-
Integrating Genomics and Molecular Biology in Understanding Peritoneal Adhesion
-
Galectin-3 in Cardiovascular Health—Review
-
ELK1, c-Jun, and STAT3 Mediate Bortezomib Resistance in Prostate Cancer Cells
-
Angelica keiskei Extract in Hepatocellular Carcinoma
-
CRISPR-Cas9 in the Tailoring of Genetically Engineered Animals
Journal Description
Current Issues in Molecular Biology
Current Issues in Molecular Biology
is an international, scientific, peer-reviewed, open access journal on molecular biology, published monthly online by MDPI (from Volume 43 Issue 1-2021).
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PMC, PubMed, Embase, CAPlus / SciFinder, FSTA, AGRIS, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.8 days after submission; acceptance to publication is undertaken in 2.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names are published annually in the journal.
Impact Factor:
3.0 (2024);
5-Year Impact Factor:
3.2 (2024)
Latest Articles
Mitigating Oxidative Stress and Anti-Angiogenic State in an In Vitro Model of Preeclampsia by HY-12, an Organofluorine Hydrazone Antioxidant
Curr. Issues Mol. Biol. 2025, 47(9), 680; https://doi.org/10.3390/cimb47090680 - 24 Aug 2025
Abstract
Preeclampsia (PE) is a hypertensive disorder impacting 5–7% of pregnancies globally. With no causative treatment available, diagnosed patients have limited therapeutic options, putting them at risk for pregnancy complications. The induction of oxidative stress by ROS—one of the major contributors in PE pathogenesis—causes
[...] Read more.
Preeclampsia (PE) is a hypertensive disorder impacting 5–7% of pregnancies globally. With no causative treatment available, diagnosed patients have limited therapeutic options, putting them at risk for pregnancy complications. The induction of oxidative stress by ROS—one of the major contributors in PE pathogenesis—causes downstream signaling and production of anti-angiogenic factors, such as sFLT1 and sEng. The anti-angiogenic factors may cause endothelial and trophoblast dysfunction, contributing to the development of hypertension, proteinuria, and in severe cases, eclampsia. To target placental oxidative stress, we developed and evaluated an organofluorine hydrazone antioxidant, HY-12, in vitro. Human trophoblast (HTR8/SVneo) cells were incubated with hydrogen peroxide to induce oxidative stress and act as a model of PE. The goal of the study was to assess the efficacy of HY-12 and its ability to reduce cell injury, mitochondrial stress, and anti-angiogenic response. In our human trophoblast-based assays, pre-treatment with HY-12 reduced mitochondrial-derived ROS production in cells exposed to hydrogen peroxide, proving its ability to alleviate the oxidative stress associated with the pathogenesis of PE. HY-12 reduced HIF1A expression and sFLT1 protein expression in H2O2-exposed HTR8 cells. Furthermore, HY-12 improved the activity of the mitochondrial electron chain enzyme cytochrome C oxidase (COX) in the hydrogen-peroxide-treated HTR8/SVneo cells, which is a promising attribute of the compound. In reducing placental trophoblast oxidative stress, HY-12 shows promise as a potential treatment of preeclampsia. In vivo studies are warranted to further determine the efficacy of this compound.
Full article
(This article belongs to the Special Issue Advanced Molecular Research on Hypertensive Disorders of Pregnancy (HDPs))
►
Show Figures
Open AccessArticle
Integrating Molecular Diagnostics into Cervical Cancer Screening: A Workflow Using FFPE Tissue Samples
by
Serena Varesano, Giulia Ciccarese, Paola Parente, Michele Paudice, Katia Mazzocco, Simone Ferrero and Valerio Gaetano Vellone
Curr. Issues Mol. Biol. 2025, 47(9), 679; https://doi.org/10.3390/cimb47090679 - 24 Aug 2025
Abstract
Cervical cancer screening plays a crucial role in preventing invasive disease through early detection of high-grade lesions. However, traditional cytology and histology often fail to reliably differentiate between transient HPV infections and those likely to progress. This study investigates the feasibility of integrating
[...] Read more.
Cervical cancer screening plays a crucial role in preventing invasive disease through early detection of high-grade lesions. However, traditional cytology and histology often fail to reliably differentiate between transient HPV infections and those likely to progress. This study investigates the feasibility of integrating molecular HPV testing into histopathological workflows using FFPE tissue samples to improve diagnostic precision. A retrospective analysis was conducted on 55 FFPE cervical specimens from patients undergoing colposcopy with biopsy or conization. The workflow included automated DNA extraction and real-time PCR-based HPV genotyping with the Seegene Anyplex II HPV28 assay. HPV DNA was detected in 56.4% of samples, with 21 genotypes, including multiple high-risk types. High viral loads correlated with high-grade lesions, supporting the clinical value of HPV quantification. Compared to histology, molecular analysis reduced potential overdiagnosis by confirming HPV absence in morphologically suspicious but HPV-negative lesions. Integrating viral load and genotyping improved risk stratification, optimizing colposcopy referrals and reducing unnecessary follow-ups. This study introduces a novel, fully automated molecular workflow applicable to FFPE samples, enhancing cervical cancer screening beyond traditional methods. Although based on a limited sample, the findings support the method’s potential for broader implementation and further validation in multicenter settings.
Full article
(This article belongs to the Special Issue Molecular Mechanism and Advances in Gynecological Pathology: From Bench to Bedside)
Open AccessReview
Research Progress on the Regulatory Mechanism of the Waxy Gene in Rice Starch Synthesis
by
Fei Chen, Yunsheng Song, Yi Jiang, Penghui Cao, Yajie Yu, Minghui Dong, Yulin Xie, Caiyong Yuan, Yongliang Zhu and Zhongying Qiao
Curr. Issues Mol. Biol. 2025, 47(9), 678; https://doi.org/10.3390/cimb47090678 - 23 Aug 2025
Abstract
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in
[...] Read more.
Starch serves as a crucial storage substance in both cereal crops and root/tuber crops, with its composition and properties determining the quality of storage organs. The Waxy (Wx) gene, encoding a key enzyme in starch biosynthesis, plays a pivotal role in this metabolic pathway. However, existing reviews seldom systematically elaborate on Wx gene regulatory mechanisms from the perspective of intrinsic molecular networks. Focusing on the model crop rice, this article synthesizes research advances in Wx-mediated starch biosynthesis regulation over the past decade. We analyze the structural features of the Wx gene and factors influencing its regulatory function during starch synthesis. In conclusion, future research directions are proposed to provide references for Wx gene studies in other crops, as well as theoretical foundations for rice varietal improvement and molecular design breeding.
Full article
(This article belongs to the Section Molecular Plant Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Low Expression of Selenoprotein S Modulates Osteogenic Differentiation Through Bidirectional Regulation of the SP7–HSP47/COL1A1/SPARC Axis
by
Hao Wu, Yun-Shan Zhao, Chun-Shen Li, Jing-Yi Shi, Yi Li, Liang-Qiu-Yue Zhong, Yan Liu and Xi Chen
Curr. Issues Mol. Biol. 2025, 47(9), 677; https://doi.org/10.3390/cimb47090677 - 23 Aug 2025
Abstract
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old
[...] Read more.
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old mice, which represent the stage of stable osteogenic differentiation, 3-week-old mice, representing the active ossification stage, showed significantly higher levels of SELS in the mandible. Transcriptomic analysis revealed that SELS is primarily associated with extracellular matrix organization and collagen biosynthesis during mandibular development. In bone marrow mesenchymal stem cells (BMSCs) with SELS knockdown, SP7 levels were elevated after 7 days of osteogenic induction in vitro. Consistently, immunohistochemical and immunofluorescence staining confirmed increased SP7 expression in the mandibles of 7-week-old Sels knockout mice. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) analysis demonstrated that SP7 directly binds to the heat shock protein 47 (HSP47) promoter and negatively regulates its transcription. Consequently, upregulation of SP7 following SELS knockdown led to downregulation of HSP47 and concurrent upregulation of the SP7 downstream targets, collagen type I alpha 1 chain (COL1A1) and Secreted protein acidic and rich in cysteine (SPARC). SELS expression is upregulated during active osteogenesis. Low expression of SELS regulates osteogenic differentiation in a bidirectional and fine-tuned manner through the SP7–HSP47/COL1A1/SPARC axis.
Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
►▼
Show Figures

Figure 1
Open AccessReview
Conformational and Functional Properties of the Bioactive Thiosemicarbazone and Thiocarbohydrazone Compounds
by
Nikitas Georgiou, Ektoras Vasileios Apostolou, Stamatia Vassiliou, Demeter Tzeli and Thomas Mavromoustakos
Curr. Issues Mol. Biol. 2025, 47(9), 676; https://doi.org/10.3390/cimb47090676 - 22 Aug 2025
Abstract
Thiosemicarbazones and thiocarbohydrazones are key sulfur-containing organic compounds known for their diverse biological, pharmaceutical, and industrial applications. Beyond their well-established therapeutic potential, their strong chelating ability allows them to form stable complexes with transition metals, enabling uses in catalysis, corrosion inhibition, and dyeing
[...] Read more.
Thiosemicarbazones and thiocarbohydrazones are key sulfur-containing organic compounds known for their diverse biological, pharmaceutical, and industrial applications. Beyond their well-established therapeutic potential, their strong chelating ability allows them to form stable complexes with transition metals, enabling uses in catalysis, corrosion inhibition, and dyeing processes. Their structural characteristics and dynamic conformations critically influence both biological activity and industrial performance, making nuclear magnetic resonance (NMR) spectroscopy an indispensable tool for their analysis. This review provides a comprehensive overview of the conformational and functional properties of bioactive thiosemicarbazones and thiocarbohydrazones, with a focus on how experimental NMR techniques are used to investigate their conformational behavior. In addition to experimental findings, available computational data are discussed, offering complementary insights into their structural dynamics. The integration of experimental and theoretical approaches offers a robust framework for predicting the behavior and interactions of these compounds, thereby informing the rational design of novel derivatives with improved functionality. By highlighting key structural features and application contexts, this work addresses a critical gap in the current understanding of these promising agents across both biomedical and industrial domains.
Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
►▼
Show Figures

Scheme 1
Open AccessReview
Extracellular Vesicles in Osteogenesis: A Comprehensive Review of Mechanisms and Therapeutic Potential for Bone Regeneration
by
Sreyee Biswas, Prakash Gangadaran, Chandrajeet Dhara, Shreya Ghosh, Soumya Deep Phadikar, Akash Chakraborty, Atharva Anand Mahajan, Ranit Mondal, Debdeep Chattopadhyay, Trisha Banerjee, Anuvab Dey, Subhrojyoti Ghosh, Anand Krishnan, Byeong-Cheol Ahn and Ramya Lakshmi Rajendran
Curr. Issues Mol. Biol. 2025, 47(8), 675; https://doi.org/10.3390/cimb47080675 (registering DOI) - 21 Aug 2025
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the
[...] Read more.
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the bone microenvironment. EVs originating from mesenchymal stem cells, osteoblasts, endothelial cells, and macrophages have demonstrated substantial potential to promote bone formation, inhibit bone resorption, and enhance vascularization. This review examines the biogenesis, classification, and cellular uptake mechanisms of EVs, focusing on their roles in osteogenesis and their therapeutic applications in fracture healing, osteoporosis, and bone tissue engineering. Despite their promise, significant challenges remain, including the need for standardization, scalable production, and assessment of long-term safety to enable clinical translation of EV-based therapies. Here, we provide a comprehensive overview of EV biology, elucidate the molecular mechanisms of EVs in bone regeneration, and discuss innovative strategies to optimize their therapeutic efficacy, highlighting their potential as next-generation orthobiologics.
Full article
(This article belongs to the Special Issue Osteoclastogenesis and Osteogenesis: Physiological and Molecular Responses to Xenobiotics and Biomaterials)
►▼
Show Figures

Graphical abstract
Open AccessReview
Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants
by
Joanna Wróblewska, Anna Długosz, Marcin Wróblewski, Jarosław Nuszkiewicz, Paweł Sutkowy and Alina Woźniak
Curr. Issues Mol. Biol. 2025, 47(8), 674; https://doi.org/10.3390/cimb47080674 - 21 Aug 2025
Abstract
Human milk, especially colostrum, is a biologically complex fluid with potent protective properties against gastrointestinal disturbances in infants. Among intestinal protozoa transmitted via the fecal–oral route, this review focuses on Giardia lamblia and Entamoeba histolytica, as the protective role of milk-derived factors
[...] Read more.
Human milk, especially colostrum, is a biologically complex fluid with potent protective properties against gastrointestinal disturbances in infants. Among intestinal protozoa transmitted via the fecal–oral route, this review focuses on Giardia lamblia and Entamoeba histolytica, as the protective role of milk-derived factors against these parasites is the most extensively documented. Its protective effects result from a wide range of bioactive components, including mucins, lactoferrin, human milk oligosaccharides, melatonin, and secretory IgA, which support the integrity of the intestinal barrier, regulate immune responses, and inhibit the adhesion and activity of pathogens. The composition of human milk can be influenced by maternal factors such as nutritional status, stress, sleep quality, and physical activity, which may modulate its immunological potential. Dietary intake of micronutrients, fermentable fibers, and fermented foods also appears to play a role in shaping the milk’s protective properties. This review discusses the molecular mechanisms by which selected milk components contribute to the defense against protozoan infections in early life and considers how maternal health and lifestyle may affect the effectiveness of these protective mechanisms.
Full article
(This article belongs to the Special Issue Molecular Insights: Mechanisms Underlying the Biological Activities of Natural Products—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by
Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial
[...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri.
Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
►▼
Show Figures

Figure 1
Open AccessReview
Mistletoe in Cancer Cell Biology: Recent Advances
by
Chang-Eui Hong and Su-Yun Lyu
Curr. Issues Mol. Biol. 2025, 47(8), 672; https://doi.org/10.3390/cimb47080672 - 20 Aug 2025
Abstract
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties,
[...] Read more.
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties, and clinical applications. We conducted a comprehensive analysis of controlled studies, mechanistic investigations, and real-world evidence published between 2020 and 2025. The discovery of mistletoe-induced immunogenic cell death (ICD) represents a paradigm shift in understanding its anticancer effects. Mistletoe extracts trigger endoplasmic reticulum stress, leading to calreticulin exposure in 18–51% of cancer cells and a 7-fold increase in adenosine triphosphate (ATP) release. Three-dimensional culture models revealed enhanced macrophage reprogramming effects, with a 15.8% increase in pro-inflammatory interleukin (IL)-6 and a 26.4% reduction in immunosuppressive IL-10. Real-world evidence from over 400 non-small-cell lung cancer patients shows that combining mistletoe with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors doubles median overall survival (6.8 to 13.8 months), with biomarker-selected populations experiencing up to a 91.2% reduction in death risk. The Johns Hopkins Phase I trial established intravenous administration safety at 600 mg three times weekly. Advanced analytical approaches including metabolomics, chronobiology, and machine learning are enabling precision medicine applications. These findings position mistletoe as a scientifically validated component of integrative oncology, bridging traditional medicine with evidence-based cancer care. Future research should focus on ferroptosis mechanisms, single-cell immune profiling, and standardized clinical protocols.
Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Study of Reprogramming Efficiency and Regulatory Mechanisms of Placental- and Fibroblast-Derived Induced Pluripotent Stem Cells (iPSCs) in Mules
by
Fangyuan Liu, Jia Zhang, Lingyu Kong, Rihan Wu, Qiqi Jiang, Ying Lu and Xihe Li
Curr. Issues Mol. Biol. 2025, 47(8), 671; https://doi.org/10.3390/cimb47080671 - 19 Aug 2025
Abstract
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells
[...] Read more.
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells (iPSCs). Intriguingly, placental fibroblast-derived iPSCs (mpiPSCs) exhibited reduced reprogramming efficiency compared to adult fibroblast-derived iPSCs (maiPSCs). Through allele-specific expression (ASE) analysis, we systematically dissected transcriptional biases in parental cell types and their reprogrammed counterparts, revealing conserved preferential expression of asinine alleles in core pluripotency regulators (e.g., POU5F1/OCT4, SOX2, NANOG) across both cell lineages. Strikingly, mpiPSCs displayed stronger asinine allele dominance than maiPSCs, suggesting tissue-specific parental genomic imprinting. Mechanistic exploration implicated PI3K-AKT signaling as a potential pathway mediating the reprogramming inefficiency in placental fibroblasts. By integrating transcriptomic profiling with ASE technology, this study uncovers allele selection hierarchies during somatic cell reprogramming in hybrids and establishes a framework for understanding how parental genomic conflicts shape pluripotency establishment. These findings advance interspecies iPSC research by delineating allele-specific regulatory networks and providing insights into the molecular constraints of hybrid cellular reprogramming.
Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioinformatic Analysis of the Value of Mitophagy and Immune Responses in Corneal Endothelial Dysfunction
by
Ruilin Guo, Chenjia Xu, Yi Yu, Minglu Ma, Xiaojuan Dong, Jing Wu, Chen Ouyang, Jie Ling and Ting Huang
Curr. Issues Mol. Biol. 2025, 47(8), 670; https://doi.org/10.3390/cimb47080670 - 19 Aug 2025
Abstract
This study was conducted to elucidate the mitophagy-related differentially expressed genes (MRDEGs) in corneal endothelial dysfunction (CED) and to identify key hub genes that could provide insights into the disease pathogenesis and potential targeted therapies. To achieve this, CED models were established in
[...] Read more.
This study was conducted to elucidate the mitophagy-related differentially expressed genes (MRDEGs) in corneal endothelial dysfunction (CED) and to identify key hub genes that could provide insights into the disease pathogenesis and potential targeted therapies. To achieve this, CED models were established in female SD rats, and RNA sequencing of coronal endothelium samples was conducted to generate a self-testing dataset. Comprehensive bioinformatics analyses were executed, which included the identification of differentially expressed genes (DEGs), GO and KEGG enrichment analyses, GSEA, and GSVA. A protein–protein interaction (PPI) network was constructed to identify highly interconnected hub genes, followed by the construction of ROC curves to validate MRDEGs within the dataset, alongside qRT-PCR assays. Our findings revealed a total of 18,511 DEGs, among which 20 genes were characterized as MRDEGs. Enrichment analyses indicated significant associations with monocyte differentiation and lymphocyte proliferation. Importantly, eight hub genes emerged from the PPI network as promising therapeutic targets. In conclusion, this study underscores the important role of MRDEGs and immune infiltration in CED, laying the groundwork for future investigations into targeted therapies for this disease.
Full article
(This article belongs to the Section Molecular Medicine)
►▼
Show Figures

Figure 1
Open AccessCorrection
Correction: Kardaş et al. Gallic Acid Protects from Sepsis-Induced Acute Lung Injury. Curr. Issues Mol. Biol. 2024, 46, 1–10
by
Süleyman Kardaş, Osman Sezer Çınaroğlu, Ejder Saylav Bora and Oytun Erbaş
Curr. Issues Mol. Biol. 2025, 47(8), 669; https://doi.org/10.3390/cimb47080669 - 19 Aug 2025
Abstract
In the original publication [...]
Full article
(This article belongs to the Section Molecular Medicine)
►▼
Show Figures

Figure 1
Open AccessArticle
Brassinosteroid Coordinates with ROS, Auxin and Gibberellin to Promote Mesocotyl Elongation and Deep-Sowing Tolerance in Maize
by
Yahui Wang, Ying Li, Yuze Ma, Xiaolin Wu, Wei Wang, Hui Liu and Xiaoming Li
Curr. Issues Mol. Biol. 2025, 47(8), 668; https://doi.org/10.3390/cimb47080668 - 18 Aug 2025
Abstract
Mesocotyl elongation is the key determinant of deep-sowing tolerance in maize. Sowing at an appropriate depth allows the seedling to exploit water and nutrients stored in deeper soil layers, thereby enhancing its ability to withstand drought and other abiotic stresses. Mesocotyl elongation is
[...] Read more.
Mesocotyl elongation is the key determinant of deep-sowing tolerance in maize. Sowing at an appropriate depth allows the seedling to exploit water and nutrients stored in deeper soil layers, thereby enhancing its ability to withstand drought and other abiotic stresses. Mesocotyl elongation is regulated by the phytohormones brassinosteroid (BR), auxin (IAA), gibberellin (GA), and reactive oxygen species (ROS). However, whether and how BR coordinates IAA, GA, and ROS to control mesocotyl elongation in maize remains unclear. Here, we demonstrated that BRs orchestrate ROS, IAA, and GA signaling to remodel cell-wall metabolism in mesocotyl cells, promote cell elongation, and, consequently, strengthen deep-sowing tolerance. BR promoted mesocotyl elongation through multiple routes: (1) decreasing the contents of cell-wall components (hemicellulose, cellulose, and pectin); (2) activating cell-wall-loosening enzymes (cellulase, pectinase, and acidic xylanase); and (3) disturbing ROS homeostasis by elevating superoxide dismutase (SOD) activity. Combined treatments of BR with either IAA or GA further enhanced mesocotyl elongation in a concentration-dependent manner. In deep-sowing trials (15 cm), application of BR alone or in combination with IAA or GA markedly increased mesocotyl length and emergence rate, thereby improving deep-sowing tolerance. Our work indicated that BR integrated ROS, IAA, and GA signals to restructure the cell wall and derived mesocotyl cell elongation, providing both theoretical insights and practical strategies for breeding maize varieties with enhanced deep-sowing tolerance.
Full article
(This article belongs to the Special Issue Plant Hormones, Development, and Stress Tolerance)
►▼
Show Figures

Figure 1
Open AccessReview
Hydroxytyrosol and Brain Tumors: Mechanisms of Action and Therapeutic Potential
by
Cristina Cueto-Ureña, María Jesús Ramírez-Expósito, María Pilar Carrera-González and José Manuel Martínez-Martos
Curr. Issues Mol. Biol. 2025, 47(8), 667; https://doi.org/10.3390/cimb47080667 - 18 Aug 2025
Abstract
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present
[...] Read more.
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present in olives, has shown relevant effects on these processes in experimental models. This review analyzes its chemical characteristics, bioavailability, and ability to cross the blood–brain barrier, as well as its mechanisms of action. Despite its rapid metabolism, HTX can reach the brain in small but functional amounts, and various formulation methods can enhance its delivery to nervous tissue. HTX acts on cellular pathways such as Nrf2, NF-κB, JAK/STAT, PI3K/Akt and SIRT1, regulating redox balance, inflammation, programmed cell death, and autophagy. It can also influence gene expression through epigenetic mechanisms. In cell models, it has shown inhibitory effects on tumor growth and activation of apoptosis, without affecting non-tumor cells. These results support its possible usefulness as an adjunct in the treatment of brain tumors, although further studies in animal and human models are required.
Full article
(This article belongs to the Special Issue The Green Revolution in Cancer Research: Bioactive Substances from Plants as Promising Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
K-562 Extracellular Vesicles Partially Protect Intact Cells from Oxidative Stress and Provide Limited Resistance to Imatinib
by
Jiana Sbiet, Einat Beery, Zinab Sarsor, Pia Raanani and Orit Uziel
Curr. Issues Mol. Biol. 2025, 47(8), 666; https://doi.org/10.3390/cimb47080666 - 18 Aug 2025
Abstract
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue
[...] Read more.
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue for a subset of patients. In our study we aimed to identify one aspect of IM resistance in K-562 cells, a cell line used as a model for CML. Secreted from all cell types, extracellular vesicles (EVs) are nanoparticles that function as mediators of cell–cell communication. Upon engulfment by other cells they may modulate their phenotype. IM is linked to changes in oxidative metabolism in K-562 cells. Our study explored the putative involvement of EVs secreted from K-562 cells in providing protection from oxidative stress and resistance to IM in these cells. The results of our study showed that the protection from oxidative stress provided by previously exposed K-562 cell, derived EVs is only partial. Similarly, these EVs provided intact K-562 cells with some resistance to IM treatment. These results may suggest that resistance to IM may develop and expand to other cells by EVs that are secreted from already resistant cells, similar to a horizontal transfer of resistance provided by plasmids in bacteria.
Full article
(This article belongs to the Special Issue Molecular Insights and Therapeutic Advances in Hematological Disorders)
►▼
Show Figures

Figure 1
Open AccessCommunication
PRMT5 Inhibition as a Potential Strategy for KRAS Mutant CRC: Downstream Mediators of the PRMT5–KRAS Crosstalk
by
Mark Spivak, Moshe Pahmer, Dorna Delrahimnia, Tzuriel Sapir and David Shifteh
Curr. Issues Mol. Biol. 2025, 47(8), 665; https://doi.org/10.3390/cimb47080665 - 18 Aug 2025
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5),
[...] Read more.
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), an epigenetic regulator involved in diverse cellular processes, is currently under investigation as a therapeutic target in multiple cancer types. Our previous work demonstrated that PRMT5 inhibition produces stronger therapeutic effects in KRAS-mutant CRC cells than in KRAS WT cells, suggesting potential crosstalk between PRMT5 and KRAS. In this study, we aimed to identify key downstream proteins that may mediate this interaction. Through a literature review, protein–protein interaction analysis (STRING database), gene expression analysis (GEPIA database), and correlation analysis (GEPIA database), we identified MYC, E2F1, and EIF4E as critical candidates. These proteins are shown to interact with both PRMT5 and KRAS in STRING, are overexpressed in CRC tumor samples, and show positive gene expression correlations with PRMT5 and KRAS in patient data. These findings are significant, as they provide new insights into the PRMT5–KRAS crosstalk and suggest potential targets for novel and combination therapies in KRAS-mutant CRC. Further research and biological experiments are needed to verify and outline the exact molecular processes behind MYC, E2F1, and EIF4E’s interactions with both PRMT5 and KRAS.
Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
►▼
Show Figures

Figure 1
Open AccessReview
Circadian Rhythm Disruptions and Cardiovascular Disease Risk: The Special Role of Melatonin
by
Jarosław Nuszkiewicz, Wojciech Rzepka, Julia Markiel, Marta Porzych, Alina Woźniak and Karolina Szewczyk-Golec
Curr. Issues Mol. Biol. 2025, 47(8), 664; https://doi.org/10.3390/cimb47080664 - 17 Aug 2025
Abstract
Circadian rhythms are endogenous biological cycles that regulate essential cardiovascular functions, including blood pressure, heart rate, vascular tone, and metabolic homeostasis. Disruption of these rhythms due to factors such as shift work, artificial light at night, irregular sleep–wake cycles, or mistimed eating has
[...] Read more.
Circadian rhythms are endogenous biological cycles that regulate essential cardiovascular functions, including blood pressure, heart rate, vascular tone, and metabolic homeostasis. Disruption of these rhythms due to factors such as shift work, artificial light at night, irregular sleep–wake cycles, or mistimed eating has been increasingly recognized as an independent risk factor for cardiovascular disease. A growing body of evidence links circadian misalignment to key pathophysiological mechanisms, including endothelial dysfunction, oxidative stress, inflammation, and autonomic imbalance. Melatonin, a hormone produced primarily by the pineal gland, plays a central role in circadian regulation and exhibits potent antioxidant, anti-inflammatory, and cardiometabolic properties. This narrative review synthesizes current findings on the interplay between circadian disruption and cardiovascular risk, with a particular emphasis on the mechanistic and therapeutic role of melatonin. We also highlight the potential of chronotherapeutic strategies, such as timed melatonin supplementation, antihypertensive dosing, and time-restricted eating, to restore circadian alignment and improve cardiovascular outcomes. Despite promising data, translation into clinical practice remains limited. Future research should focus on identifying practical circadian biomarkers, refining chronotherapy protocols, and integrating circadian variables into risk models and clinical workflows.
Full article
(This article belongs to the Special Issue Effects of Environmental Factors on Cardiovascular Disease: From Molecular Effects to Possible Future Clinic Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Astaxanthin Attenuates Chlorpyrifos-Induced Pulmonary Cytotoxicity by Modulating Mitochondrial Redox and Inflammatory Pathways
by
Mediha Demet Okudan Altındaş and Adem Güner
Curr. Issues Mol. Biol. 2025, 47(8), 663; https://doi.org/10.3390/cimb47080663 - 17 Aug 2025
Abstract
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative
[...] Read more.
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative stress studies. However, its efficacy against CPF-induced lung cell damage remains uncharacterized. This study revealed the protective role of ASX, as a pretreatment and co-treatment, against CPF-induced cytotoxicity in human A549 lung adenocarcinoma cells by assessing cell viability, intracellular reactive oxygen species (IROS), total oxidative status (TOS), total antioxidant capacity (TAC), mitochondrial membrane potential (MMP), intracellular calcium ions (Ca2+), lactate dehydrogenase (LDH) release, malondialdehyde (MDA) levels, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, DNA fragmentation, and apoptosis/inflammation-associated gene expression. CPF treatment significantly decreased cell viability and TAC, while elevating IROS, TOS, MMP, intracellular Ca2+, and LDH release. CPF also increased MDA levels and suppressed GPx and SOD activities. DNA fragmentation and quantitative polymerase chain reaction (qPCR) analysis revealed upregulation of pro-apoptotic and inflammatory markers such as BCL2-associated X protein (BAX), caspase-3 (CASP3), tumor protein p53 (TP53), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor kappa B (NFκB), and voltage-dependent anion-selective channel protein 1 (VDAC1) and suppression of anti-apoptotic B-cell lymphoma 2 (BCL2) and antioxidant defense genes nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). ASX treatment, particularly when administered as a pretreatment, significantly reversed CPF-induced oxidative and inflammatory responses by restoring SOD, GPx, and TAC levels, reducing IROS, TOS, MDA, and LDH release, and downregulating apoptotic and inflammatory gene expressions. ASX pretreatment notably decreased MMP and intracellular Ca2+ levels, indicating protection against mitochondrial dysfunction and calcium dysregulation. ASX upregulated Nrf2 and HO-1 expression and restored the BCL2/BAX balance, suggesting inhibition of mitochondrial-mediated apoptosis. Additionally, ASX significantly attenuated CPF-induced anti-angiogenic effects in the in ovo Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) assay. These findings demonstrate, for the first time, that ASX exerts a broad spectrum of protective effects against CPF-induced cytotoxicity in lung cells, mainly through the stabilization of mitochondrial redox status and modulation of apoptosis- and inflammation-related gene pathways, highlighting ASX as a promising candidate for further therapeutic development. Furthermore, the pronounced efficacy observed in the pretreatment regimen suggests that ASX can be evaluated as a potential nutritional preventive strategy in high-risk populations with occupational or environmental CPF exposure.
Full article
(This article belongs to the Special Issue Molecular Insights: Mechanisms Underlying the Biological Activities of Natural Products—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Unlocking the Anti-Breast Cancer Potential of Aralia chinensis L.
by
Juan Xue, Lei Li, Yongjia Shu, Chengshi Xie, Tian Lu and Huifang Chai
Curr. Issues Mol. Biol. 2025, 47(8), 662; https://doi.org/10.3390/cimb47080662 - 16 Aug 2025
Abstract
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in
[...] Read more.
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in conjunction with Q Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) alongside serum pharmacochemistry to analyze the chemical constituents of total saponins derived from A. chinensis (TSAC) and to identify the blood-absorbed prototypes in a rat model. Network pharmacology predicted targets and pathways of serum prototypes, validated by molecular docking and in vitro experiments. We identified 38 triterpenoid saponins, 3 steroidal saponins, and 8 triterpenoids in TSAC, with 22 prototype compounds detected in serum. An integrative analysis encompassing 486 compound targets and 1747 genes associated with breast cancer elucidated critical pathways, notably the PI3K-Akt signaling pathway and resistance mechanisms to EGFR tyrosine kinase inhibitors. Molecular docking confirmed strong binding of araloside A and elatoside L to SRC, PIK3R1, PIK3CA, STAT3, and EGFR. In MCF-7 cells, TSAC suppressed proliferation and migration while downregulating Src, PI3K, and EGFR expression at the gene and protein levels. This study successfully identified TSAC’s serum-absorbed bioactive components and demonstrated their anti-breast cancer effects via multi-target mechanisms involving the Src/PI3K/EGFR axis, providing a crucial pharmacological foundation for developing A. chinensis-derived breast cancer therapies.
Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Potential of Alkaloids from Zanthoxylum nitidum var. tomentosum in Treating Rat Rheumatoid Arthritis Model and Validation of Molecular Mechanisms
by
Yuanle Shen, Linghui Zou, Yinggang Zeng, Ting Xia, Zhenjie Liu, Kaili Hu, Liuping Wang and Jianfang Feng
Curr. Issues Mol. Biol. 2025, 47(8), 661; https://doi.org/10.3390/cimb47080661 - 15 Aug 2025
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and
[...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and this study aims to investigate the underlying molecular mechanisms involved. Methods: A complete Freund’s adjuvant (CFA)-induced arthritis model in male SD rats (n = 64) was used to evaluate ARSHs. Groups included control, model, methotrexate (MTX), and ARSH-treated. Therapeutic effects were assessed via arthritis index, paw swelling, and serum cytokines (IL-1β, IL-6, IL-17A). Network pharmacology identified bioactive alkaloids and core targets, validated by molecular docking. In vitro mechanisms (proliferation, apoptosis, signaling pathways) were examined in MH7A synovial cells. Results: ARSHs significantly attenuated joint inflammation and damage in CFA rats (* p < 0.01 vs. model), reducing pro-inflammatory cytokines. Fifteen alkaloids (e.g., dihydrochelerythrine, magnoflorine) and 24 targets (e.g., SRC, STAT3, MAPK3) were prioritized. Molecular docking confirmed strong binding (binding energy < −7.0 kcal/mol). In vitro, ARSHs suppressed MH7A proliferation and induced apoptosis via Bcl-2/Bax dysregulation and the inhibition of SRC/STAT3/MAPK3 phosphorylation. Conclusions: ARSHs mitigate RA pathogenesis by targeting the SRC/STAT3/MAPK3 signaling axis in synovial cells. This study provides mechanistic validation of ARSHs as multi-target phytotherapeutic agents against inflammatory arthritis.
Full article
(This article belongs to the Special Issue Therapeutic Effects of Natural Bioactive Compounds in the Management of Human Diseases)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal MenuJournal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Volumes not published by MDPI
- Vol. 42 (2021)
- Vol. 41 (2021)
- Vol. 40 (2021)
- Vol. 39 (2020)
- Vol. 38 (2020)
- Vol. 37 (2020)
- Vol. 36 (2020)
- Vol. 35 (2020)
- Vol. 34 (2019)
- Vol. 33 (2019)
- Vol. 32 (2019)
- Vol. 31 (2019)
- Vol. 30 (2019)
- Vol. 29 (2018)
- Vol. 28 (2018)
- Vol. 27 (2018)
- Vol. 26 (2018)
- Vol. 25 (2018)
- Vol. 24 (2017)
- Vol. 23 (2017)
- Vol. 22 (2017)
- Vol. 21 (2017)
- Vol. 20 (2016)
- Vol. 19 (2016)
- Vol. 18 (2016)
- Vol. 17 (2015)
- Vol. 16 (2014)
- Vol. 15 (2013)
- Vol. 14 (2012)
- Vol. 13 (2011)
- Vol. 12 (2010)
- Vol. 11 (2009)
- Vol. 10 (2008)
- Vol. 9 (2007)
- Vol. 8 (2006)
- Vol. 7 (2005)
- Vol. 6 (2004)
- Vol. 5 (2003)
- Vol. 4 (2002)
- Vol. 3 (2001)
- Vol. 2 (2000)
- Vol. 1 (1999)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Brain Sciences, CIMB, Epigenomes, Genes, IJMS, DNA
Genetics and Epigenetics of Substance Use Disorders
Topic Editors: Aleksandra Suchanecka, Anna Maria Grzywacz, Kszysztof ChmielowiecDeadline: 15 November 2025
Topic in
Animals, CIMB, Genes, IJMS, DNA
Advances in Molecular Genetics and Breeding of Cattle, Sheep, and Goats
Topic Editors: Xiukai Cao, Hui Li, Huitong ZhouDeadline: 30 November 2025
Topic in
Biophysica, CIMB, Diagnostics, IJMS, IJTM
Molecular Radiobiology of Protons Compared to Other Low Linear Energy Transfer (LET) Radiation
Topic Editors: Francis Cucinotta, Jacob RaberDeadline: 20 December 2025
Topic in
BioTech, DNA, Genes, IJMS, CIMB
Single-Cell Technologies: From Research to Application
Topic Editors: Ken-Hong Lim, Chung-Der Hsiao, Pei-Ming YangDeadline: 31 December 2025

Conferences
26–29 August 2025
The 5th International Symposium on Frontiers in Molecular Science
Molecular Regulatory Mechanisms of Biological Function and Drug Discovery based on Protein Structure/Function Analysis
Molecular Regulatory Mechanisms of Biological Function and Drug Discovery based on Protein Structure/Function Analysis

Special Issues
Special Issue in
CIMB
The Role of Neuroinflammation in Neurodegenerative Diseases
Guest Editor: Wenqiang FanDeadline: 31 August 2025
Special Issue in
CIMB
Unraveling the Molecular Marvels of Heart Repair and Regeneration
Guest Editor: Nilanjana MaulikDeadline: 31 August 2025
Special Issue in
CIMB
Genomic Analysis of Common Disease, 2nd Edition
Guest Editor: Golder N. WilsonDeadline: 31 August 2025
Special Issue in
CIMB
Editorial Board Members' Collection Series: Natural Product Pharmacology
Guest Editors: Sherif Hassan, Mosharraf SarkerDeadline: 31 August 2025
Topical Collections
Topical Collection in
CIMB
Feature Papers in Current Issues in Molecular BiologyCollection Editor: Madhav Bhatia
Topical Collection in
CIMB
Molecular Mechanisms in Human Diseases
Collection Editor: Roberto Campagna
Topical Collection in
CIMB
Bioinformatics Approaches to Biomedicine
Collection Editor: Giulia Fiscon
Topical Collection in
CIMB
Advancements in Molecular Biology and Pharmaceutical Science
Collection Editor: Arun Butreddy