Maternal and Fetal SERPINA3 Polymorphisms and Risk of Preeclampsia: A Dyad and Triad Based Case-Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Case Definition
2.3. Questionnaire
2.4. Chart Abstraction
2.5. Polymorphisms Selection
2.6. Sample Collection
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. Maternal Demographics
3.3. Individual SNP Analysis
3.4. Haplotype Analysis
3.5. Parent-of-Origin Analysis
| SNP | Allele | Allele Frequency (%) | Maternal | Child | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Single-Dose RR (95% CI) | p | Double-Dose RR (95% CI) | p | Single- Mat Dose RR (95% CI) | p | Single- Pat Dose RR (95% CI) | p | Double-Dose RR (95% CI) | p | Ratio m-p RRR (95% CI) | p | |||
| rs4934 | A | 30.4 | 1.19 (0.83, 1.72) | 0.35 | 3.03 (1.50, 6.09) | <0.01 | 0.54 (0.31, 0.98) | 0.04 | 1.54 (1.09, 2.20) | 0.02 | 1.13 (0.69, 1.88) | 0.63 | 0.35 (0.18, 0.71) | <0.01 |
| rs1884082 | G | 36.4 | 1.21 (0.85, 1.72) | 0.29 | 2.38 (1.22, 4.71) | 0.01 | 0.52 (0.30, 0.91) | 0.02 | 1.38 (0.98, 1.94) | 0.07 | 1.09 (0.68, 1.75) | 0.72 | 0.38 (0.19, 0.74) | <0.01 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am. J. Obstet. Gynecol. 2000, 183, S1–S22. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Barry, M.J.; Nicholson, W.K.; Silverstein, M.; Cabana, M.D.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Screening for Hypertensive Disorders of Pregnancy: US Preventive Services Task Force Final Recommendation Statement. JAMA 2023, 330, 1074–1082. [Google Scholar] [CrossRef]
- Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [CrossRef]
- Sep, S.; Verbeek, J.; Koek, G.; Smits, L.; Spaanderman, M.; Peeters, L. Clinical differences between early-onset HELLP syndrome and early-onset preeclampsia during pregnancy and at least 6 months postpartum. Am. J. Obstet. Gynecol. 2010, 202, 271.e1–271.e5. [Google Scholar] [CrossRef]
- Mathew, R.; Devanesan, B.P.; Sreedevi, N. Prevalence of hypertensive disorders of pregnancy, associated factors, and pregnancy complications in a primigravida population. Gynecol. Obstet. Clin. Med. 2023, 3, 119–123. [Google Scholar] [CrossRef]
- Martin, J.N., Jr.; Thigpen, B.D.; Moore, R.C.; Rose, C.H.; Cushman, J.; May, W. Stroke and severe preeclampsia and eclampsia: A paradigm shift focusing on systolic blood pressure. Obstet. Gynecol. 2005, 105, 246–254. [Google Scholar] [CrossRef]
- Khosla, K.; Heimberger, S.; Nieman, K.M.; Tung, A.; Shahul, S.; Staff, A.C.; Rana, S. Long-Term Cardiovascular Disease Risk in Women After Hypertensive Disorders of Pregnancy: Recent Advances in Hypertension. Hypertension (1979) 2021, 78, 927–935. [Google Scholar] [CrossRef]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef]
- Huang, Y.D.; Luo, Y.R.; Lee, M.C.; Yeh, C.J. Effect of maternal hypertensive disorders during pregnancy on offspring’s early childhood body weight: A population-based cohort study. Taiwan. J. Obstet. Gynecol. 2022, 61, 761–767. [Google Scholar] [CrossRef]
- Maher, G.M.; O’Keeffe, G.W.; Kearney, P.M.; Kenny, L.C.; Dinan, T.G.; Mattsson, M.; Khashan, A.S. Association of Hypertensive Disorders of Pregnancy With Risk of Neurodevelopmental Disorders in Offspring: A Systematic Review and Meta-analysis. JAMA Psychiatry 2018, 75, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, J.; Qin, G.; Liew, Z.; Hu, J.; László, K.D.; Tao, F.; Obel, C.; Olsen, J.; Yu, Y. Maternal hypertensive disorder of pregnancy and offspring early-onset cardiovascular disease in childhood, adolescence, and young adulthood: A national population-based cohort study. PLoS Med. 2021, 18, e1003805. [Google Scholar] [CrossRef]
- Zhen Lim, T.X.; Pickering, T.A.; Lee, R.H.; Hauptman, I.; Wilson, M.L. Hypertensive disorders of pregnancy and occurrence of ADHD, ASD, and epilepsy in the child: A meta-analysis. Pregnancy Hypertens. 2023, 33, 22–29. [Google Scholar] [CrossRef]
- ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, 1. [CrossRef]
- Brew, O.; Sullivan, M.H.; Woodman, A. Comparison of Normal and Pre-Eclamptic Placental Gene Expression: A Systematic Review with Meta-Analysis. PLoS ONE 2016, 11, e0161504. [Google Scholar] [CrossRef] [PubMed]
- Chelbi, S.T.; Mondon, F.; Jammes, H.; Buffat, C.; Mignot, T.-M.; Tost, J.; Busato, F.; Gut, I.; Rebourcet, R.; Laissue, P.; et al. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension 2007, 49, 76–83. [Google Scholar] [CrossRef] [PubMed]
- de Mezer, M.; Rogaliński, J.; Przewoźny, S.; Chojnicki, M.; Niepolski, L.; Sobieska, M.; Przystańska, A. SERPINA3: Stimulator or Inhibitor of Pathological Changes. Biomedicines 2023, 11, 156. [Google Scholar] [CrossRef]
- Kalsheker, N.A. α1-antichymotrypsin. Int. J. Biochem. Cell Biol. 1996, 28, 961–964. [Google Scholar] [CrossRef]
- Chelbi, S.T.; Wilson, M.L.; Veillard, A.C.; Ingles, S.A.; Zhang, J.; Mondon, F.; Gascoin-Lachambre, G.; Doridot, L.; Mignot, T.M.; Rebourcet, R.; et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum. Mol. Genet. 2012, 21, 1968–1978. [Google Scholar] [CrossRef]
- Auer, J.; Camoin, L.; Guillonneau, F.; Rigourd, V.; Chelbi, S.T.; Leduc, M.; Laparre, J.; Mignot, T.-M.; Vaiman, D. Serum profile in preeclampsia and intra-uterine growth restriction revealed by iTRAQ technology. J. Proteom. 2010, 73, 1004–1017. [Google Scholar] [CrossRef]
- Yang, M.Y.; Ji, M.H.; Shen, T.; Lei, L. Integrated Analysis Identifies Four Genes as Novel Diagnostic Biomarkers Which Correlate with Immune Infiltration in Preeclampsia. J. Immunol. Res. 2022, 2022, 2373694. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Minster, R.L.; Kenney, M.; Ozturk, A.; Desai, P.P.; Kammerer, C.M.; DeKosky, S.T. Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1435–1439. [Google Scholar] [CrossRef]
- Sánchez-Navarro, A.; González-Soria, I.; Caldiño-Bohn, R.; Bobadilla, N.A. An integrative view of serpins in health and disease: The contribution of SerpinA3. Am. J. Physiol. Cell Physiol. 2021, 320, C106–C118. [Google Scholar] [CrossRef]
- Vanni, S.; Moda, F.; Zattoni, M.; Bistaffa, E.; De Cecco, E.; Rossi, M.; Giaccone, G.; Tagliavini, F.; Haïk, S.; Deslys, J.P.; et al. Differential overexpression of SERPINA3 in human prion diseases. Sci. Rep. 2017, 7, 15778. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. dbSNP. National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 4 February 2025).
- National Institutes of Health. LDlink. NIH. Available online: https://ldlink.nih.gov/?tab=home (accessed on 4 February 2025).
- Gjessing, H.K.; Lie, R.T. Case-parent triads: Estimating single- and double-dose effects of fetal and maternal disease gene haplotypes. Ann. Hum. Genet. 2006, 70, 382–396. [Google Scholar] [CrossRef]
- Gjerdevik, M.; Jugessur, A.; Haaland, Ø.A.; Romanowska, J.; Lie, R.T.; Cordell, H.J.; Gjessing, H.K. Haplin power analysis: A software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinform. 2019, 20, 165. [Google Scholar] [CrossRef]
- Sinsheimer, J.S.; Palmer, C.G.; Woodward, J.A. Detecting genotype combinations that increase risk for disease: Maternal-fetal genotype incompatibility test. Genet. Epidemiol. 2003, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.G. Evidence for maternal-fetal genotype incompatibility as a risk factor for schizophrenia. J. Biomed. Biotechnol. 2010, 2010, 576318. [Google Scholar] [CrossRef] [PubMed]
- Herrler, A.; von Rango, U.; Beier, H.M. Embryo-maternal signalling: How the embryo starts talking to its mother to accomplish implantation. Reprod. Biomed. Online 2003, 6, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Silverman, G.A.; Bird, P.I.; Carrell, R.W.; Church, F.C.; Coughlin, P.B.; Gettins, P.G.; Irving, J.A.; Lomas, D.A.; Luke, C.J.; Moyer, R.W.; et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 2001, 276, 33293–33296. [Google Scholar] [CrossRef]
- Ness, R.B.; Sibai, B.M. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am. J. Obstet. Gynecol. 2006, 195, 40–49. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Little, J.; Bleecker, E.R.; Meyers, D.A. Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: Hint for genotyping error? Hum. Genet. 2002, 111, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Namipashaki, A.; Razaghi-Moghadam, Z.; Ansari-Pour, N. The Essentiality of Reporting Hardy-Weinberg Equilibrium Calculations in Population-Based Genetic Association Studies. Cell J. 2015, 17, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, H.F.; Unwin, J.; Jamison, D.L.; Cordell, H.J. Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet. Epidemiol. 2011, 35, 19–45. [Google Scholar] [CrossRef]
- Weinberg, C.R.; Umbach, D.M. Choosing a retrospective design to assess joint genetic and environmental contributions to risk. Am. J. Epidemiol. 2000, 152, 197–203. [Google Scholar] [CrossRef]
- Shi, M.; Umbach, D.M.; Vermeulen, S.H.; Weinberg, C.R. Making the most of case-mother/control-mother studies. Am. J. Epidemiol. 2008, 168, 541–547. [Google Scholar] [CrossRef] [PubMed]


| (a) | |||||||||
| SNP (rs#) | Variant Type | Position | Consequence | Allele | Reference Allele (%) | Alternate Allele (%) | Associations | ||
| LA 1 | EU 2 | LA | EU | ||||||
| rs4934 | SNV | chr14:94614466 (GRCh38.p14) | SERPINA3: Missense Variant | G > A | G = 0.73 | G = 0.51 | A = 0.27 | A = 0.48 | None |
| rs1884082 | SNV | chr14:94612340 (GRCh38.p14) | SERPINA3: 2KB Upstream Variant | G > T | G = 0.72 | G = 0.49 | T = 0.51 | T = 0.29 | Placental diseases [19] |
| (b) | |||||||||
| Pairwise SNP (rs#) | Pairwise Linkage Disequilibrium (r2, d) | ||||||||
| rs4934-rs1884082 | (0.825, 1.0) | ||||||||
| (c) | |||||||||
| Pairwise SNP (rs#) | Pairwise Linkage Disequilibrium (r2, d) | ||||||||
| rs4934-rs1884082 | (0.909, 1.0) | ||||||||
| HDP | Severe PE/HELLP Syndrome | |||||||
|---|---|---|---|---|---|---|---|---|
| Variable | n | Cases (n = 142) | n | Controls (n = 168) | n | Cases (n = 189) | n | Controls (n = 28) |
| Age | 140 | 27.9 ± 7.5 | 168 | 26.9 ± 7.0 | 115 | 30.9 ± 3.9 | 26 | 32.0 ± 4.0 |
| Ethnicity (%) | ||||||||
| Hispanic | 136 | 95.8 | 163 | 96.4 | - | - | - | - |
| Other | 6 | 4.2 | 6 | 3.6 | - | - | - | - |
| Race (%) | ||||||||
| White | - | - | - | - | 189 | 100 | 28 | 100 |
| Gestational age (weeks) | 140 | 36.8 ± 3.4 | 168 | 38.7 ± 2.0 | 112 | 33.7 ± 3.8 | 20 | 39.6 ± 1.8 |
| Pre-pregnancy weight (lbs) | 140 | 151.0 ± 34.9 | 168 | 140.0 ± 27.2 | 154 | 144.2 ± 26.6 | 23 | 150.9 ± 23.9 |
| Max systolic blood pressure (mmHg) | 132 | 163.0 ± 15.8 | 158 | 118.0 ± 10.9 | 130 | 161.2 ± 23.8 | - | - |
| Max diastolic blood pressure (mmHg) | 132 | 97.4 ± 9.9 | 158 | 68.8 ± 9.0 | 130 | 98.6 ± 13.5 | - | - |
| Birthweight (grams) | 125 | 3060.0 (2395.0, 3445.0) | 158 | 3288.0 (3018.0, 3600.0) | 113 | 2540.1 (1360.8, 4082.3) | 27 | 3242.3 (2041.2, 4082.3) |
| Nulliparity (%) | 140 | 168 | 106 | 22 | ||||
| Nulliparous | 60 (42.9) | 52 (31.0) | 93 (87.7) | 10 (45.5) | ||||
| Parous | 80 (57.1) | 116 (69.0) | 13 (12.3) | 12 (54.5) | ||||
| Parity (%) | 138 | 168 | 106 | 22 | ||||
| 0 | 60 (43.5) | 52 (31.0) | 93 (87.7) | 10 (45.5) | ||||
| 1 | 33 (23.9) | 59 (35.1) | 8 (7.6) | 8 (36.4) | ||||
| 2 or more | 45 (32.6) | 57 (33.9) | 5 (4.7) | 4 (18.2) | ||||
| Gravidity (%) | 140 | 168 | 107 | 22 | ||||
| 1 | 49 (35.0) | 43 (25.6) | 80 (74.8) | 10 (45.5) | ||||
| 2 | 34 (24.3) | 48 (28.6) | 19 (17.8) | 6 (27.3) | ||||
| 3 | 19 (13.6) | 30 (17.9) | 5 (4.7) | 3 (13.6) | ||||
| 4 or more | 38 (27.1) | 47 (28.0) | 3 (2.8) | 3 (13.6) | ||||
| History of Gestational diabetes (%) | 137 | 7 (5.1) | 157 | 18 (11.5) | 105 | 7 (6.7) | 0 | 0 |
| HELLP (%) | - | - | - | - | 125 | 51 (40.8) | - | - |
| PE (%) | 142 | 97 (68.3) | - | - | 125 | 74 (59.2) | - | - |
| Superimposed PE (%) | 142 | 3 (2.1) | - | - | - | - | - | - |
| Gestational hypertension (%) | 142 | 42 (29.6) | - | - | - | - | - | - |
| (a) | ||||||||||
| SNP | Allele | Allele Frequency (%) | Maternal Single-Dose RR (95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| rs4934 | A | 21.6 | 0.79 (0.50, 1.22) | 0.28 | 0.97 (0.40, 2.38) | 0.95 | 0.97 (0.63, 1.53) | 0.92 | 1.63 (0.71, 3.82) | 0.26 |
| rs1884082 | G | 22.9 | 0.85 (0.55, 1.31) | 0.45 | 0.85 (0.35, 2.13) | 0.73 | 0.86 (0.55, 1.33) | 0.50 | 1.43 (0.65, 3.12) | 0.38 |
| (b) | ||||||||||
| SNP | Allele | Allele Frequency (%) | Maternal Single-Dose RR (95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| rs4934 | A | 47.4 | 0.76 (0.51, 1.14) | 0.18 | 0.84 (0.49, 1.49) | 0.55 | 1.04 (0.69, 1.61) | 0.83 | 0.81 (0.43, 1.52) | 0.52 |
| rs1884082 | T | 50.3 | 1.10 (0.73, 1.68) | 0.65 | 1.39 (0.78, 2.44) | 0.25 | 1.23 (0.80, 1.90) | 0.33 | 1.25 (0.70, 2.30) | 0.46 |
| (c) | ||||||||||
| SNP | Allele | Allele Frequency (%) | Maternal Single-Dose RR (95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| rs4934 | A | 34.2 | 0.81 (0.60, 1.08) | 0.15 | 1.30 (0.85, 2.03) | 0.23 | 1.10 (0.82, 1.48) | 0.51 | 1.54 (0.97, 2.47) | 0.07 |
| rs1884082 | G | 36.4 | 0.85 (0.64, 1.14) | 0.27 | 1.13 (0.73, 1.74) | 0.60 | 1.00 (0.75, 1.33) | 0.99 | 1.41 (0.91, 2.21) | 0.13 |
| (a) | |||||||||
| Haplotype | Frequency (%) | Maternal Single-Dose RR(95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| g-a | 22.4 | 0.87 (0.56, 1.35) | 0.53 | 1.03 (0.43, 2.59) | 0.94 | 0.92 (0.59, 1.43) | 0.72 | 1.40 (0.61, 3.15) | 0.43 |
| (b) | |||||||||
| Haplotype | Frequency (%) | Maternal Single-Dose RR (95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| g-a | 51.5 | 0.69 (0.46, 1.05) | 0.08 | 0.67 (0.37, 1.20) | 0.18 | 1.09 (0.70, 1.69) | 0.69 | 0.99 (0.54, 1.89) | 0.98 |
| (c) | |||||||||
| Haplotype | Frequency (%) | Maternal Single-Dose RR (95% CI) | p-Value | Maternal Double-Dose RR (95% CI) | p-Value | Child Single-Dose RR (95% CI) | p-Value | Child Double-Dose RR (95% CI) | p-Value |
| g-a | 33.0 | 0.79 (0.59, 1.07) | 0.13 | 1.15 (0.73, 1.82) | 0.54 | 1.07 (0.80, 1.44) | 0.64 | 1.58 (1, 2.52) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-H.; Baldauf, C.; Pickering, T.A.; Gjessing, H.K.; Ingles, S.A.; Wilson, M.L. Maternal and Fetal SERPINA3 Polymorphisms and Risk of Preeclampsia: A Dyad and Triad Based Case-Control Study. Curr. Issues Mol. Biol. 2025, 47, 952. https://doi.org/10.3390/cimb47110952
Yang H-H, Baldauf C, Pickering TA, Gjessing HK, Ingles SA, Wilson ML. Maternal and Fetal SERPINA3 Polymorphisms and Risk of Preeclampsia: A Dyad and Triad Based Case-Control Study. Current Issues in Molecular Biology. 2025; 47(11):952. https://doi.org/10.3390/cimb47110952
Chicago/Turabian StyleYang, Hsi-Hsuan, Claire Baldauf, Trevor A. Pickering, Håkon K. Gjessing, Sue Ann Ingles, and Melissa Lee Wilson. 2025. "Maternal and Fetal SERPINA3 Polymorphisms and Risk of Preeclampsia: A Dyad and Triad Based Case-Control Study" Current Issues in Molecular Biology 47, no. 11: 952. https://doi.org/10.3390/cimb47110952
APA StyleYang, H.-H., Baldauf, C., Pickering, T. A., Gjessing, H. K., Ingles, S. A., & Wilson, M. L. (2025). Maternal and Fetal SERPINA3 Polymorphisms and Risk of Preeclampsia: A Dyad and Triad Based Case-Control Study. Current Issues in Molecular Biology, 47(11), 952. https://doi.org/10.3390/cimb47110952

