more.
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates a passive damping plate utilizing the end field of onboard magnets, focusing on magnet-damping plate optimization and vehicle dynamics. Firstly, the configuration, operation principles, and electromagnetic parameters of the PMEDS vehicle are elucidated. Secondly, the dependences of magnet-conductive plate specifications on the damping force are examined. An optimization index based on the levitation-to-damping force ratio is proposed to enable collaborative optimization of magnet and conductive plate parameters. Finally, the vehicle dynamic model is developed using Simpack software to investigate payload and speed effects on dynamic responses under random track excitation, validating the effectiveness of the proposed passive damping solution. This study provides technical references for the design, engineering applications, and performance evaluation of passive damping schemes in PMEDS vehicles.
Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
►▼
Show Figures

Figure 1
Open AccessArticle
Model Predictive Control for Pneumatic Manipulator via Receding-Horizon-Based Extended State Observers
by
Yang Xu, Xiaohui Hao, Dongjie Zhu, Liangchao Wu and Peng Li
Actuators 2025, 14(7), 343; https://doi.org/10.3390/act14070343 - 10 Jul 2025
Abstract
This paper presents a model predictive control (MPC)-enabled disturbance-rejection controller approach for a pneumatic manipulator system subjected to complex nonlinear terms within the system. To facilitate the handling of the complex nonlinear terms, they are modeled as disturbances. To address these disturbances, a
[...] Read more.
This paper presents a model predictive control (MPC)-enabled disturbance-rejection controller approach for a pneumatic manipulator system subjected to complex nonlinear terms within the system. To facilitate the handling of the complex nonlinear terms, they are modeled as disturbances. To address these disturbances, a receding-horizon-based extended state observer (RH-ESO) incorporating a decision variable is developed. The optimal disturbance estimation error is determined through a receding-horizon optimization procedure, which provides the best estimate of the disturbance. Using this optimal estimate, the MPC-enabled disturbance-rejection controller is proposed for the pneumatic manipulator system to achieve angle tracking control. Moreover, the proposed approach ensures both the recursive feasibility of the optimization problem and the uniform boundedness of the closed-loop system. The simulation results further demonstrate the effectiveness and validity of the proposed methodology.
Full article
(This article belongs to the Special Issue Actuators in Robotic Control—3rd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by
Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric
[...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies.
Full article
(This article belongs to the Section Actuators for Robotics)
►▼
Show Figures

Figure 1
Open AccessArticle
Disturbance-Resilient Flatness-Based Control for End-Effector Rehabilitation Robotics
by
Soraya Bououden, Brahim Brahmi, Naveed Iqbal, Raouf Fareh and Mohammad Habibur Rahman
Actuators 2025, 14(7), 341; https://doi.org/10.3390/act14070341 - 8 Jul 2025
Abstract
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes
[...] Read more.
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes a novel control framework for the iTbot—a 2-DoF end-effector rehabilitation robot—by integrating differential flatness theory with a derivative-free Kalman filter (DFK). The objective is to achieve accurate and adaptive trajectory tracking in the presence of unmeasured dynamics and human–robot interaction forces. The control design reformulates the nonlinear joint-space dynamics into a 0-flat canonical form, enabling real-time computation of feedforward control laws based solely on flat outputs and their derivatives. Simultaneously, the DFK-based observer estimates external perturbations and unmeasured states without requiring derivative calculations, allowing for online disturbance compensation. Extensive simulations across nominal and disturbed conditions demonstrate that the proposed controller significantly outperforms conventional flatness-based control in tracking accuracy and robustness, as measured by reduced mean absolute error and standard deviation. Experimental validation under both simple and repetitive physiotherapy tasks confirms the system’s ability to maintain sub-millimeter Cartesian accuracy and sub-degree joint errors even amid dynamic perturbations. These results underscore the controller’s effectiveness in enabling compliant, safe, and disturbance-resilient rehabilitation, paving the way for broader deployment of robotic therapy in clinical and home-based environments.
Full article
(This article belongs to the Special Issue Intelligent and Advanced Control for Human-Centric Robotic Actuation and Interaction)
►▼
Show Figures

Figure 1
Open AccessArticle
Variable Structure Depth Controller for Energy Savings in an Underwater Device: Proof of Stability
by
João Bravo Pinto, João Falcão Carneiro, Fernando Gomes de Almeida and Nuno A. Cruz
Actuators 2025, 14(7), 340; https://doi.org/10.3390/act14070340 - 8 Jul 2025
Abstract
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been
[...] Read more.
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been proposed to enhance energy efficiency, including robust and optimal controllers, energy-optimal model predictive control, and disturbance-aware strategies. Recent work introduced a variable structure depth controller for a sensor platform with a variable buoyancy module, resulting in a 22% reduction in energy consumption. This paper extends that work by providing a formal stability proof for the proposed switching controller, ensuring safe and reliable operation in dynamic underwater environments. In contrast to the conventional approach used in controller stability proofs for switched systems—which typically relies on the existence of multiple Lyapunov functions—the method developed in this paper adopts a different strategy. Specifically, the stability proof is based on a novel analysis of the system’s trajectory in the net buoyancy force-versus-depth error plane. The findings were applied to a depth-controlled sensor platform previously developed by the authors, using a well-established system model and considering physical constraints. Despite adopting a conservative approach, the results demonstrate that the control law can be implemented while ensuring formal system stability. Moreover, the study highlights how stability regions are affected by different controller parameter choices and mission requirements, namely, by determining how these aspects affect the bounds of the switching control action. The results provide valuable guidance for selecting the appropriate controller parameters for specific mission scenarios.
Full article
(This article belongs to the Special Issue Advanced Underwater Robotics)
►▼
Show Figures

Figure 1
Open AccessArticle
Distributed Adaptive Angle Rigidity-Based Formation Control of Near-Space Vehicles with Input Constraints
by
Qin Wang, Yuhang Shen, Hanyu Yin, Jianjiang Yu and Yang Yi
Actuators 2025, 14(7), 339; https://doi.org/10.3390/act14070339 - 8 Jul 2025
Abstract
This paper presents a distributed adaptive formation control strategy for a multiple near-space vehicles (NSVs) system operating under unknown input constraints and external disturbances. In challenging near-space environments, the control system must address not only model uncertainties and parameter variations but also accommodate
[...] Read more.
This paper presents a distributed adaptive formation control strategy for a multiple near-space vehicles (NSVs) system operating under unknown input constraints and external disturbances. In challenging near-space environments, the control system must address not only model uncertainties and parameter variations but also accommodate the input limitations of actuators. To address these challenges, we design an adaptive distributed formation control strategy for vehicle formation that relies exclusively on relative attitude information. This approach is grounded in the principles of angle rigidity formation theory, which has not previously been applied in the near-space vehicle domain. The aim of the adaptive formation control strategy is to maintain the desired formation shape for the near-space vehicles (NSVs) system with external disturbances, actuator dead zones, and saturation. In addition, neural networks are employed to approximate the inherent nonlinear uncertainties within the NSV models. An adaptive estimation technique is concurrently included to address parameter variations and to alleviate the impact of external disturbances, actuator dead zones, and saturation effects. Finally, a Lyapunov-based analysis is used to rigorously demonstrate the stability of the NSV formation system. The simulation results validate the effectiveness and robustness of the proposed control strategy in uncertain environments.
Full article
(This article belongs to the Section Aerospace Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Design and Implementation of Flexible Four-Bar-Mechanism-Based Long-Stroke Micro-Gripper
by
Liangyu Cui, Haonan Zhu, Xiaofan Deng and Yuanyuan Chai
Actuators 2025, 14(7), 338; https://doi.org/10.3390/act14070338 - 7 Jul 2025
Abstract
To meet the demand for submillimeter-level gripping capabilities in micro-grippers, an amplification mechanism based on a flexible four-bar linkage is proposed. The micro-gripper designed using this mechanism features a large gripping stroke in the millimeter range. First, the amplification effect of the flexible
[...] Read more.
To meet the demand for submillimeter-level gripping capabilities in micro-grippers, an amplification mechanism based on a flexible four-bar linkage is proposed. The micro-gripper designed using this mechanism features a large gripping stroke in the millimeter range. First, the amplification effect of the flexible four-bar linkage was structurally designed and theoretically analyzed. Through kinematic analysis, a theoretical model was developed, demonstrating that the flexible four-bar linkage can achieve an extremely high amplification factor, thus providing a theoretical foundation for the design of the micro-gripper. Then, kinematic and mechanical simulations of the micro-gripper were conducted and validated using ANSYS 2025 simulation software, confirming the correctness of the theoretical analysis. Finally, an experimental platform was set up to analyze the characteristics of the micro-gripper, including its stroke, resolution, and gripping force. The results show that the displacement amplification factor of the gripper designed based on the flexible four-bar linkage can reach 40, with a displacement resolution of 50 nm and a gripping range of 0–880 μm. By using capacitive displacement sensors and strain sensors, integrated force and displacement control can be realized. The large-stroke micro-gripper based on the flexible four-bar linkage is compact, with a large stroke, and has broad application prospects.
Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
by
Janeth Arias Guadalupe, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas and Dorin Copaci
Actuators 2025, 14(7), 337; https://doi.org/10.3390/act14070337 - 6 Jul 2025
Abstract
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings.
[...] Read more.
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. In response to these challenges, this work presents the development and validation of a novel soft exosuit designed for elbow flexion rehabilitation, incorporating a multi-wire Shape Memory Alloy (SMA) actuator capable of both position and force control. The proposed system features a lightweight and ergonomic textile-based design, optimized for user comfort, ease of use, and low manufacturing cost. A sequential activation strategy was implemented to improve the dynamic response of the actuator, particularly during the cooling phase, which is typically a major limitation in SMA-based systems. The performance of the multi-bundle actuator was compared with a single-bundle configuration, demonstrating superior trajectory tracking and reduced thermal accumulation. Surface electromyography tests confirmed a decrease in muscular effort during assisted flexion, validating the device’s assistive capabilities. With a total weight of 0.6 kg and a fabrication cost under EUR 500, the proposed exosuit offers a promising solution for accessible and effective home-based rehabilitation.
Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Fuzzy PD-Based Control for Excavator Boom Stabilization Using Work Port Pressure Feedback
by
Joseph T. Jose, Gyan Wrat, Santosh Kr. Mishra, Prabhat Ranjan and Jayanta Das
Actuators 2025, 14(7), 336; https://doi.org/10.3390/act14070336 - 4 Jul 2025
Abstract
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need
[...] Read more.
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need for direct pressure or position sensors. A fuzzy logic-based proportional–derivative (PD) controller is developed to mitigate boom oscillations, particularly under high-inertia load conditions and variable operator inputs. The controller dynamically adjusts gains through fuzzy logic-based gain scheduling, enhancing adaptability across a wide range of operating conditions. The proposed method addresses the limitations of classical PID controllers, which struggle with the nonlinearities, parameter uncertainties, and instability introduced by counterbalance valves and pressure-compensated proportional valves. Experimental data is used to design fuzzy rules and membership functions, ensuring robust performance. Simulation and full-scale experimental validation demonstrate that the fuzzy PD controller significantly reduces pressure overshoot (by 23% during extension and 32% during retraction) and decreases settling time (by 31.23% and 28%, respectively) compared to conventional systems. Frequency-domain stability analysis confirms exponential stability and improved damping characteristics. The proposed control scheme enhances system reliability and safety, making it ideal for excavators operating in remote or rugged terrains where conventional sensor-based systems may fail. This approach is generalizable and does not require modifications to the existing hydraulic circuit, offering a practical and scalable solution for modern hydraulic machinery.
Full article
(This article belongs to the Special Issue Intelligent and Precision Control for Mechatronic/Electro-Hydraulic Systems—Second Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Composite Perturbation-Rejection Trajectory-Tracking Control for a Quadrotor–Slung Load System
by
Jiao Xu, Defu Lin, Jianchuan Ye and Tao Jiang
Actuators 2025, 14(7), 335; https://doi.org/10.3390/act14070335 - 3 Jul 2025
Abstract
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and
[...] Read more.
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and orientation control for aerial payload transportation with high precision. Firstly, the kinematic and dynamic model under perturbations is derived based on Newton’s second law. The thrust control force consists of two orthogonal parts, each dedicated to regulating the position and orientation of the slung load independently. Then, hierarchical backstepping control generates the two parts in the load-translation and the load-orientation subsystems. Command filters are introduced into nonlinear backstepping to smoothen the control signals and overcome the problem of explosion of complexity. Additionally, to counteract the adverse effect of perturbations emerging in the linear velocity and angular velocity loops, multivariable finite-time observers are developed to ensure the estimation errors converge within a finite time horizon. Finally, comparative numerical simulation results validate the efficacy of the developed quadrotor–slung load tracking controller. Simulation results show that the proposed controller achieves smaller position tracking and orientation errors compared to traditional methods, demonstrating robust disturbance rejection and high-precision control.
Full article
(This article belongs to the Section Aerospace Actuators)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Actuators Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Actuators, Applied Sciences, Entropy
Thermodynamics and Heat Transfers in Vacuum Tube Trains (Hyperloop)
Topic Editors: Suyong Choi, Minki Cho, Jungyoul LimDeadline: 30 July 2025
Topic in
Actuators, Algorithms, BDCC, Future Internet, JMMP, Machines, Robotics, Systems
Smart Product Design and Manufacturing on Industrial Internet
Topic Editors: Pingyu Jiang, Jihong Liu, Ying Liu, Jihong YanDeadline: 31 December 2025
Topic in
Actuators, Automation, Electronics, Machines, Robotics, Eng, Technologies
New Trends in Robotics: Automation and Autonomous Systems
Topic Editors: Maki Habib, Fusaomi NagataDeadline: 31 January 2026
Topic in
Actuators, Gels, JFB, Polymers, MCA, Materials
Recent Advances in Smart Soft Materials: From Theory to Practice
Topic Editors: Lorenzo Bonetti, Giulia Scalet, Silvia Farè, Nicola FerroDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
Actuators
Design and Control of Agricultural Robotics
Guest Editor: Mehrdad R. KermaniDeadline: 20 July 2025
Special Issue in
Actuators
Recent Advances in the Design and Applications for Magnetoelastic and Electroelastic Actuators
Guest Editors: Lucian Pîslaru-Dănescu, Alexandru M. MoregaDeadline: 25 July 2025
Special Issue in
Actuators
Advanced Model Predictive Control and Intelligent Actuation for Multi-Agent and Complex Systems
Guest Editors: Constantin-Florin Caruntu, Anca MaximDeadline: 30 July 2025
Special Issue in
Actuators
Innovative MEMS: Merging Smart Materials with Electronic Techniques for Enhanced Sensing and Actuation
Guest Editors: Michele Rosso, Alessandro NastroDeadline: 30 July 2025