Evaluation of the Antihistamine and Anti-Inflammatory Effects of a Nutraceutical Blend Based on Quercetin, Perilla frutescens, Boswellia serrata, Blackcurrant, Parthenium, Helichrysum, Lactobacillus acidophilus and Bifidobacterium animalis Through In Vitro and In Vivo Approaches—Preliminary Data
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Test on RBL-2H3 Cells
2.1.1. Cell Line and Culture Condition
2.1.2. Sample Preparation
2.1.3. Evaluation of the Absence of Cytotoxicity of the Mixture
2.1.4. Evaluation of Degranulation
2.1.5. Dosage of TNFα
2.2. Preliminary In Vivo Test
3. Results
3.1. Preliminary Cell Viability Evaluation
3.2. In Vitro Test Results
3.2.1. Degranulation Evaluation
3.2.2. Dosage of TNFα

| PC | TS 0.02 mg/mL | TS 0.01 mg/mL | TS 0.005 mg/mL | SC | |
|---|---|---|---|---|---|
| TNFα (pg/mL) | 248.8 | 216.5 | 219.2 | 232.5 | 200.3 |
| Protection (% of PC) | – | 13.0 | 11.9 | 6.5 | 19.5 |
3.3. Preliminary In Vivo Test Results
4. Discussion
5. Conclusions
Limits of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, L.L.; Li, P.; Hon, S.S.; Lai, A.Y.; Li, A.; Wong, K.C.; Huang, D.; Wong, C.K. Deciphering the Interplay between the Epithelial Barrier, Immune Cells, and Metabolic Mediators in Allergic Disease. Int. J. Mol. Sci. 2024, 25, 6913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, Y.; Zhang, H.; Hu, L.; Liu, J.; Wang, L.; Wang, T.; Zhang, H.; Cong, L.; Wang, Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Vitte, J.; Vibhushan, S.; Bratti, M.; Montero-Hernandez, J.E.; Blank, U. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med. Princ. Pract. 2022, 31, 501–515. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Blaiss, M.S.; Naclerio, R.M.; Stoloff, S.W.; Derebery, M.J.; Nelson, H.S.; Boyle, J.M.; Wingertzahn, M.A. Burden of allergic rhinitis: Allergies in America, Latin America, and Asia-Pacific adult surveys. Allergy Asthma Proc. 2012, 1, S113–S141. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef]
- de Almeida Brasiel, P.G.; Guimarães, F.V.; Rodrigues, P.M.; Bou-Habib, D.C.; Carvalho, V.F. Therapeutic Efficacy of Flavonoids in Allergies: A Systematic Review of Randomized Controlled Trials. J. Immunol. Res. 2022, 2022, 8191253. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Falcon, R.M.G.; Caoili, S.E.C. Immunologic, genetic, and ecological interplay of factors involved in allergic diseases. Front. Allergy 2023, 4, 1215616. [Google Scholar] [CrossRef]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef]
- Ahmad, S.; Azid, N.A.; Boer, J.C.; Lim, J.; Chen, X.; Plebanski, M.; Mohamud, R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front. Immunol. 2018, 9, 2572. [Google Scholar] [CrossRef]
- Iwasaki, M.; Saito, K.; Takemura, M.; Sekikawa, K.; Fujii, H.; Yamada, Y.; Wada, H.; Mizuta, K.; Seishima, M.; Ito, Y. TNF-alpha contributes to the development of allergic rhinitis in mice. J. Allergy Clin. Immunol. 2003, 112, 134–140. [Google Scholar] [CrossRef]
- Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; van Weel, C.; Agache, I.; Aït-Khaled, N.; Bachert, C.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008, 86, 8–160. [Google Scholar]
- Arasi, S.; Nurmatov, U.; Dunn-Galvin, A.; Roberts, G.; Turner, P.J.; Shinder, S.B.; Gupta, R.; Eigenmann, P.; Nowak-Wegrzyn, A.; Ansotegui, I.J.; et al. WAO consensus on DEfinition of Food Allergy SEverity (DEFASE). World Allergy Organ. J. 2023, 16, 100753. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Javeed, A.; Jian, C.; Sun, J.; Wu, S.; Han, B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur. J. Med. Chem. 2023, 249, 115151. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. Synthesis of anti-allergic drugs. RSC Adv. 2020, 10, 5874–5885. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lim-Jurado, M.; Prepageran, N.; Tantilipikorn, P.; Wang, D.Y. Treatment of allergic rhinitis and urticaria: A review of the newest antihistamine drug bilastine. Ther. Clin. Risk Manag. 2016, 12, 585–597. [Google Scholar] [CrossRef]
- Sangalli, B.C. Role of the central histaminergic neuronal system in the CNS toxicity of the first generation H1-antagonists. Prog. Neurobiol. 1997, 52, 145–157. [Google Scholar] [CrossRef]
- Yamprasert, R.; Chanvimalueng, W.; Mukkasombut, N.; Itharat, A. Ginger extract versus Loratadine in the treatment of allergic rhinitis: A randomized controlled trial. BMC Complement. Med. Ther. 2020, 20, 119. [Google Scholar] [CrossRef]
- Mohamud, M.F.Y.; Waberi, M.M. Pheniramine induced supraventricular tachycardia resistant to adenosine: A case report and review. Ann. Med. Surg. 2022, 78, 103621. [Google Scholar] [CrossRef]
- Li, L.; Liu, R.; Peng, C.; Chen, X.; Li, J. Pharmacogenomics for the efficacy and side effects of antihistamines. Exp. Dermatol. 2022, 31, 993–1004. [Google Scholar] [CrossRef]
- Yap, Y.G.; Camm, A.J. Arrhythmogenic mechanisms of non-sedating antihistamines. Clin. Exp. Allergy 1999, 3, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.S.; Liu, C.; Tateyama, M.; Karbat, I.; Uesugi, M.; Reuveny, E.; Kubo, Y. Non-sedating antihistamines block G-protein-gated inwardly rectifying K+ channels. Br. J. Pharmacol. 2019, 176, 3161–3179. [Google Scholar] [CrossRef]
- Kawauchi, H.; Yanai, K.; Wang, D.Y.; Itahashi, K.; Okubo, K. Antihistamines for Allergic Rhinitis Treatment from the Viewpoint of Nonsedative Properties. Int. J. Mol. Sci. 2019, 20, 213. [Google Scholar] [CrossRef]
- Tashiro, M.; Sakurada, Y.; Iwabuchi, K.; Mochizuki, H.; Kato, M.; Aoki, M.; Funaki, Y.; Itoh, M.; Iwata, R.; Wong, D.F.; et al. Central effects of fexofenadine and cetirizine: Measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J. Clin. Pharmacol. 2004, 44, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, M.; Kato, M.; Miyake, M.; Watanuki, S.; Funaki, Y.; Ishikawa, Y.; Iwata, R.; Yanai, K. Dose dependency of brain histamine H(1) receptor occupancy following oral administration of cetirizine hydrochloride measured using PET with [11C]doxepin. Hum. Psychopharmacol. 2009, 24, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci. 2011, 73, 255–261. [Google Scholar]
- Ragab, E.A.; Abd El-Wahab, M.F.; Doghish, A.S.; Salama, R.M.; Eissa, N.; Darwish, S.F. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 1477–1504. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, C.M.; Jung, I.D.; Lee, J.S.; Jeong, Y.I.; Chang, J.H.; Chun, S.H.; Kim, M.J.; Choi, I.W.; Ahn, S.C.; et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int. Immunopharmacol. 2009, 9, 261–267. [Google Scholar] [CrossRef]
- Sagit, M.; Polat, H.; Gurgen, S.G.; Berk, E.; Guler, S.; Yasar, M. Effectiveness of quercetin in an experimental rat model of allergic rhinitis. Eur. Arch. Otorhinolaryngol. 2017, 274, 3087–3095. [Google Scholar] [CrossRef]
- Kashiwabara, M.; Asano, K.; Mizuyoshi, T.; Kobayashi, H. Suppression of neuropeptide production by quercetin in allergic rhinitis model rats. BMC Complement. Altern. Med. 2016, 16, 132. [Google Scholar] [CrossRef]
- Jafarinia, M.; Sadat Hosseini, M.; Kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol. 2020, 16, 36. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Vuorinen, A.L.; Kalpio, M.; Linderborg, K.M.; Hoppula, K.B.; Karhu, S.T.; Yang, B.; Kallio, H.P. Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition. Food Chem. 2016, 196, 976–987. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Lee, S.; Son, H.Y.; Park, S.B.; Kim, M.S.; Choi, E.J.; Singh, T.S.; Ha, J.H.; Lee, M.G.; Kim, J.E.; et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 2008, 31, 1303–1311. [Google Scholar] [CrossRef]
- Ashigai, H.; Komano, Y.; Wang, G.; Kawachi, Y.; Sunaga, K.; Yamamoto, R.; Takata, R.; Miyake, M.; Yanai, T. Effect of administrating polysaccharide from black currant (Ribes nigrum L.) on atopic dermatitis in NC/Nga mice. Biosci. Microbiota Food Health 2018, 37, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Furlan, V.; Bren, U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023, 12, 802. [Google Scholar] [CrossRef]
- Antunes Viegas, D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef]
- Rhind, J.P.; Pirie, D. Essential Oils: A Handbook for Aromatherapy Practice, 2nd ed.; Singing Dragon: London, UK, 2012. [Google Scholar]
- Huang, S.; Nan, Y.; Chen, G.; Ning, N.; Du, Y.; Lu, D.; Yang, Y.; Meng, F.; Yuan, L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023, 28, 5883. [Google Scholar] [CrossRef]
- Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules 2022, 27, 3578. [Google Scholar] [CrossRef]
- Shin, T.Y.; Kim, S.H.; Kim, S.H.; Kim, Y.K.; Park, H.J.; Chae, B.S.; Jung, H.J.; Kim, H.M. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens. Immunopharmacol. Immunotoxicol. 2000, 22, 489–500. [Google Scholar] [CrossRef]
- Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev. 2011, 5, 103–110. [Google Scholar] [CrossRef]
- Kwok, B.H.; Koh, B.; Ndubuisi, M.I.; Elofsson, M.; Crews, C.M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 2001, 8, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Hayes, N.A.; Foreman, J.C. The activity of compounds extracted from feverfew on histamine release from rat mast cells. J. Pharm. Pharmacol. 1987, 39, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, A.M.; Valsecchi, C.; Caimmi, S.; Licari, A.; Marseglia, A.; Leoni, M.C.; Caimmi, D.; Miraglia del Giudice, M.; Leonardi, S.; La Rosa, M.; et al. Probiotics and food allergy. Ital. J. Pediatr. 2013, 39, 47. [Google Scholar] [CrossRef]
- Ouwehand, A.C. Antiallergic effects of probiotics. J. Nutr. 2007, 137, 794S–797S. [Google Scholar] [CrossRef]
- Rather, I.A.; Bajpai, V.K.; Kumar, S.; Lim, J.; Paek, W.K.; Park, Y.H. Probiotics and Atopic Dermatitis: An Overview. Front. Microbiol. 2016, 7, 507. [Google Scholar] [CrossRef]
- Mazhary, Z.; Fard, N.A.; Minuchehr, Z.; Javanshir, N. Package of anti-allergic probiotic Lactobacillus by focusing on the regulatory role of immunosuppressive motifs in allergy. Inform. Med. Unlocked 2020, 18, 100280. [Google Scholar] [CrossRef]
- Balta, I.; Butucel, E.; Mohylyuk, V.; Criste, A.; Dezmirean, D.S.; Stef, L.; Pet, I.; Corcionivoschi, N. Novel Insights into the Role of Probiotics in Respiratory Infections, Allergies, Cancer, and Neurological Abnormalities. Diseases 2021, 9, 60. [Google Scholar] [CrossRef]
- Ishida, Y.; Nakamura, F.; Kanzato, H.; Sawada, D.; Hirata, H.; Nishimura, A.; Kajimoto, O.; Fujiwara, S. Clinical effects of Lactobacillus acidophilus strain L-92 on perennial allergic rhinitis: A double-blind, placebo-controlled study. J. Dairy Sci. 2005, 88, 527–533. [Google Scholar] [CrossRef]
- Lungaro, L.; Malfa, P.; Manza, F.; Costanzini, A.; Valentini, G.; Squarzanti, D.F.; Viciani, E.; Velichevskaya, A.; Castagnetti, A.; Barbalinardo, M.; et al. Clinical Efficacy of Probiotics for Allergic Rhinitis: Results of an Exploratory Randomized Controlled Trial. Nutrients 2024, 16, 4173. [Google Scholar] [CrossRef]
- Candela, M.; Turroni, S.; Centanni, M.; Fiori, J.; Bergmann, S.; Hammerschmidt, S.; Brigidi, P. Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Appl. Environ. Microbiol. 2011, 77, 7072–7076. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Dang, D.; Feng, L.; Huang, L.; Zhao, J.; Lu, S.; Lu, W. Bifidobacterium animalis subsp. lactis CCFM1274 relieved allergic asthma symptoms by modifying intestinal tryptophan metabolism in mice. Food Funct. 2024, 15, 8810–8822. [Google Scholar] [CrossRef]
- Passante, E.; Frankish, N. The RBL-2H3 cell line: Its provenance and suitability as a model for the mast cell. Inflamm. Res. 2009, 58, 737–745. [Google Scholar] [CrossRef]
- Rujitharanawong, C.; Yoodee, S.; Sueksakit, K.; Peerapen, P.; Tuchinda, P.; Kulthanan, K.; Thongboonkerd, V. Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Res. 2022, 390, 413–428. [Google Scholar] [CrossRef]
- Sánchez, N.S.; Königsberg, M. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem. Mol. Biol. Educ. 2006, 34, 209–212. [Google Scholar] [CrossRef]
- Lee, B.K.; Park, S.J.; Nam, S.Y.; Kang, S.; Hwang, J.; Lee, S.J.; Im, D.S. Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. J. Ethnopharmacol. 2018, 213, 256–261. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Ansotegui, I.J.; Melioli, G.; Canonica, G.W.; Caraballo, L.; Villa, E.; Ebisawa, M.; Passalacqua, G.; Savi, E.; Ebo, D.; Gómez, R.M.; et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ. J. 2020, 13, 100080, Erratum in World Allergy Organ. J. 2021, 14, 100557. [Google Scholar] [CrossRef]
- Bürkner, P.C.; Doebler, P.; Holling, H. Optimal design of the Wilcoxon-Mann-Whitney-test. Biom. J. 2017, 59, 25–40. [Google Scholar] [CrossRef]
- Bousquet, J.; Clark, T.J.; Hurd, S.; Khaltaev, N.; Lenfant, C.; O’byrne, P.; Sheffer, A. GINA guidelines on asthma and beyond. Allergy 2007, 62, 102–112. [Google Scholar] [CrossRef]

| Component | Quantity (mg) | Specifics |
|---|---|---|
| Dry gum-resin extract 75% boswellic acids, 10% keto-boswellic acid | 100 | 75 mg boswellic acids, 10 mg keto-boswellic acid |
| Blackcurrant dry extract from leaves 4% rutin | 100 | 4 mg rutin |
| Dried extract of helichrysum from the flowering tops | 50 | |
| Dry extract of seed perilla 2.5% polyphenols | 200 | 5 mg polyphenol |
| Granular Quercetin (95%) | 210 | 200 mg quercetin |
| Parthenium dry extract 0.5 parthenolides | 100 | 0.5 mg parthenolides |
| Lactobacillus acidophilus SGL11 150 × 109 UFC | 13.3 | 1 billion CFU of live cells |
| Bifidobacterium animalis ssp. lactis Bi1 200 × 109 UFC | 10 | 1 billion CFU of live cells |
| Microcrystalline cellulose | 176.7 | |
| Silicon dioxide | 20 | |
| Magnesium salts of fatty acids | 20 | |
| Total | 1000 |
| PC | 0.0002 [TS] (mg/mL) | 0.0003 [TS] (mg/mL) | 0.0006 [TS] (mg/mL) | 0.0013 [TS] (mg/mL) | 0.003 [TS] (mg/mL) | 0.01 [TS] (mg/mL) | 0.015 [TS] (mg/mL) | 0.02 [TS] (mg/mL) | |
|---|---|---|---|---|---|---|---|---|---|
| OD mean | 0.484 | 0.507 | 0.530 | 0.522 | 0.529 | 0.531 | 0.489 | 0.482 | 0.486 |
| Viability (%) | 100.0 | 104.7 | 109.5 | 107.8 | 109.3 | 109.7 | 101.0 | 99.6 | 100.3 |
| PC | TS 0.02 mg/mL | TS 0.01 mg/mL | TS 0.005 mg/mL | SC | |
|---|---|---|---|---|---|
| Protection (% of PC) | – | 35.1 | 12.7 | – | 80.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masieri, S.; Frati, F.; Torello, G.; Colasante, M.; Scquizzato, M.; Cavaliere, C. Evaluation of the Antihistamine and Anti-Inflammatory Effects of a Nutraceutical Blend Based on Quercetin, Perilla frutescens, Boswellia serrata, Blackcurrant, Parthenium, Helichrysum, Lactobacillus acidophilus and Bifidobacterium animalis Through In Vitro and In Vivo Approaches—Preliminary Data. Curr. Issues Mol. Biol. 2025, 47, 965. https://doi.org/10.3390/cimb47110965
Masieri S, Frati F, Torello G, Colasante M, Scquizzato M, Cavaliere C. Evaluation of the Antihistamine and Anti-Inflammatory Effects of a Nutraceutical Blend Based on Quercetin, Perilla frutescens, Boswellia serrata, Blackcurrant, Parthenium, Helichrysum, Lactobacillus acidophilus and Bifidobacterium animalis Through In Vitro and In Vivo Approaches—Preliminary Data. Current Issues in Molecular Biology. 2025; 47(11):965. https://doi.org/10.3390/cimb47110965
Chicago/Turabian StyleMasieri, Simonetta, Francesco Frati, Giulio Torello, Marianna Colasante, Marta Scquizzato, and Carlo Cavaliere. 2025. "Evaluation of the Antihistamine and Anti-Inflammatory Effects of a Nutraceutical Blend Based on Quercetin, Perilla frutescens, Boswellia serrata, Blackcurrant, Parthenium, Helichrysum, Lactobacillus acidophilus and Bifidobacterium animalis Through In Vitro and In Vivo Approaches—Preliminary Data" Current Issues in Molecular Biology 47, no. 11: 965. https://doi.org/10.3390/cimb47110965
APA StyleMasieri, S., Frati, F., Torello, G., Colasante, M., Scquizzato, M., & Cavaliere, C. (2025). Evaluation of the Antihistamine and Anti-Inflammatory Effects of a Nutraceutical Blend Based on Quercetin, Perilla frutescens, Boswellia serrata, Blackcurrant, Parthenium, Helichrysum, Lactobacillus acidophilus and Bifidobacterium animalis Through In Vitro and In Vivo Approaches—Preliminary Data. Current Issues in Molecular Biology, 47(11), 965. https://doi.org/10.3390/cimb47110965

