Background: Stapes prostheses represent one of the earliest and most widely applied “biomedical actuators” designed to restore hearing in patients with otosclerosis. Unlike conventional actuators, which convert energy into motion, stapes prostheses function as passive or smart micro-actuators, transmitting and modulating acoustic
[...] Read more.
Background: Stapes prostheses represent one of the earliest and most widely applied “biomedical actuators” designed to restore hearing in patients with otosclerosis. Unlike conventional actuators, which convert energy into motion, stapes prostheses function as passive or smart micro-actuators, transmitting and modulating acoustic energy through the ossicular chain.
Objective: This paper provides a comprehensive analysis of stapes prostheses from an engineering and biomedical perspective, emphasizing design principles, materials science, and recent innovations in smart actuators based on shape-memory alloys combined with surgical applicability.
Methods: A narrative review of the evolution of stapes prostheses was consolidated by institutional surgical experience. Comparative evaluation focused on materials (Teflon, Fluoroplastic, Titanium, Nitinol) and design solutions (manual crimping, clip-on, heat-activated prostheses). Special attention was given to endoscopic stapes surgery, which highlights the ergonomic and functional requirements of new device designs.
Results: Traditional fluoroplastic and titanium pistons provide reliable sound conduction but require manual crimping, with a higher risk of incus necrosis and displacement. Innovative prostheses, particularly those manufactured from nitinol, act as self-crimping actuators activated by heat, improving coupling precision and reducing surgical trauma. Emerging designs, including bucket-handle and malleus pistons, expand applicability to complex or revision cases. Advances in additive manufacturing and middle ear cement fixation offer opportunities for customized, patient-specific actuators.
Conclusions: Stapes prostheses have evolved from simple passive pistons to innovative biomedical actuators exploiting shape-memory and biocompatible materials. Future developments in stapes prosthesis design are closely linked to 3D printing technologies. These developments have the potential to enhance acoustic performance, durability, and patient outcomes, thereby bridging the gap between otologic surgery and biomedical engineering.
Full article