Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review
Abstract
1. Introduction
2. New Passive Suspension
2.1. Traditional Suspension
2.2. Variable Structure Suspension
2.3. Inerter–Spring–Damper (ISD) Suspension
2.4. Summary of the Chapter
3. Semi-Active Suspension
3.1. Continuous Damping Control (CDC) Damper
3.2. Magnetorheological (MR) Damper
3.3. Electrorheological (ER) Damper
3.4. Summary of the Chapter
4. Active Suspension
4.1. Air Suspension
4.2. Hydraulic Suspension
4.3. Hydro-Pneumatic Suspension
4.4. Active Variable Geometry Suspension
4.5. Summary of the Chapter
5. Electromagnetic Suspension
5.1. Rotary Motor Electromagnetic Suspension
5.2. Linear Motor Electromagnetic Suspension
5.3. Summary of the Chapter
6. Control Method of Intelligent Suspension
6.1. Classical Control Strategy
6.1.1. Skyhook Control
6.1.2. PID Control
6.2. Modern Control Strategy
6.2.1. Adaptive Control
6.2.2. Optimal Control
6.2.3. Robust Control
6.3. Intelligent Control Strategy
6.3.1. Fuzzy Control
6.3.2. Neural Network Control
6.3.3. Composite Control Algorithm
6.4. Comparative Analysis of Control Strategies
6.5. Summary of the Chapter
7. Challenges and Development Trends Faced by Intelligent Suspension
7.1. Main Challenges
- (1)
- Research on the deformation and dynamic stiffness characteristics of active air intelligent suspensions under multi-directional loads remains insufficient, and the relevant theoretical frameworks and calculation methods need to be improved. Existing studies lack a comprehensive theoretical description of the non-proportional deformation mechanisms (such as bending–torsion coupling effects) of air springs under multi-directional composite loads. The dynamic stiffness model ignores the time-varying coupling between the gas adiabatic process and the viscoelasticity of the air spring bladder. A more fundamental flaw is that fatigue life prediction relies on empirical S-N curves, while the cross-scale correlation model between micro-damage accumulation and macro-crack propagation is absent. This leads to large discrepancies in the life prediction of heterogeneous structure springs under accelerated aging conditions.
- (2)
- Active hydraulic intelligent suspensions rely on continuous pressurization systems and suffer from low energy efficiency. In addition, sealing issues and potential hose damage pose risks. Oil leakage not only reduces performance but also causes environmental pollution. These problems limit their practical application in energy-sensitive vehicles.
- (3)
- Some high-performance active intelligent suspensions, which are common in complex active systems, have overly complex overall structures. High-performance active suspensions fall into a negative feedback loop between actuator redundancy and mass, resulting in increased volume and mass, thereby complicating vehicle integration. Furthermore, active control modes often consume a large amount of engine power or battery energy, conflicting with the automotive industry’s demand for energy conservation. To solve these problems, breakthroughs in structural optimization and energy management are required.
- (4)
- Semi-active suspensions (such as magnetorheological and electrorheological types) face unique problems. Their damping adjustment accuracy is highly sensitive to environmental factors, such as temperature and operating frequency, which may lead to performance degradation during long-term use. The temperature coefficient of the yield stress of magnetorheological fluids far exceeds the compensation capacity of the controller, and the annual performance attenuation can reach more than 15% in high-temperature and high-humidity environments. In addition, the response speed of semi-active actuators (such as MR valves) may sometimes lag. Improving material stability and enhancing the robustness of control algorithms are crucial to overcoming these limitations.
7.2. Development Trends
- (1)
- Integration and lightweight design. To address the complexity and bulk of active systems, future research will prioritize integrated structural design, reducing volume and mass through advanced materials (e.g., high-strength composites) and modular architectures. This will facilitate vehicle layout and reduce unsprung mass, improving overall dynamic performance.
- (2)
- Intelligent and adaptive control. To overcome the limitations of semi-active response speed and active system energy inefficiency, control strategies will leverage machine learning and artificial intelligence. Suspensions will autonomously identify driving conditions (e.g., road roughness, vehicle speed) and adjust parameters in real-time, balancing comfort and handling. For semi-active systems, this includes optimizing algorithms to compensate for environmental interference, while active systems will adopt predictive control to reduce energy waste.
- (3)
- Energy recovery and sustainability. Targeting the high energy consumption of active systems and pollution risks of hydraulic systems, energy recovery technologies (e.g., regenerative dampers) will be integrated to convert vibration energy into usable electricity. For hydraulic systems, eco-friendly lubricants and enhanced sealing technologies will minimize leakage and environmental impact.
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Mathematical Model of Passive Suspension
Appendix A.2. The Mathematical Model of Semi-Active Suspension
Appendix A.3. The Mathematical Model of Active Suspension
Appendix A.4. Statement of Model Limitations
References
- Ho, C.M.; Tran, D.T.; Ahn, K.K. Adaptive sliding mode control based nonlinear disturbance observer for active suspension with pneumatic spring. J. Sound Vib. 2021, 509, 116241. [Google Scholar] [CrossRef]
- Cui, L.; Mao, H.; Xue, X.; Ding, S.; Qiao, B. Optimized design and test for a pendulum suspension of the crop spray boom in dynamic conditions based on a six DOF motion simulator. Int. J. Agric. Biol. Eng. 2018, 11, 76–85. [Google Scholar]
- Chen, Y.; Long, C.; Wang, R.; Xing, X.; Shen, Y.; Liu, Y. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Lu, E.; Xue, J.; Chen, T.; Jiang, S. Robust trajectory tracking control of an autonomous tractor-trailer considering model parameter uncertainties and disturbances. Agriculture 2023, 13, 869. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Tang, Z.; Lu, S. Modal vibration response of rice combine harvester frame under multi-source excitation. Biosyst. Eng. 2020, 194, 177–195. [Google Scholar] [CrossRef]
- Xu, L.; Chai, X.; Gao, Z.; Li, Y.; Wang, Y. Experimental study on driver seat vibration characteristics of crawler-type combine harvester. Int. J. Agric. Biol. Eng. 2019, 12, 90–97. [Google Scholar] [CrossRef]
- Cui, L.; Xue, X.; Le, F.; Mao, H.; Ding, S. Design and experiment of electro hydraulic active suspension for controlling the rolling motion of spray boom. Int. J. Agric. Biol. Eng. 2019, 12, 72–81. [Google Scholar] [CrossRef]
- Yu, M.; Evangelou, S.A.; Dini, D. Advances in Active Suspension Systems for Road Vehicles. Engineering 2024, 33, 160–177. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, K.; Ding, R.; Jiang, Y.; Jiang, Y. A Novel Hydraulic Interconnection Design and Sliding Mode Synchronization Control of Leveling System for Crawler Work Machine. Agriculture 2025, 15, 137. [Google Scholar] [CrossRef]
- Hu, J.; Pan, J.; Dai, B.; Chai, X.; Sun, Y.; Xu, L. Development of an attitude adjustment crawler chassis for combine harvester and experiment of adaptive leveling system. Agronomy 2022, 12, 717. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, H.; Hao, H.; Zhou, D.; Wang, J.; Zhao, W. Modelling and simulation of suspension system based on topological structure. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2025, 239, 1142–1154. [Google Scholar] [CrossRef]
- Sharp, R. Variable geometry active suspension for cars. Comput. Control Eng. 1998, 9, 217–222. [Google Scholar] [CrossRef]
- Lee, S.; Sung, H.; Lee, U. The Development of Active Geometry Control Suspension (AGCS) System; SAE Technical Paper; SAE: Warrendale, PA, USA, 2005. [Google Scholar]
- Lee, U.; Lee, S.; Han, C.; Hedrick, K.; Catala, A. Active geometry control suspension system for the enhancement of vehicle stability. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 979–988. [Google Scholar] [CrossRef]
- Goodarzi, A.; Oloomi, E.; Esmailzadeh, E. Design and analysis of an intelligent controller for active geometry suspension systems. Veh. Syst. Dyn. 2011, 49, 333–359. [Google Scholar] [CrossRef]
- Németh, B.; Gáspár, P. Mechanical analysis and control design of a variable-geometry McPherson suspension. Int. J. Veh. Syst. Model. Test. 2012, 7, 173–193. [Google Scholar] [CrossRef]
- Németh, B.; Gáspár, P. Control design of variable-geometry suspension considering the construction system. IEEE Trans. Veh. Technol. 2013, 62, 4104–4109. [Google Scholar] [CrossRef]
- Gáspár, P.; Németh, B. Integrated control design for driver assistance systems based on LPV methods. Int. J. Control 2016, 89, 2420–2433. [Google Scholar] [CrossRef]
- Park, S.-J.; Sohn, J.-H. Effects of camber angle control of front suspension on vehicle dynamic behaviors. J. Mech. Sci. Technol. 2012, 26, 307–313. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Ding, R.; Sun, D.; Liu, W. Design and test study of a new mixed control method for magnetorheological semi-active suspension based on electromechanical analogy theory. J. Theor. Appl. Mech. 2021, 59, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hua, J.; Fan, W.; Liu, Y.; Yang, X.; Chen, L. Optimal design and dynamic performance analysis of a fractional-order electrical network-based vehicle mechatronic ISD suspension. Mech. Syst. Signal Process. 2023, 184, 109718. [Google Scholar] [CrossRef]
- Shen, Y.; Hua, J.; Wu, B.; Chen, Z.; Xiong, X.; Chen, L. Optimal design of the vehicle mechatronic ISD suspension system using the structure-immittance approach. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 512–521. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, M.; Yang, X.; Liu, Y.; Chen, L. Vibration suppression using a mechatronic PDD-ISD-combined vehicle suspension system. Int. J. Mech. Sci. 2023, 250, 108277. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, A.; Du, F.; Yang, X.; Liu, Y.; Chen, L. Performance enhancements of semi-active vehicle air ISD suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 239, 2952–2963. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Shang, D. Dynamic characteristics analysis of ISD suspension system under different working conditions. Mathematics 2021, 9, 1345. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Shang, D.; Wang, Z. Dynamic modeling and damping performance improvement of two stage ISD suspension system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 2259–2271. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Yang, X.; Yang, Y. Structural design and inertial impact analysis of vehicle ISD suspension. Proc. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 022119. [Google Scholar] [CrossRef]
- Yang, X.; Yan, L.; Shen, Y.; Liu, Y.; Liu, C. Optimal design and dynamic control of an ISD vehicle suspension based on an ADD positive real network. IEEE Access 2020, 8, 94294–94306. [Google Scholar] [CrossRef]
- Nie, J.; Wang, F.; Zhang, X.; Yang, Y. Design and test of hydro-pneumatic ISD suspension in heavy multi-axle vehicles. Adv. Mech. Eng. 2021, 13, 16878140211064737. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Liu, J.; Nie, J.; Wei, H.; Chen, L. Simulation Analysis and Experiment Research on Hydro-Pneumatic ISD Suspension. Shock Vib. 2021, 2021, 2095350. [Google Scholar] [CrossRef]
- Nie, J.; Zhao, Y.; Zhang, X.; Zhang, T. Design and test of lateral interconnected hydro-pneumatic ISD suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 633–645. [Google Scholar] [CrossRef]
- De Rosa, M.; De Felice, A.; Grosso, P.; Sorrentino, S. Straight path handling anomalies of passenger cars induced by suspension component and assembly tolerances. Int. J. Automot. Mech. Eng. 2019, 16, 6844–6858. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Tang, W.; Yang, J.; Liu, Z. A study on mathematical modeling of CDC damper and its characteristics test. In Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering, Zhengzhou, China, 11–13 April 2015; pp. 870–873. [Google Scholar]
- Wang, S.; Bai, X.; Xiao, F.; Bi, B. Research of solenoid valve CDC damper performance data compression and fusion with active suspension control strategy. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Shaanxi, China, 10–11 January 2015; pp. 792–796. [Google Scholar]
- Xie, F.; Shi, X.; Wan, K.; Gao, K.; Yu, C.; Tian, Z. Theoretical and experimental research on damping characteristics of CDC shock absorber. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 2310–2328. [Google Scholar] [CrossRef]
- Zhang, X.; Song, C.; Song, S.; Cao, J.; Peng, S.; Qi, C.; Xiao, F.; Wang, D. Stability control for vehicle dynamic management with multi-objective fuzzy continuous damping control. Appl. Sci. 2020, 10, 7923. [Google Scholar] [CrossRef]
- Li, T.; Liao, Z.; Cai, Y. Physical modeling for digital twin of Continuous Damping Control damper. J. Manuf. Process. 2023, 99, 96–104. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, H.; Zhang, X. Adaptive variable domain fuzzy PID control strategy based on road excitation for semi-active suspension using CDC shock absorber. J. Vib. Control. 2024, 30, 860–875. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, Y.; Ding, R.; Liu, W.; Meng, X.; Sun, Z. Design and experimental verification of self-powered electromagnetic vibration suppression and absorption system for in-wheel motor electric vehicles. J. Vib. Control 2021, 28, 2544–2555. [Google Scholar] [CrossRef]
- Sun, J.; Cong, J. Deep learning based road recognition for intelligent suspension systems. J. Theor. Appl. Mech. 2021, 59, 493–508. [Google Scholar] [CrossRef]
- Wei, X.; Yan, T.; Liu, S. Multi-objective optimization design of magnetorheological damper and vehicle handling stability performance research. J. Intell. Mater. Syst. Struct. 2024, 35, 206–217. [Google Scholar] [CrossRef]
- Yang, J.; Ning, D.; Sun, S.; Zheng, J.; Lu, H.; Nakano, M.; Zhang, S.; Du, H.; Li, W. A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component. Mech. Syst. Signal Process. 2021, 147, 107071. [Google Scholar] [CrossRef]
- Tang, X.; Ning, D.; Du, H.; Li, W.; Wen, W. Takagi-Sugeno Fuzzy Model-Based Semi-Active Control for the Seat Suspension with an Electrorheological Damper. IEEE Access 2020, 8, 98027–98037. [Google Scholar] [CrossRef]
- Sung, K.G.; Han, Y.M.; Lim, K.H.; Choi, S.B. Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper. Smart Mater. Struct. 2007, 16, 798–808. [Google Scholar] [CrossRef]
- Sung, K.G.; Han, Y.M.; Cho, J.W.; Choi, S.B. Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller. J. Sound Vib. 2008, 311, 1004–1019. [Google Scholar] [CrossRef]
- Sung, K.G.; Choi, S.B.; Park, M.K. Design and Control of Electrorheological Suspension Using Fuzzy Moving Sliding Mode Control. J. Comput. Theor. Nanosci. 2011, 4, 885–890. [Google Scholar] [CrossRef]
- Morato, M.M.; Nguyen, M.Q.; Sename, O.; Dugard, L. Design of a fast real-time LPV model predictive control system for semi-active suspension control of a full vehicle. J. Frankl. Inst. 2019, 356, 1196–1224. [Google Scholar] [CrossRef]
- Choi, S.B.; Seong, M.S.; Kim, K.-S. Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2009, 223, 459–469. [Google Scholar] [CrossRef]
- Li, J.; Nie, Z.; Chen, Y.; Ge, D.; Li, M. Development of boom posture adjustment and control system for wide spray boom. Agriculture 2023, 13, 2162. [Google Scholar] [CrossRef]
- Tan, X.; Wu, G.; Lai, Y.; Xu, J.; Long, Y.; Li, W.; Liu, K. Height control strategy employing AWPSO-fuzzy PID control for electronically controlled air suspension system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 239, 2400–2413. [Google Scholar] [CrossRef]
- Long, Y.; Tan, X.; Li, W.; Lai, Y.; Xu, J.; Wu, G. Modeling and state-preview height control of electronically controlled air suspension system based on experiment. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 2465–2476. [Google Scholar] [CrossRef]
- Atindana, V.A.; Xu, X.; Kwaku, N.J.; Akayeti, A.; Jiang, X. A novel semi-active control of an integrated chassis and seat quasi-zero stiffness suspension system for off-road vehicles. J. Vib. Control 2024, 30, 5536–5559. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, X.; Liang, C.; Liu, H.; Atindana, A.V. Robust controller design of a semi-active quasi-zero stiffness air suspension based on polynomial chaos expansion. J. Vib. Control 2024, 30, 906–925. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, Y.; Ding, R.; Chen, Y.; Xu, K. Vehicle height control of air suspension based on speed adaptive double-zone model prediction. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 09544070241288921. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, W.; Qiu, B.; Xue, X.; Zhou, L. Design and experiment of a hydraulic lifting wind field test platform for crop protection UAS. Int. J. Agric. Biol. Eng. 2021, 14, 166–174. [Google Scholar] [CrossRef]
- Liu, S.; Hao, R.; Zhao, D.; Tian, Z. Adaptive dynamic surface control for active suspension with electro-hydraulic actuator parameter uncertainty and external disturbance. IEEE Access 2020, 8, 156645–156653. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Zhao, D. Low-complexity error-surface prescribed performance control for nonlinear uncertain single-rod electro-hydraulic system. IEEE Trans. Control Syst. Technol. 2024, 32, 2402–2409. [Google Scholar] [CrossRef]
- Liu, P.; Kou, F.; Chen, Y.; Wang, G.; Xing, L. Modeling and dynamic analysis of a novel energy-regenerative hydraulically interconnected suspension. Energy 2025, 324, 135928. [Google Scholar] [CrossRef]
- Choi, H.D.; You, S.H. Fuzzy finite memory state estimation for electro-hydraulic active suspension systems. IEEE Access 2021, 9, 99364–99373. [Google Scholar] [CrossRef]
- Li, R.; Yang, F.; Lin, D.; Li, C.; Chen, H.; Qian, W.; Jia, S.; Zhao, F. Dynamic Properties Analysis of a New Kind of Inter-Connected Hydro-Pneumatic Strut. IEEE Access 2021, 9, 60340–60351. [Google Scholar] [CrossRef]
- Li, R.; Ma, B.; Yang, F.; Lin, D.; Zhang, W. Active suspension based on a motor-driving compacted double-gas-chamber hydro-pneumatic strut. IEEE Access 2025, 13, 11944–11956. [Google Scholar] [CrossRef]
- Jiang, M.; Rui, X.; Yang, F.; Zhu, W.; Zhu, H.; Han, W. Design and dynamic performance research of MR hydro-pneumatic spring based on multi-physics coupling model. Nonlinear Dyn. 2023, 111, 8191–8215. [Google Scholar] [CrossRef]
- Jiang, M.; Rui, X.; Yang, F.; Wang, P.; Li, H.; Wang, W. Non-parametric modeling of magnetorheological damper based on MEA-BP neural network. J. Vib. Control 2025. [Google Scholar] [CrossRef]
- Yin, C.; Zhai, X.; Sun, X.; Wang, S.; Wong, P.K. Design and performance research of a hydro-pneumatic suspension with variable damping and stiffness characteristics. J. Mech. Sci. Technol. 2022, 36, 4913–4923. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, B.; Sun, C.; Zhang, Y.; Zhao, H. Design and optimization of hydropneumatic suspension simulation Test bench with electro-hydraulic proportional control. Machines 2023, 11, 907. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, B.; Sun, C.; Xin, Z.; Jia, Y.; Zhao, H. Design and Stability Analysis of Six-Degree-of-Freedom Hydro-Pneumatic Spring Wheel-Leg. Appl. Sci. 2024, 14, 9815. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Ran, Z.; Lv, B.; Wang, S. Modeling analysis and experiments of a novel hydro-pneumatic suspension with piezoelectric energy harvester. Smart Mater. Struct. 2023, 32, 075005. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, M.; Yang, F.; Qian, R.; Zhai, R.; Wang, H.; Xv, S. Research on Dynamic Modeling and Control of Magnetorheological Hydro-Pneumatic Suspension. Actuators 2025, 14, 73. [Google Scholar] [CrossRef]
- Yu, M.; Cheng, C.; Evangelou, S.A.; Dini, D. Series active variable geometry suspension: Full-car prototyping and road testing. IEEE/ASME Trans. Mechatron. 2021, 27, 1332–1344. [Google Scholar] [CrossRef]
- Cheng, C.; Evangelou, S.A. Series active variable geometry suspension robust control based on full-vehicle dynamics. J. Dyn. Syst. Meas. Control. 2019, 141, 051002. [Google Scholar] [CrossRef]
- Arana, C.; Evangelou, S.A.; Dini, D. Series active variable geometry suspension for road vehicles. IEEE/ASME Trans. Mechatron. 2014, 20, 361–372. [Google Scholar] [CrossRef]
- Arana, C.; Evangelou, S.A.; Dini, D. Series active variable geometry suspension application to chassis attitude control. IEEE/ASME Trans. Mechatron. 2015, 21, 518–530. [Google Scholar] [CrossRef]
- Arana, C.; Evangelou, S.A.; Dini, D. Series active variable geometry suspension application to comfort enhancement. Control. Eng. Pract. 2017, 59, 111–126. [Google Scholar] [CrossRef]
- Zhao, Z.-H.; Guan, Y.-L.; Chen, S.-A. Experimental research on PMSM ball screw actuator and structural design suggestion of featured active suspension. IEEE Access 2020, 8, 66163–66177. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, B.; Li, M. Fractional order PID control based on ball screw energy regenerative active suspension. Actuators 2022, 11, 189. [Google Scholar] [CrossRef]
- Ge, Z.; Li, G.; Chen, S.; Wang, W. Influence of Nonlinear Characteristics of Planetary Flywheel Inerter Actuator on Vehicle Active Suspension Performance. Actuators 2023, 12, 252. [Google Scholar] [CrossRef]
- Kavianipour, O. Energy regeneration effects on the vehicle suspension system performance considering non-idealities. J. Vib. Eng. Technol. 2023, 11, 3081–3092. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Ding, R.; Ye, Q. Dual-Loop Model Predictive Control of Permanent Magnet Linear Synchronous Motor for Active Suspension. IEEE Trans. Energy Convers. 2025, 40, 80–92. [Google Scholar] [CrossRef]
- Sun, X.; Luo, S.; Chen, L.; Jiang, H.; Xu, X. A linearization control scheme for permanent magnet linear synchronous motors. J. Comput. Theor. Nanosci. 2015, 12, 459–463. [Google Scholar] [CrossRef]
- Sun, X.; Wu, M.; Yin, C.; Wang, S. Model predictive thrust force control for linear motor actuator used in active suspension. IEEE Trans. Energy Convers. 2021, 36, 3063–3072. [Google Scholar] [CrossRef]
- Li, C.; Zhou, C.; Xiong, J. New Method to Coordinate Vibration Energy Regeneration and Dynamic Performance of In-Wheel Motor Electrical Vehicles. Energies 2023, 16, 2968. [Google Scholar] [CrossRef]
- Xiong, X.; Liu, C.; Fan, L.; Xu, F. Design and performance analysis of an energy harvesting suspension system utilizing Halbach-like permanent magnet arrays. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 239, 4909–4923. [Google Scholar] [CrossRef]
- Liu, K.; Ma, G.; Jun, L.; Zhao, Z.; Zhou, P.; Xu, J. Performance improvement for superconducting linear synchronous motor with general racetrack coils. IEEE Trans. Energy Convers. 2023, 39, 1436–1445. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Chen, L. Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension. Mech. Syst. Signal Process. 2019, 134, 106301. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Chen, L. A new hybrid electromagnetic actuator for a modified skyhook control strategy with energy reduction. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 2025–2037. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Chen, L. Mode-switching control and stability analysis of a hybrid electromagnetic actuator for the vehicle suspension. J. Vib. Control 2020, 26, 1804–1814. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Ding, R.; Zhou, Y. Design and Hybrid Control of a New Self-Powered Electromagnetic Suspension Actuator Matched with Non-Pneumatic Tire. Int. J. Automot. Technol. 2023, 24, 159–169. [Google Scholar] [CrossRef]
- Ji, X.; Wang, A.; Wei, X. Precision control of spraying quantity based on linear active disturbance rejection control method. Agriculture 2021, 11, 761. [Google Scholar] [CrossRef]
- Song, X.; Li, H.; Chen, C.; Xia, H.; Zhang, Z.; Tang, P. Design and experimental testing of a control system for a solid-fertilizer-dissolving device based on fuzzy PID. Agriculture 2022, 12, 1382. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Sun, D.; Ding, R.; Yang, L. Hybrid damping control of magnetorheological semi-active suspension based on feedback linearization Kalman observer. Meccanica 2024, 59, 1087–1102. [Google Scholar] [CrossRef]
- Kou, F.; Jing, Q.; Chen, C.; Wu, J. Endocrine Composite Skyhook-Groundhook Control of Electromagnetic Linear Hybrid Active Suspension. Shock Vib. 2020, 2020, 3402168. [Google Scholar] [CrossRef]
- Zając, K.; Kowal, J.; Konieczny, J. Skyhook control law extension for suspension with nonlinear spring characteristics. Energies 2022, 15, 754. [Google Scholar] [CrossRef]
- Ma, T.; Bi, F.; Wang, X.; Tian, C.; Lin, J.; Wang, J.; Pang, G. Optimized fuzzy skyhook control for semi-active vehicle suspension with new inverse model of magnetorheological fluid damper. Energies 2021, 14, 1674. [Google Scholar] [CrossRef]
- Negash, B.A.; You, W.; Lee, J.; Lee, C.; Lee, K. Semi-active control of a nonlinear quarter-car model of hyperloop capsule vehicle with Skyhook and Mixed Skyhook-Acceleration Driven Damper controller. Adv. Mech. Eng. 2021, 13, 1687814021999528. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Chen, Z.; Sun, M.; Long, X. Integrated skyhook vibration reduction control with active disturbance rejection decoupling for automotive semi-active suspension systems. Nonlinear Dyn. 2024, 112, 6215–6230. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhao, Y.; Nie, J. A Multi-Hook Control Strategy for a Semi-Active Device Combining an Adjustable Inerter and Damper. Actuators 2022, 11, 297. [Google Scholar] [CrossRef]
- Lu, Y.; Khajepour, A.; Soltani, A. A coordinated control system for truck cabin suspension based on model predictive control. Int. J. Heavy Veh. Syst. 2022, 29, 518–536. [Google Scholar] [CrossRef]
- Lu, Y.; Khajepour, A.; Hajiloo, R.; Korayem, A.H.; Zhang, R. A new integrated skyhook-linear quadratic regulator coordinated control approach for semi-active vehicle suspension systems. J. Dyn. Syst. Meas. Control 2023, 145, 034501. [Google Scholar] [CrossRef]
- Zhao, J.; Wong, P.K.; Xie, Z.; Ma, X.; Hua, X. Design and control of an automotive variable hydraulic damper using cuckoo search optimized PID method. Int. J. Automot. Technol. 2019, 20, 51–63. [Google Scholar] [CrossRef]
- Ab Talib, M.H.; Mat Darus, I.Z.; Mohd Samin, P.; Mohd Yatim, H.; Ardani, M.I.; Shaharuddin, N.M.R.; Hadi, M.S. Vibration control of semi-active suspension system using PID controller with advanced firefly algorithm and particle swarm optimization. J. Ambient Intell. Humaniz. Comput. 2021, 12, 1119–1137. [Google Scholar] [CrossRef]
- Ab Talib, M.H.; Mat Darus, I.Z.; Mohd Samin, P.; Mohd Yatim, H.; Hadi, M.S.; Shaharuddin, N.M.R.; Mazali, I.I.; Ardani, M.I.; Mohd Yamin, A.H. Experimental evaluation of ride comfort performance for suspension system using PID and fuzzy logic controllers by advanced firefly algorithm. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 132. [Google Scholar] [CrossRef]
- Li, G.; Xu, H.; Ruan, Z.; Liu, Q.; Gan, Y.; Yu, L.; Zhu, W.; Hu, G. Design and performance evaluation of a novel fractional order PID control strategy for vehicle semi-active suspension. Adv. Mech. Eng. 2024, 16, 16878132241241435. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Li, J.; Xu, J.; Wang, Z.; Liu, S. Research on ride comfort control of air suspension based on genetic algorithm optimized fuzzy PID. Appl. Sci. 2024, 14, 7787. [Google Scholar] [CrossRef]
- Cao, K.; Li, Z.; Gu, Y.; Zhang, L.; Chen, L. The control design of transverse interconnected electronic control air suspension based on seeker optimization algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2200–2211. [Google Scholar] [CrossRef]
- Munawwarah, S.; Yakub, F. Control analysis of vehicle ride comfort through integrated control devices on the quarter and half car active suspension systems. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 1256–1268. [Google Scholar] [CrossRef]
- Samaroo, K.; Awan, A.W.; Islam, S. Semi-Active Suspension Design for an In-Wheel-Motor-Driven Electric Vehicle Using a Dynamic Vibration-Absorbing Structure and PID-Controlled Magnetorheological Damper. Machines 2025, 13, 47. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.; Xu, L.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Li, J.; Shang, Z.; Li, R.; Cui, B. Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter. Agriculture 2022, 12, 1225. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Ding, S.; Xia, J.; Xing, G. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, J.Q.; Zhao, M.M.; Li, X. Adaptive control of a nonlinear suspension with time-delay compensation. J. Vibroengineering 2019, 21, 684–695. [Google Scholar] [CrossRef]
- Mousavi, Y.; Alfi, A.; Kucukdemiral, I.B.; Fekih, A. Tube-based model reference adaptive control for vibration suppression of active suspension systems. IEEE/CAA J. Autom. Sin. 2022, 9, 728–731. [Google Scholar] [CrossRef]
- Nichiţelea, T.-C.; Unguritu, M.-G. Design and comparisons of adaptive harmonic control for a quarter-car active suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 343–352. [Google Scholar] [CrossRef]
- Deng, Y.; Gong, M.; Ni, T. Double-channel event-triggered adaptive optimal control of active suspension systems. Nonlinear Dyn. 2022, 108, 3435–3448. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.; Sun, W. Nonlinear adaptive fault-tolerant control for full-car active suspension with velocity measurement errors and full-state constraints. J. Frankl. Inst. 2024, 361, 106845. [Google Scholar] [CrossRef]
- Li, Y.; Ma, S.; Li, K.; Tong, S. Adaptive fuzzy output feedback fault-tolerant control for active suspension systems. IEEE Trans. Intell. Veh. 2023, 9, 2469–2478. [Google Scholar] [CrossRef]
- Al Aela, A.M.; Kenne, J.-P.; Mintsa, H.A. Adaptive neural network and nonlinear electrohydraulic active suspension control system. J. Vib. Control 2022, 28, 243–259. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, H.; Yan, H.; Yang, F.; Wang, Z.; Vlacic, L. Active full-vehicle suspension control via cloud-aided adaptive backstepping approach. IEEE Trans. Cybern. 2019, 50, 3113–3124. [Google Scholar] [CrossRef]
- Uddin, N.; Manurung, A.; Wijaya, R.N.A. Optimal state feedback control design of half-car active suspension system. IAENG Int. J. Appl. Math. 2021, 51, 1–9. [Google Scholar]
- Bai, R.; Wang, H.-B. Robust optimal control for the vehicle suspension system with uncertainties. IEEE Trans. Cybern. 2021, 52, 9263–9273. [Google Scholar] [CrossRef]
- Liang, Y.-J.; Lu, Y.-J.; Gao, D.-X.; Wang, Z.-S. Applications of approximate optimal control to nonlinear systems of tracked vehicle suspensions. Int. J. Comput. Intell. Syst. 2021, 14, 174. [Google Scholar] [CrossRef]
- Gu, X.; Zhao, B.; Liu, Y. Optimal nonlinear polynomial control of a quarter-vehicle suspension system under harmonic and random road excitations. J. Low Freq. Noise Vib. Act. Control 2024, 43, 510–524. [Google Scholar] [CrossRef]
- Min, X.; Li, Y.; Tong, S. Adaptive fuzzy optimal control for a class of active suspension systems with full-state constraints. IET Intell. Transp. Syst. 2020, 14, 371–381. [Google Scholar] [CrossRef]
- Manna, S.; Mani, G.; Ghildiyal, S.; Stonier, A.A.; Peter, G.; Ganji, V.; Murugesan, S. Ant colony optimization tuned closed-loop optimal control intended for vehicle active suspension system. IEEE Access 2022, 10, 53735–53745. [Google Scholar] [CrossRef]
- Ahn, D.-V.; Kim, K.; Oh, J.; Seo, J.; Lee, J.W.; Park, Y.-J. Optimal Control of Semi-Active Suspension for Agricultural Tractors Using Linear Quadratic Gaussian Control. Sensors 2023, 23, 6474. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Nguyen, T.A. Enhancing the performance of the vehicle active suspension system by an Optimal Sliding Mode Control algorithm. PLoS ONE 2022, 17, e0278387. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A. Advance the efficiency of an active suspension system by the sliding mode control algorithm with five state variables. IEEE Access 2021, 9, 164368–164378. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Li, Z.; Geng, G.; Liao, Y.G. H∞ robust control of interconnected air suspension based on mode switching. IEEE Access 2022, 10, 62377–62390. [Google Scholar] [CrossRef]
- Ozbek, C.; Burkan, R.; Yagiz, N. Robust control of vehicle suspension systems with friction non-linearity for ride comfort enhancement. J. Vib. Control 2024, 30, 1326–1338. [Google Scholar] [CrossRef]
- Ozbek, C.; Ozguney, O.C.; Burkan, R.; Yagiz, N. Design of a fuzzy robust-adaptive control law for active suspension systems. Sādhanā 2020, 45, 194. [Google Scholar] [CrossRef]
- Ozbek, C.; Ozguney, O.C.; Burkan, R.; Yagiz, N. Ride comfort improvement using robust multi-input multi-output fuzzy logic dynamic compensator. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2023, 237, 72–85. [Google Scholar] [CrossRef]
- Yin, Y.; Luo, B.; Ren, H.; Fang, Q.; Zhang, C. Robust control design for active suspension system with uncertain dynamics and actuator time delay. J. Mech. Sci. Technol. 2022, 36, 6319–6327. [Google Scholar] [CrossRef]
- Ma, X.; Wong, P.K.; Li, W.; Zhao, J.; Ghadikolaei, M.A.; Xie, Z. Multi-objective H 2/H∞ control of uncertain active suspension systems with interval time-varying delay. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2023, 237, 335–347. [Google Scholar] [CrossRef]
- Afshar, K.K.; Korzeniowski, R.; Konieczny, J. Constrained dynamic output-feedback robust H∞ control of active inerter-based half-car suspension system with parameter uncertainties. IEEE Access 2023, 11, 46051–46072. [Google Scholar] [CrossRef]
- Jin, H.; Meng, G.; Pan, Y.; Zhang, X.; Wang, C. An Improved Intelligent Control System for Temperature and Humidity in a Pig House. Agriculture 2022, 12, 1987. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y. RETRACTED: Theoretical research on rice and wheat lodging detection based on artificial intelligence technology and a template matching algorithm. Agron. J. 2023, 115, 46–58. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, X.; Zhang, Y.; Sun, C.; Jayan, H.; Majeed, U.; Watson, N.J.; Zou, X. Dynamic Nondestructive Detection Models of Apple Quality in Critical Harvest Period Based on Near-Infrared Spectroscopy and Intelligent Algorithms. Foods 2024, 13, 1698. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ning, X.; Li, Y.; Yang, G.; Wu, P.; Chen, S. A Fuzzy Control Strategy for the Forward Speed of a Combine Harvester Based on KDD. Appl. Eng. Agric. 2017, 33, 15–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Li, H.; Xia, H. Design and Evaluation of a Control System for the Fertigation Device. J. ASABE 2022, 65, 1293–1302. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.; Chen, L.; Zou, R.; Cai, Y. Fuzzy Adaptive Energy Management Strategy for a Hybrid Agricultural Tractor Equipped with HMCVT. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Bai, J.-W.; Xiao, H.-W.; Ma, H.-L.; Zhou, C.-S. Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. J. Food Qual. 2018, 2018, 3278595. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, Y.; Wu, Z.; Traore, S.N.; Chen, D.; Xing, L. BP neural network model for material distribution prediction based on variable amplitude anti-blocking screening DEM simulations. Int. J. Agric. Biol. Eng. 2023, 16, 190–199. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Qenawy, M.; Li, J.; El-Sharkawy, M.; Du, D. Predictive modeling of garlic quality in hybrid infrared-convective drying using artificial neural networks. Food Bioprod. Process. 2024, 145, 226–238. [Google Scholar] [CrossRef]
- Pang, Y.; Li, H.; Tang, P.; Chen, C. Synchronization Optimization of Pipe Diameter and Operation Frequency in a Pressurized Irrigation Network Based on the Genetic Algorithm. Agriculture 2022, 12, 673. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Haruna, S.A.; Johnson, N.A.N.; Barimah, A.O.; Afang, Z.; Chen, Z.; Ekumah, J.-N.; Fuyun, W.; Li, H.; et al. Multicomponent prediction of Sudan dye adulteration in crude palm oil using SERS—Based bimetallic nanoflower combined with genetic algorithm. J. Food Compos. Anal. 2024, 125, 105768. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, Z.; Sun, W.; He, L. A Decision-Making System for Cotton Irrigation Based on Reinforcement Learning Strategy. Agronomy 2024, 14, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Yu, Z.; Sun, W.; Fu, W.; He, L. Enhancing cotton irrigation with distributional actor–critic reinforcement learning. Agric. Water Manag. 2025, 307, 109194. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Ji, G.; Li, S.; Feng, G.; Li, Z.; Liu, X. A novel DNFS control strategy for vehicle semi-active suspension system. Meas. Sci. Technol. 2024, 35, 126203. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, X.; Zheng, L.; Zhang, Z. Event-triggered fuzzy control for vehicle nonlinear suspension systems with time delay. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 1865–1878. [Google Scholar] [CrossRef]
- Wong, P.K.; Li, W.; Ma, X.; Yang, Z.; Wang, X.; Zhao, J. Adaptive event-triggered dynamic output feedback control for nonlinear active suspension systems based on interval type-2 fuzzy method. Mech. Syst. Signal Process. 2024, 212, 111280. [Google Scholar] [CrossRef]
- Li, W.; Xie, Z.; Cao, Y.; Wong, P.K.; Zhao, J. Sampled-data asynchronous fuzzy output feedback control for active suspension systems in restricted frequency domain. IEEE/CAA J. Autom. Sin. 2020, 8, 1052–1066. [Google Scholar] [CrossRef]
- Mustafa, G.I.; Wang, H. A new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time-delay. J. Vib. Control 2024. [Google Scholar] [CrossRef]
- Ren, Y.; Xie, X.; Sun, J.; Nguyen, A.-T. Enhanced fuzzy control of active vehicle suspension systems based on a novel HPPD-Type non-PDC control scheme. IEEE/ASME Trans. Mechatron. 2024, 30, 226–235. [Google Scholar] [CrossRef]
- Ren, Y.; Xie, X.; Sun, J.; Wu, X. A Novel HPPD-Type Fuzzy Switching Control Scheme of Active Vehicle Suspension Systems. IEEE Trans. Fuzzy Syst. 2024, 32, 6512–6522. [Google Scholar] [CrossRef]
- Abut, T.; Salkim, E. Control of quarter-car active suspension system based on optimized fuzzy linear quadratic regulator control method. Appl. Sci. 2023, 13, 8802. [Google Scholar] [CrossRef]
- Mustafa, G.I.; Li, X.; Wang, H. A new neural network-based adaptive time-delay control for nonlinear car active suspension system. Stud. Inform. Control 2022, 31, 13–24. [Google Scholar] [CrossRef]
- Ghoniem, M.; Awad, T.; Mokhiamar, O. Control of a new low-cost semi-active vehicle suspension system using artificial neural networks. Alex. Eng. J. 2020, 59, 4013–4025. [Google Scholar] [CrossRef]
- Zhang, M.; Jing, X.; Wang, G. Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay. IEEE Trans. Ind. Electron. 2020, 68, 12646–12656. [Google Scholar] [CrossRef]
- Hamza, A.; Ben Yahia, N. Heavy trucks with intelligent control of active suspension based on artificial neural networks. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 952–969. [Google Scholar] [CrossRef]
- Homayoun, B.; Arefi, M.M.; Vafamand, N.; Yin, S. Neural minimal learning backstepping control of stochastic active suspension systems with hydraulic actuator saturation. J. Frankl. Inst. 2020, 357, 13687–13706. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y. Neural-network adaptive output-feedback saturation control for uncertain active suspension systems. IEEE Trans. Cybern. 2020, 52, 1881–1890. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42, e13236. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.; Chen, Q. Evaluating aroma quality of black tea by an olfactory visualization system: Selection of feature sensor using particle swarm optimization. Food Res. Int. 2019, 126, 108605. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Du, X.; Yu, M.; Fu, J.; Huang, C. Experimental study on shock control of a vehicle semi-active suspension with magneto-rheological damper. Smart Mater. Struct. 2020, 29, 074002. [Google Scholar] [CrossRef]
- Pedro, J.O.; Nhlapo, S.M.; Mpanza, L.J. Model predictive control of half-car active suspension systems using particle swarm optimisation. IFAC-Pap. 2020, 53, 14438–14443. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Wiberg, V.; Wallin, E.; Nordfjell, T.; Servin, M. Control of rough terrain vehicles using deep reinforcement learning. IEEE Robot. Autom. Lett. 2021, 7, 390–397. [Google Scholar] [CrossRef]
- Wiberg, V.; Wallin, E.; Fälldin, A.; Semberg, T.; Rossander, M.; Wadbro, E.; Servin, M. Sim-to-real transfer of active suspension control using deep reinforcement learning. Robot. Auton. Syst. 2024, 179, 104731. [Google Scholar] [CrossRef]
- Deng, M.; Sun, D.; Zhan, L.; Xu, X.; Zou, J. Advancing active suspension control with TD3-PSC: Integrating physical safety constraints into deep reinforcement learning. IEEE Access 2024, 12, 115628–115641. [Google Scholar] [CrossRef]
- Ming, L.; Yibin, L.; Xuewen, R.; Shuaishuai, Z.; Yanfang, Y. Semi-active suspension control based on deep reinforcement learning. IEEE Access 2020, 8, 9978–9986. [Google Scholar] [CrossRef]
- Lee, D.; Jin, S.; Lee, C. Deep reinforcement learning of semi-active suspension controller for vehicle ride comfort. IEEE Trans. Veh. Technol. 2022, 72, 327–339. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Radi, M.; Ahmad, A.; Boudiaf, A. Reinforcement Learning-Based Optimal Control Design for Active Suspension Systems. In Proceedings of the 2024 Advances in Science and Engineering Technology International Conferences (ASET), Abu Dhabi, United Arab Emirates, 3–5 June 2024; pp. 1–6. [Google Scholar]
- Bidgoli, M.A.; Golroo, A.; Nadjar, H.S.; Rashidabad, A.G.; Ganji, M.R. Road roughness measurement using a cost-effective sensor-based monitoring system. Autom. Constr. 2019, 104, 140–152. [Google Scholar] [CrossRef]
- Fares, A.; Zayed, T. Industry-and academic-based trends in pavement roughness inspection technologies over the past five decades: A critical review. Remote Sens. 2023, 15, 2941. [Google Scholar] [CrossRef]
- Babu, A.; Baumgartner, S.V.; Krieger, G. Approaches for road surface roughness estimation using airborne polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3444–3462. [Google Scholar] [CrossRef]
- Babu, A.; Gerber, D.; Baumgartner, S.V.; Krieger, G. Road Surface Roughness Estimation Using Spaceborne Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4010205. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Liu, W.; Chen, L. Intelligent switching control of hybrid electromagnetic active suspension based on road identification. Mech. Syst. Signal Process. 2021, 152, 107355. [Google Scholar] [CrossRef]
- Zhao, L.; Qin, P.; Gao, S.; Zhang, S.; Vantsevich, V.V.; Liu, Z. A linear variable parameter observer-based road profile height estimation for suspension nonlinear dynamics improvements. IEEE Trans. Veh. Technol. 2023, 72, 8433–8448. [Google Scholar] [CrossRef]
- Liu, W.; Wang, R.; Ding, R.; Meng, X.; Yang, L. On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration. Mech. Syst. Signal Process. 2020, 135, 106370. [Google Scholar] [CrossRef]
- Wang, R.; Liu, W.; Ding, R.; Meng, X.; Sun, Z.; Yang, L.; Sun, D. Switching control of semi-active suspension based on road profile estimation. Veh. Syst. Dyn. 2022, 60, 1972–1992. [Google Scholar] [CrossRef]
- Kaldas, M.M.; Soliman, A.M.; Abdallah, S.A.; Mohammad, S.S.; Amien, F.F. Road Preview Control for Active Suspension System. SAE Int. J. Veh. Dyn. Stab. NVH 2022, 6, 371–383. [Google Scholar] [CrossRef]
- Zhu, J.; Chang, X.; Zhang, X.; Su, Y.; Long, X. A Novel Method for the Reconstruction of Road Profiles from Measured Vehicle Responses Based on the Kalman Filter Method. CMES-Comput. Model. Eng. Sci. 2022, 130, 1719–1735. [Google Scholar] [CrossRef]
- Kim, G.-W.; Kang, S.-W.; Kim, J.-S.; Oh, J.-S. Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 1610–1622. [Google Scholar] [CrossRef]
- Yang, H.; Kim, B.-G.; Oh, J.-S.; Kim, G.-W. Simultaneous estimation of vehicle mass and unknown road roughness based on adaptive extended Kalman filtering of suspension systems. Electronics 2022, 11, 2544. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Huang, C.; Lu, Y.; Wang, C. A dynamic tire model based on HPSO-SVM. Int. J. Agric. Biol. Eng. 2019, 12, 36–41. [Google Scholar] [CrossRef]
- Han, S.-Y.; Dong, J.-F.; Zhou, J.; Chen, Y.-H. Adaptive fuzzy PID control strategy for vehicle active suspension based on road evaluation. Electronics 2022, 11, 921. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, Z.; Chen, S.; Chen, J. Improved piezoelectric grain cleaning loss sensor based on adaptive neuro-fuzzy inference system. Precis. Agric. 2022, 23, 1174–1188. [Google Scholar] [CrossRef]
Control Method | Advantage | Disadvantages |
---|---|---|
Skyhook control | 1. Simple calculation 2. Fast response speed 3. Strong robustness 4. Does not rely on models | 1. Relatively limited adaptability 2. Increase the vibration of unsprung mass 3. Difficult to balance body and tire vibration control |
PID control | 1. Simple and practical 2. Fast response speed 3. Does not rely on accurate models | 1. Relatively limited adaptability 2. Prone to overshoot and oscillation 3. Difficult parameter tuning |
Adaptive control | 1. Strong adaptability 2. Maintain good performance 3. Can cope with changes | 1. Complex implementation process 2. High computational requirements 3. Slow convergence speed 4. Need for high system recognition accuracy |
Optimal control | 1. Fast calculation speed 2. Clear purpose 3. Quantifiable control effect | 1. Poor robustness 2. Poor adaptability 3. Complex control law 4. Difficult to understand and debug |
Fuzzy control | 1. Requires low model accuracy 2. Strong adaptability 3. Good robustness | 1. Medium computational complexity 2. General response speed 3. Highly dependent on empirical rules 4. Limited control accuracy |
Neural network control | 1. Strong adaptability 2. Good learning ability 3. High robustness 4. Great nonlinear processing capability | 1. High computational complexity 2. General response speed 3. Dependent on the quality of training data 4. Complex adjustment and time-consuming |
Genetic algorithm | 1. Simple search process 2. Wide coverage 3. Able to handle multi-objective optimization problems | 1. General response speed 2. General robustness 3. Relatively limited adaptability 4. Low efficiency in the later search stage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Y.; Wang, R.; Ding, R.; Jiang, Y. Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review. Actuators 2025, 14, 485. https://doi.org/10.3390/act14100485
Mei Y, Wang R, Ding R, Jiang Y. Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review. Actuators. 2025; 14(10):485. https://doi.org/10.3390/act14100485
Chicago/Turabian StyleMei, Yixin, Ruochen Wang, Renkai Ding, and Yu Jiang. 2025. "Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review" Actuators 14, no. 10: 485. https://doi.org/10.3390/act14100485
APA StyleMei, Y., Wang, R., Ding, R., & Jiang, Y. (2025). Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review. Actuators, 14(10), 485. https://doi.org/10.3390/act14100485